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Abstract

Neural networks are both computationally intensive and memory intensive, making
them difficult to deploy on embedded systems. Also, conventional networks fix
the architecture before training starts; as a result, training cannot improve the
architecture. To address these limitations, we describe a method to reduce the
storage and computation required by neural networks by an order of magnitude
without affecting their accuracy by learning only the important connections. Our
method prunes redundant connections using a three-step method. First, we train
the network to learn which connections are important. Next, we prune the unim-
portant connections. Finally, we retrain the network to fine tune the weights of the
remaining connections. On the ImageNet dataset, our method reduced the number
of parameters of AlexNet by a factor of 9×, from 61 million to 6.7 million, without
incurring accuracy loss. Similar experiments with VGG-16 found that the total
number of parameters can be reduced by 13×, from 138 million to 10.3 million,
again with no loss of accuracy.

1 Introduction

Neural networks have become ubiquitous in applications ranging from computer vision [1] to speech
recognition [2] and natural language processing [3]. We consider convolutional neural networks used
for computer vision tasks which have grown over time. In 1998 Lecun et al. designed a CNN model
LeNet-5 with less than 1M parameters to classify handwritten digits [4], while in 2012, Krizhevsky
et al. [1] won the ImageNet competition with 60M parameters. Deepface classified human faces with
120M parameters [5], and Coates et al. [6] scaled up a network to 10B parameters.

While these large neural networks are very powerful, their size consumes considerable storage,
memory bandwidth, and computational resources. For embedded mobile applications, these resource
demands become prohibitive. Figure 1 shows the energy cost of basic arithmetic and memory
operations in a 45nm CMOS process. From this data we see the energy per connection is dominated
by memory access and ranges from 5pJ for 32 bit coefficients in on-chip SRAM to 640pJ for 32bit
coefficients in off-chip DRAM [7]. Large networks do not fit in on-chip storage and hence require
the more costly DRAM accesses. Running a 1 billion connection neural network, for example, at
20Hz would require (20Hz)(1G)(640pJ) = 12.8W just for DRAM access - well beyond the power
envelope of a typical mobile device. Our goal in pruning networks is to reduce the energy required to
run such large networks so they can run in real time on mobile devices. The model size reduction
from pruning also facilitates storage and transmission of mobile applications incorporating DNNs.
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Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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Figure 2: Three-Step Training Pipeline.
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3 Learning Connections in Addition to Weights

Our pruning method employs a three-step process, as illustrated in Figure 2, which begins by learning
the connectivity via normal network training. Unlike conventional training, however, we are not
learning the final values of the weights, but rather we are learning which connections are important.

The second step is to prune the low-weight connections. All connections with weights below a
threshold are removed from the network — converting a dense network into a sparse network, as
shown in Figure 3. The final step retrains the network to learn the final weights for the remaining
sparse connections. This step is critical. If the pruned network is used without retraining, accuracy is
significantly impacted.

3.1 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regulariza-
tion penalizes non-zero parameters resulting in more parameters near zero. This gives better accuracy
after pruning, but before retraining. However, the remaining connections are not as good as with L2
regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives the best
pruning results. This is further discussed in experiment section.

3.2 Dropout Ratio Adjustment

Dropout [23] is widely used to prevent over-fitting, and this also applies to retraining. During
retraining, however, the dropout ratio must be adjusted to account for the change in model capacity.
In dropout, each parameter is probabilistically dropped during training, but will come back during
inference. In pruning, parameters are dropped forever after pruning and have no chance to come back
during both training and inference. As the parameters get sparse, the classifier will select the most
informative predictors and thus have much less prediction variance, which reduces over-fitting. As
pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir for
the network after retraining, Ni be the number of neurons in layer i. Since dropout works on neurons,
and Ci varies quadratically with Ni, according to Equation 1 thus the dropout ratio after pruning the
parameters should follow Equation 2, where Do represent the original dropout rate, Dr represent the
dropout rate during retraining.

Ci = NiNi−1 (1) Dr = Do

√

Cir

Cio

(2)

3.3 Local Pruning and Parameter Co-adaptation

During retraining, it is better to retain the weights from the initial training phase for the connections
that survived pruning than it is to re-initialize the pruned layers. CNNs contain fragile co-adapted
features [24]: gradient descent is able to find a good solution when the network is initially trained,
but not after re-initializing some layers and retraining them. So when we retrain the pruned layers,
we should keep the surviving parameters instead of re-initializing them.
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Table 1: Network pruning can save 9× to 13× parameters with no drop in predictive performance.

