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ABSTRACT

To enable high-level understanding of a scene, it is important

to understand the occlusion and connected boundaries of ob-

jects in the image. In this paper, we propose a new framework

for inferring boundaries from color and depth information.

Even with depth information, it is not a trivial task to find

and classify boundaries. Real-world depth images are noisy,

especially at object boundaries, where our task is focused.

Our approach uses features from both the color (which are

sharp at object boundaries) and depth images (for providing

geometric cues) to detect boundaries and classify them as oc-

clusion or connected boundaries. We propose depth features

based on surface fitting from sparse point clouds, and perform

inference with a Conditional Random Field. One advantage

of our approach is that occlusion and connected boundaries

are identified with a single, common model.

Experiments show that our mid-level color and depth fea-

tures outperform using either depth or color alone, and our

method surpasses the performance of baseline boundary de-

tection methods.

Index Terms— Image edge detection, Image segmenta-

tion, Markov random fields.

1. INTRODUCTION

Object boundaries in images are important clues towards the

high level interpretation of the scene [1] [2]. In general, three

types of boundaries exist: (a) occlusion boundaries, which

are the edges produced by one object occluding the other; (b)

connected boundaries, which refer to the touching edges of

two connecting objects; (c) homogenous boundaries, which

are produced by the texture from the object. One example is

shown in Fig. 1. In this paper, we learn to detect boundaries

on color and depth image pairs.

Occlusion and connected boundaries are important edges

for understanding the geometry of a scene as well as the lay-

out of objects within the scene, shown in [3], [4], [5], [1], and

[6]. However, identifying them in a robust manner is not an

easy task. In some cases, prior semantic knowledge of the

scene (e.g. “ground”, “sky” or geometric context) has to be

introduced for occlusion boundary recovery ([1] [7]). This

additional knowledge may not be applicable for generic and

complex scene images, as in [8] [9], or images of objects at a
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Fig. 1. Boundary examples: (a) a color and (b) a depth image

from the Kinect sensor. (c) We extract all the possible edges

by densely segmenting the color image, and label the fol-

lowing three types of boundaries: homogeneous boundary

(cyan), occlusion boundary (green), and connected bound-

ary (red). (d) presents the result when naively using the depth

edge detection result (i.e. Canny edge detector on depth im-

age) to label the occlusion boundary. Our learning based

framework better detects the occlusion boundary (e), and the

connected boundary (f). The color in (e) and (f) indicates the

classification beliefs (redder indicates a higher belief).

macro view, as shown in Fig. 1. This is where the 3D depth

can play an important role and help most [10]. Specifically,

in this paper we focus on the depth data from Kinect sensors.

However, to identify the occlusion and connected bound-

aries, simply “adding” the Kinect depth data may not solve

the problem, because the depth information is quite noisy,

especially in the region of the object boundaries [11] [12].

Fig. 1 (b) and (d) provide exemplar images. In general, depth

images fail to produce the sharp edges common in color im-

ages, which are the regions that are most vital to our prob-

lem of reasoning about occlusion and connected boundaries.

We propose our learning-based framework and develop novel

3D features to address this problem. We use a 3D surface-

based segmentation to overcome the noisiness of the depth

data. This segmentation step can avoid local decision pitfalls,

and forms a better joint interpretation of the surfaces.

Further, we also generate features in the color domain,

and concatenate all the features to supervise a Support Vector

Machine (SVM). The output of the SVM is used as the unary



node in our graphical model. For a joint inference, we pro-

pose a Conditional Random Field (CRF) based framework,

where pairwise potentials are learned by using the features

computed on each junction of the boundaries. Our experi-

ments on two different datasets prove the effectiveness of our

new features, and the proposed CRF framework improves the

inference accuracy compared to solely local decisions.