Network Top-1 Error Top-5 Error Parameters
Compression
Rate

LeNet-300-100 Ref 1.64% - 267K
LeNet-300-100 Pruned 1.59% - 22K 12×

LeNet-5 Ref 0.80% - 431K
LeNet-5 Pruned 0.77% - 36K 12×

AlexNet Ref 42.78% 19.73% 61M
AlexNet Pruned 42.77% 19.67% 6.7M 9×

VGG-16 Ref 31.50% 11.32% 138M
VGG-16 Pruned 31.34% 10.88% 10.3M 13×

Retraining the pruned layers starting with retained weights requires less computation because we
don’t have to back propagate through the entire network. Also, neural networks are prone to suffer
the vanishing gradient problem [25] as the networks get deeper, which makes pruning errors harder to
recover for deep networks. To prevent this, we fix the parameters for CONV layers and only retrain
the FC layers after pruning the FC layers, and vice versa.

3.4 Iterative Pruning

Learning the right connections is an iterative process. Pruning followed by a retraining is one iteration,
after many such iterations the minimum number connections could be found. Without loss of accuracy,
this method can boost pruning rate from 5× to 9× on AlexNet compared with single-step aggressive
pruning. Each iteration is a greedy search in that we find the best connections. We also experimented
with probabilistically pruning parameters based on their absolute value, but this gave worse results.

3.5 Pruning Neurons

After pruning connections, neurons with zero input connections or zero output connections may be
safely pruned. This pruning is furthered by removing all connections to or from a pruned neuron.
The retraining phase automatically arrives at the result where dead neurons will have both zero input
connections and zero output connections. This occurs due to gradient descent and regularization.
A neuron that has zero input connections (or zero output connections) will have no contribution
to the final loss, leading the gradient to be zero for its output connection (or input connection),
respectively. Only the regularization term will push the weights to zero. Thus, the dead neurons will
be automatically removed during retraining.

4 Experiments

We implemented network pruning in Caffe [26]. Caffe was modified to add a mask which disregards
pruned parameters during network operation for each weight tensor. The pruning threshold is chosen
as a quality parameter multiplied by the standard deviation of a layer’s weights. We carried out the
experiments on Nvidia TitanX and GTX980 GPUs.

We pruned four representative networks: Lenet-300-100 and Lenet-5 on MNIST, together with
AlexNet and VGG-16 on ImageNet. The network parameters and accuracy 1 before and after pruning
are shown in Table 1.

4.1 LeNet on MNIST

We first experimented on MNIST dataset with the LeNet-300-100 and LeNet-5 networks [4]. LeNet-
300-100 is a fully connected network with two hidden layers, with 300 and 100 neurons each, which
achieves 1.6% error rate on MNIST. LeNet-5 is a convolutional network that has two convolutional
layers and two fully connected layers, which achieves 0.8% error rate on MNIST. After pruning,
the network is retrained with 1/10 of the original network’s original learning rate. Table 1 shows

1Reference model is from Caffe model zoo, accuracy is measured without data augmentation
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Table 2: For Lenet-300-100, pruning reduces the number of weights by 12× and computation by
12×.

Layer Weights FLOP Act% Weights% FLOP%

fc1 235K 470K 38% 8% 8%
fc2 30K 60K 65% 9% 4%
fc3 1K 2K 100% 26% 17%

Total 266K 532K 46% 8% 8%

Table 3: For Lenet-5, pruning reduces the number of weights by 12× and computation by 6×.

Layer Weights FLOP Act% Weights% FLOP%

conv1 0.5K 576K 82% 66% 66%
conv2 25K 3200K 72% 12% 10%

fc1 400K 800K 55% 8% 6%
fc2 5K 10K 100% 19% 10%

Total 431K 4586K 77% 8% 16%

Figure 4: Visualization of the first FC layer’s sparsity pattern of Lenet-300-100. It has a banded
structure repeated 28 times, which correspond to the un-pruned parameters in the center of the images,
since the digits are written in the center.

pruning saves 12× parameters on these networks. For each layer of the network the table shows (left
to right) the original number of weights, the number of floating point operations to compute that
layer’s activations, the average percentage of activations that are non-zero, the percentage of non-zero
weights after pruning, and the percentage of actually required floating point operations.

An interesting byproduct is that network pruning detects visual attention regions. Figure 4 shows the
sparsity pattern of the first fully connected layer of LeNet-300-100, the matrix size is 784 ∗ 300. It
has 28 bands, each band’s width 28, corresponding to the 28× 28 input pixels. The colored regions
of the figure, indicating non-zero parameters, correspond to the center of the image. Because digits
are written in the center of the image, these are the important parameters. The graph is sparse on the
left and right, corresponding to the less important regions on the top and bottom of the image. After
pruning, the neural network finds the center of the image more important, and the connections to the
peripheral regions are more heavily pruned.

4.2 AlexNet on ImageNet

We further examine the performance of pruning on the ImageNet ILSVRC-2012 dataset, which
has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as the
reference model, which has 61 million parameters across 5 convolutional layers and 3 fully connected
layers. The AlexNet Caffe model achieved a top-1 accuracy of 57.2% and a top-5 accuracy of 80.3%.
The original AlexNet took 75 hours to train on NVIDIA Titan X GPU. After pruning, the whole
network is retrained with 1/100 of the original network’s initial learning rate. It took 173 hours to
retrain the pruned AlexNet. Pruning is not used when iteratively prototyping the model, but rather
used for model reduction when the model is ready for deployment. Thus, the retraining time is less
a concern. Table 1 shows that AlexNet can be pruned to 1/9 of its original size without impacting
accuracy, and the amount of computation can be reduced by 3×.
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Table 4: For AlexNet, pruning reduces the number of weights by 9× and computation by 3×.

Layer Weights FLOP Act% Weights% FLOP%

conv1 35K 211M 88% 84% 84%
conv2 307K 448M 52% 38% 33%
conv3 885K 299M 37% 35% 18%
conv4 663K 224M 40% 37% 14%
conv5 442K 150M 34% 37% 14%

fc1 38M 75M 36% 9% 3%
fc2 17M 34M 40% 9% 3%
fc3 4M 8M 100% 25% 10%

Total 61M 1.5B 54% 11% 30%
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Table 5: For VGG-16, pruning reduces the number of weights by 12× and computation by 5×.

Layer Weights FLOP Act% Weights% FLOP%

conv1 1 2K 0.2B 53% 58% 58%
conv1 2 37K 3.7B 89% 22% 12%

conv2 1 74K 1.8B 80% 34% 30%
conv2 2 148K 3.7B 81% 36% 29%

conv3 1 295K 1.8B 68% 53% 43%
conv3 2 590K 3.7B 70% 24% 16%
conv3 3 590K 3.7B 64% 42% 29%

conv4 1 1M 1.8B 51% 32% 21%
conv4 2 2M 3.7B 45% 27% 14%
conv4 3 2M 3.7B 34% 34% 15%

conv5 1 2M 925M 32% 35% 12%
conv5 2 2M 925M 29% 29% 9%
conv5 3 2M 925M 19% 36% 11%

fc6 103M 206M 38% 4% 1%
fc7 17M 34M 42% 4% 2%
fc8 4M 8M 100% 23% 9%

total 138M 30.9B 64% 7.5% 21%

4.3 VGG-16 on ImageNet

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 [27],
on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional layers but still only three
fully-connected layers. Following a similar methodology, we aggressively pruned both convolutional
and fully-connected layers to realize a significant reduction in the number of weights, shown in
Table 5. We used five iterations of pruning an retraining.

The VGG-16 results are, like those for AlexNet, very promising. The network as a whole has
been reduced to 7.5% of its original size (13× smaller). In particular, note that the two largest
fully-connected layers can each be pruned to less than 4% of their original size. This reduction is
critical for real time image processing, where there is little reuse of fully connected layers across
images (unlike batch processing during training).

5 Discussion

The trade-off curve between accuracy and number of parameters is shown in Figure 5. The more
parameters pruned away, the less the accuracy. We experimented with L1 and L2 regularization, with
and without retraining, together with iterative pruning to give five trade off lines. Comparing solid and
dashed lines, the importance of retraining is clear: without retraining, accuracy begins dropping much
sooner — with 1/3 of the original connections, rather than with 1/10 of the original connections.
It’s interesting to see that we have the “free lunch” of reducing 2× the connections without losing
accuracy even without retraining; while with retraining we are ably to reduce connections by 9×.
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Figure 5: Trade-off curve for parameter reduction and loss in top-5 accuracy. L1 regularization
performs better than L2 at learning the connections without retraining, while L2 regularization
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Figure 6: Pruning sensitivity for CONV layer (left) and FC layer (right) of AlexNet.