Related work: image-based boundary detection and segmen-

tation has a long history. In Martin et al. [13] [14], low-level

color and texture features are proposed for learning the seg-

mentation of natural images, using a proposed human-labeled

dataset [15]. Hoiem et al. [1] then extended this learning-

based segmentation algorithm to the area of occlusion bound-

ary detection and scene understanding. [1] showed that by

detecting the occlusion boundary and the geometric labelings

of the scene, it is easy to estimate the depth of a test image

through analyzing the occlusion boundary between the ob-

ject and the ground. Later [2], [6] and [16] demonstrated that

this information can help other high-level interpretation of the

scene, such as the object recognition. In this work, we further

explore the occlusion and connected boundary detection with

the help from both depth and color images.

As a mass-market depth sensor, Kinect has received wide

interest from the computer vision community. Since its in-

troduction, the color and depth information from this sensor

have been applied to a wide range of computer vision tasks,

such as environmental reconstruction [17], object recognition

[18] [19] [20], object segmentation [8] [9], support-relation

inference [9] and robotics [21]. In estimating human pose,

[10] completely ignore the color information and exclusively

relies on simple depth features for recognition.

2. COLOR AND DEPTH FEATURES

Initially, we densely over-segment the color image into super-

pixels using a watershed algorithm, shown in Fig. 1 (c). Then

the task is to classify each small edge into one of the three

boundary categories. We propose a set of color features xc
and depth features xd, and train SVM based on them.

(a) (b)

Fig. 2. (a) left: Initial over-segmentation. The cyan edges are

produced by the over-segmentation, and the green ones are

the ground-truth occlusion boundaries. right: Each edge lies

between two segments, e.g. the red edge is between segment

A and B. Features are computed based on the edge and its two

segments. (b) Surface segmentation results from the depth.
Edge curvature (ec): the curvature of the edge gives infor-

mation for identifying a boundary. In an indoor scene, most

man-made objects have structured boundaries. Homogenous

boundaries are usually produced by the texture or noise, and

are shaky and irregular. The actual occlusion or connected

boundaries are composed of sharp straight lines. Examples

are shown in Fig. 2 (a). We follow the edge histogram pro-

posed in [5] to describe the edge curvature.

Surface segmentation and fitting: We applied the surface

segmentation and fitting algorithm proposed in [22]. The in-

tuition is to cluster the sparse point clouds by their Euclidean

distance and estimated surface normals, and then apply sur-

face fitting to refine the segmentation result. Exemplar results

are shown in Fig. 2 (c). After this step, for each pixel pi and

its 3D points Pi, we have acquired its 3D surface group Ci,

and the corresponding surface function fCi
(x, y, z).

(a) (b) (c)

Fig. 3. (a) Occlusion boundaries labeled from the surface seg-

mentation algorithm (in section: Surface segmentation la-

bel). (b) Surface label distribution on each edge. (c) Surface

fitting errors on each pixel.

Surface segmentation label (sl): this feature uses the result

from surface segmentation algorithm [22] to predict bound-

aries: for each edge e and its two segments Ae, Be, we find

the most frequent surface labels of the pixels within each seg-

ment, C(Ae) and C(Be). If edge e lies on two different sur-

faces, we mark it as positive to indicate an occlusion or con-

nected boundary, otherwise we label it negative to indicate a

homogenous boundary. Fig. 3 (a) shows the labeling result

from this method.

Surface distribution (sd): for the segments Ae, Be that edge

e separates, we also retrieve the 3D surface label distribution

for each segment, and include this as another feature.

For one segment, we calculate the ratio between the oc-

currence of the most frequent surface label Cmax and the to-

tal number pixels. For example, if in segment Ae, 90% of

its pixels belong to surface C1, then the feature value for this

segment will be sd(Ae) = 0.9. This feature effectively mea-

sures the confidence of the previous surface segmentation al-

gorithm. We compute this feature on an edge basis by taking

the average of the surface distribution value of each edge’s

two segments: sd(e) = (sd(Ae) + sd(Be))/2. Fig. 3 (b)

gives an example of the surface distribution value for each

edge: the more red an edge is, the smaller its surface distri-

bution value is, which indicates less confidence in the surface

segmentation.

Fitting error (se, ee): for each 3D point P , we also retrieve

its surface function fC that P lies on and compute the fit error,

measured in 3D space. One example of the fit error distribu-



tion is shown in Fig. 3 (c), in which the red color indicates

higher fitting errors.

The surface segmentation errors usually occur at occlu-

sion or connected boundaries where the surface function has

a poor fit to the 3D points. The distribution of the fit errors

gives a clue about the type of the boundary, e.g., for occlusion

boundaries, the 3D points may have larger fitting errors than

the points that lie on a connected boundary, because there is a

large depth change from the occlusion.

We compute two types of fitting error: for each edge e (ee)

and its surfacesAe andBe (se): the pixel-wise fit errors along

the edge and within each segment. We histogram the error

distribution into 40 bins with equal intervals in log space from

0 to 10 centimeters, and use this as one of the depth features.

Neighboring difference (nd): we compute two types of dif-

ferences between edge e’s segment Ae and Be: (a) average

depth difference, and (b) angle between the surface normals.

The average depth difference can help because occlusion

boundaries may result in higher depth difference between

their two sides, while connected and homogenous boundaries

may expect lower values.

To compute the angle between the surface normals for

segments Ae and Be, we approximately fit a plane locally

for the 3D points with each segment, and calculate the angle

between their normals. The intuition is as follows: the two

segments of a connected boundary may have an orientation

difference around 90◦. However, the occlusion and homo-

geneous boundaries tend to have their neighboring segments

facing similar directions.

3. CONDITIONAL RANDOM FIELD

We propose a Conditional Random Field for a joint inference

of boundaries. Given the initial over-segmentation, we de-

fine the unary potential, φ(yi|xi), and the pairwise potential

ψ(yi, yj |xi,j) over each edge e. y indicates the edge labels,

e.g., homogenous or occlusion/connected boundaries, and x
indicates the feature vector. i and j refer to the neighbor-

ing edges. Then the task is to minimize the following energy

function E:

E =
∑

i

φ(yi|xi) +
∑

i,j

ψ(yi, yj |xi,j). (1)

Since our color and depth features are computed on edge

basis, we can concatenate them into one feature vector x =
[xc, xd], and train a Support Vector Regression fu for the local

prediction. We use linear SVM regression for fast training and

testing speed. After that, we retrieve the probability P (y|x)
of the edge label y given the feature x, using the regression

fu, and use the negative log likelihood of this probability as

the unary potential φ(y|x) in our CRF.

We learn the pairwise potential ψ for any two neighboring

edge i and j that connected in the color image, meeting at a

junction with position pjun. First, we concatenate both color

and depth features from edge i and j: xi = [xc,i, xd,i] and

xj = [xc,j , xd,j ]. This serves as the basic feature set to learn

the pairwise potential. Further, we use additional features to

describe the neighboring edge relation.

Oriented SIFT: different types of boundaries will give differ-

ent texture shapes at the meeting junction, and we compute a

SIFT descriptor at the junction to capture such information.

The underlying idea is as follows: if two edges are both oc-

clusion/connected boundaries, then the SIFT descriptor will

have a consistent large value along the boundary direction. In

contrast, homogenous boundaries produce texture of random

and irregular patterns, and lead to a more uniform distribu-

tion for each bin value in the SIFT descriptor. Therefore this

descriptor can provide additional texture information at the

junction where edges meet. Besides that, In computing the

features, SIFT descriptors use a histogram approach, which

can tolerate some the noise in the boundary as well as a little

mis-alignment of the depth image [5].

We compute this feature as follows: the SIFT descriptor

is centered at the meeting junction position pjun, and aligned

with the direction of each edge. Then we compute a fixed size

(5 pixels per bin) SIFT descriptor for each edge on both the

color (converted into gray scale to follow the convention of

SIFT) and depth image. After that, we concatenate the de-

scriptors on different image domains. This forms the oriented

SIFT feature xs to learn pairwise potentials.

4. EXPERIMENTS

We experiments on two datasets: depth-order dataset [5], and

the public NYU Knect dataset of indoor scenes [8]. We com-

pare our final approach (crf) with the following algorithms:

base: uses the color and texture features proposed in [1]. This

serves as the basic feature set for color image boundary

detection (no depth). For the following algorithms, we

add different feature sets to this base approach, e.g. the

following approaches are feature set in addition to base.

ec to nd We add each feature (ec, sd, se, ee, nd) individually in

addition to base.

all: we combine all the feature sets.

crf: our final CRF model.