L1 regularization gives better accuracy than L2 directly after pruning (dotted blue and purple lines)
since it pushes more parameters closer to zero. However, comparing the yellow and green lines shows
that L2 outperforms L1 after retraining, since there is no benefit to further pushing values towards
zero. One extension is to use L1 regularization for pruning and then L2 for retraining, but this did not
beat simply using L2 for both phases. Parameters from one mode do not adapt well to the other.

The biggest gain comes from iterative pruning (solid red line with solid circles). Here we take the
pruned and retrained network (solid green line with circles) and prune and retrain it again. The
leftmost dot on this curve corresponds to the point on the green line at 80% (5× pruning) pruned to
8×. There’s no accuracy loss at 9×. Not until 10× does the accuracy begin to drop sharply.

Two green points achieve slightly better accuracy than the original model. We believe this accuracy
improvement is due to pruning finding the right capacity of the network and hence reducing overfitting.

Both CONV and FC layers can be pruned, but with different sensitivity. Figure 6 shows the sensitivity
of each layer to network pruning. The figure shows how accuracy drops as parameters are pruned on
a layer-by-layer basis. The CONV layers (on the left) are more sensitive to pruning than the fully
connected layers (on the right). The first convolutional layer, which interacts with the input image
directly, is most sensitive to pruning. We suspect this sensitivity is due to the input layer having only
3 channels and thus less redundancy than the other convolutional layers. We used the sensitivity
results to find each layer’s threshold: for example, the smallest threshold was applied to the most
sensitive layer, which is the first convolutional layer.

Storing the pruned layers as sparse matrices has a storage overhead of only 15.6%. Storing relative
rather than absolute indices reduces the space taken by the FC layer indices to 5 bits. Similarly,
CONV layer indices can be represented with only 8 bits.
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Table 6: Comparison with other model reduction methods on AlexNet. Data-free pruning [28]
saved only 1.5× parameters with much loss of accuracy. Deep Fried Convnets [29] worked on fully
connected layers only and reduced the parameters by less than 4×. [30] reduced the parameters by
4× with inferior accuracy. Naively cutting the layer size saves parameters but suffers from 4% loss
of accuracy. [12] exploited the linear structure of convnets and compressed each layer individually,
where model compression on a single layer incurred 0.9% accuracy penalty with biclustering + SVD.

Network Top-1 Error Top-5 Error Parameters
Compression
Rate

Baseline Caffemodel [26] 42.78% 19.73% 61.0M 1×
Data-free pruning [28] 44.40% - 39.6M 1.5×
Fastfood-32-AD [29] 41.93% - 32.8M 2×
Fastfood-16-AD [29] 42.90% - 16.4M 3.7×
Collins & Kohli [30] 44.40% - 15.2M 4×
Naive Cut 47.18% 23.23% 13.8M 4.4×
SVD [12] 44.02% 20.56% 11.9M 5×
Network Pruning 42.77% 19.67% 6.7M 9×
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Figure 7: Weight distribution before and after parameter pruning. The right figure has 10× smaller
scale.

After pruning, the storage requirements of AlexNet and VGGNet are are small enough that all weights
can be stored on chip, instead of off-chip DRAM which takes orders of magnitude more energy to
access (Table 1). We are targeting our pruning method for fixed-function hardware specialized for
sparse DNN, given the limitation of general purpose hardware on sparse computation.

Figure 7 shows histograms of weight distribution before (left) and after (right) pruning. The weight
is from the first fully connected layer of AlexNet. The two panels have different y-axis scales.
The original distribution of weights is centered on zero with tails dropping off quickly. Almost all
parameters are between [−0.015, 0.015]. After pruning the large center region is removed. The
network parameters adjust themselves during the retraining phase. The result is that the parameters
form a bimodal distribution and become more spread across the x-axis, between [−0.025, 0.025].

6 Conclusion

We have presented a method to improve the energy efficiency and storage of neural networks without
affecting accuracy by finding the right connections. Our method, motivated in part by how learning
works in the mammalian brain, operates by learning which connections are important, pruning
the unimportant connections, and then retraining the remaining sparse network. We highlight our
experiments on AlexNet and VGGNet on ImageNet, showing that both fully connected layer and
convolutional layer can be pruned, reducing the number of connections by 9× to 13× without loss of
accuracy. This leads to smaller memory capacity and bandwidth requirements for real-time image
processing, making it easier to be deployed on mobile systems.
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