Depth order dataset: We manually label the occlusion and

connected boundaries for 200 images in this dataset, and split

the dataset into two halves for separate training and testing.

We evaluate different algorithm by comparing the aver-

age precision of detecting boundaries, and present the results

in Table.1, top two row. Overall, it proves that our proposed

framework works for both occlusion and connected boundary

detections. Without depth information, using the base fea-

tures from [1] provides a lower bound on performance, and

our edge curvature feature still improves by around 3% per-

formance in average precision.



base ec sl sd se ee nd all crf

d-conn 46.0 48.3 51.9 63.2 79.6 78.7 68.5 88.0 90.3

d-occ 59.1 60.2 66.1 78.2 76.7 67.6 78.1 86.9 89.1

n-occ 50.9 51.1 53.5 53.6 54.5 53.3 55.0 58.1 60.1

Table 1. Average precision for different approaches on our

kinect depth order dataset: connected boundary (d-conn), oc-

clusion boundary (d-occ), and occlusion boundary detection

result on NYU depth dataset (n-occ).

Adding depth features definitely helps the tasks. Directly

using the surface segmentation in [22] sl gives 6% boost

for classifying connected boundaries, and 8% for occlusion

boundaries. In addition, our proposed depth feature sets

(sd,se,ee,nd) also produce better results than base, giving

around 70% to 80% average precisions. When combining all

the feature sets (all), it outperforms the individual feature set

by a large margin, leading to an average precision of nearly

90% for both occlusion and connected boundary detection.

Compared to the individual depth features (columns from

sl to nd), the combined one (all) achieves at least a 10%
improvement.

Finally, our proposed CRF model still improves the per-

formance by 2% compared with all, and gives the best result

of all the approaches, because it encourages continuity be-

tween boundaries. Some example images of our boundary

detection results using crf are shown in Fig. 4. It shows that

our learning framework reliably identify both occlusion and

connected boundaries in different scenarios.

Fig. 4. Boundary detection result using the proposed algo-

rithm. It reliably detects the connected (top two) and occlu-

sion (bottom two) boundaries in different scenarios.The color

indicates the confidence in classification. The more red it is,

the larger the belief.

4.1. NYU dataset

We also experiment on the public NYU depth dataset [8].

This dataset only provides the object segmentation, and we

approximately use it as the occlusion boundary to fit our task.

This dataset contains 2284 frames of Kinect image pairs.

However, many of them are of the same scene and near con-

secutive frames in a video. Therefore, we sample the dataset

into 600 images, ensuring the remaining images are not too

similar to each other. After that, we follow the same settings

as the previous experiments for training and testing. The

experiment results are shown in Table.1, bottom row.

Our proposed edge curvature feature improves the perfor-

mance over the baseline color feature. The proposed depth

feature sets (ec to nd) show the benefit of bringing the depth

information. They achieve around 55% in average preci-

sion, and all outperform the color-only scheme by 2% to 6%.

The final combined CRF model gives the best performance,

achieves near 10% absolute boost from 51% to 61% compar-

ing to base, and has 5% improvements in average precision

to the individual depth feature sets. Some results are shown

in Fig. 5.

Fig. 5. Experiment results on NYU dataset. Ground-truth

labels are on the left, with red indicates the occlusion bound-

aries, and cyan indicates the homogenous boundaries. The

testing results are shown on the right. Heat map indicates the

belief: the more red an edge is, the more likely it is an occlu-

sion boundary.

5. CONCLUSION

As the types of imaging modalities increase, it will be impor-

tant to combine various types of data to solve vision prob-

lems. This paper demonstrates a solution for classifying im-

age boundaries from color and depth that is significantly im-

proved over using one or the other type of information exclu-

sively. We perform surface segmentation on the depth data,

and generate a set of novel depth features based on the sur-

face. We propose a CRF framework for a joint inference on

boundaries. Experiments show that our proposed feature sets

and the learning framework outperform the baselines.
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