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Abstract

This paper presents an analysis of importance weighting for learning from finite
samples and gives a series of theoretical and algorithmic results. We point out
simple cases where importance weighting can fail, which suggests the need for an
analysis of the properties of this technique. We then give both upper and lower
bounds for generalization with bounded importance weights and, more signifi-
cantly, give learning guarantees for the more common case of unbounded impor-
tance weights under the weak assumption that the second moment is bounded,
a condition related to the Rényi divergence of the training and test distributions.
These results are based on a series of novel and general bounds we derive for un-
bounded loss functions, which are of independent interest. We use these bounds to
guide the definition of an alternative reweighting algorithm and report the results
of experiments demonstrating its benefits. Finally, we analyze the properties of
normalized importance weights which are also commonly used.

1 Introduction

In real-world applications of machine learning, often the sampling of the training and test instances
may differ, which results in a mismatch between the two distributions. For example, in web search
applications, there may be data regarding users who clicked on some advertisement link but little
or no information about other users. Similarly, in credit default analyses, there is typically some
information available about the credit defaults of customers who were granted credit, but no such
information is at hand about rejected costumers. In other problems such as adaptation, the training
data available is drawn from a source domain different from the target domain. These issues of
biased sampling or adaptation have been long recognized and studied in the statistics literature.
There is also a large body of literature dealing with different techniques for sample bias correction
[11, 29, 16, 8, 25, 6] or domain adaptation [3, 7, 19, 10, 17] in the recent machine learning and
natural language processing literature.

A common technique used in several of these publications for correcting the bias or discrepancy is
based on the so-called importance weighting technique. This consists of weighting the cost of errors
on training instances to emphasize the error on some or de-emphasize it on others, with the objective
of correcting the mismatch between the distributions of training and test points, as in sample bias
correction, adaptation, and other related contexts such as active learning [24, 14, 8, 19, 5]. Different
definitions have been adopted for these weights. A common definition of the weight for point x is
w(x) = P(x)/Q(x) where P is the target or test distribution and @ is the distribution according to
which training points are drawn. A favorable property of this definition, which is not hard to verify,
is that it leads to unbiased estimates of the generalization error [8].

This paper presents an analysis of importance weighting for learning from finite samples. Our study
was originally motivated by the observation that, while this corrective technique seems natural, in
some cases in practice it does not succeed. An example in dimension two is illustrated by Figure 1.
The target distribution P is the even mixture of two Gaussians centered at (0, 0) and (0, 2) both with
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Figure 1: Example of importance weighting. Left figure: P (in blue) and () (in red) are even mixtures
of Gaussians. The labels are positive within the unit sphere centered at the origin (in grey), negative
elsewhere. The hypothesis class is that of hyperplanes tangent to the unit sphere. Right figures: plots
of test error vs training sample size using importance weighting for two different values of the ratio
0 /op. The results indicate mean values of the error over 40 runs + one standard deviation.

standard deviation o p, while the source distribution () is the even mixture of two Gaussians centered
at (0,0) and (2,0) but with standard deviation og. The hypothesis class is that of hyperplanes
tangent to the unit sphere. The best classifier is selected by empirical risk minimization. As shown
in Figure 1, for op/0g =3, the error of the hypothesis learned using importance weighting is close
to 50% even for a training sample of 5,000 points and the standard deviation of the error is quite
high. In contrast, for op /o =.75, convergence occurs relatively rapidly and learning is successful.
In Section 4, we discuss other examples where importance weighting does not succeed.

The problem just described is not limited to isolated examples. Similar observations have been made
in the past in both the statistics and learning literature, more recently in the context of the analysis
of boosting by [9] who suggest that importance weighting must be used with care and highlight the
need for convergence bounds and learning guarantees for this technique.

We study the theoretical properties of importance weighting. We show using standard generaliza-
tion bounds that importance weighting can succeed when the weights are bounded. However, this
condition often does not hold in practice. We also show that, remarkably, convergence guarantees
can be given even for unbounded weights under the weak assumption that the second moment of the
weights is bounded, a condition that relates to the Rényi divergence of P and (). We further extend
these bounds to guarantees for other possible reweightings. These results suggest minimizing a bias-
variance tradeoff that we discuss and that leads to several algorithmic ideas. We explore in detail an
algorithm based on these ideas and report the results of experiments demonstrating its benefits.

Throughout this paper, we consider the case where the weight function w is known. When it is
not, it is typically estimated from finite samples. The effect of this estimation error is specifically
analyzed by [8]. This setting is closely related to the problem of importance sampling in statistics
which is that of estimating the expectation of a random variable according to P while using a sample
drawn according to ), with w given [18]. Here, we are concerned with the effect of the weights on
learning from finite samples. A different setting is when further full access to () is assumed, von
Neumann’s rejection sampling technique [28] can then be used. We note however that it requires w
to be bounded by some constant A/, which is often not guaranteed and is the simplest case of our
bounds. Even then, the method is wasteful as it requires on average ) samples to obtain one point.

The remainder of this paper is structured as follows. Section 2 introduces the definition of the Rényi
divergences and gives some basic properties of the importance weights. In Section 3, we give gen-
eralization bounds for importance weighting in the bounded case. We also present a general lower
bound indicating the key role played by the Rényi divergence of P and () in this context. Section 4
deals with the more frequent case of unbounded w. Standard generalization bounds do not apply
here since the loss function is unbounded. We give novel generalization bounds for unbounded loss
functions under the assumption that the second moment is bounded (see Appendix) and use them to
derive learning guarantees for importance weighting in this more general setting. In Section 5, we
discuss an algorithm inspired by these guarantees for which we report preliminary experimental re-
sults. We also discuss why the commonly used remedy of truncating or capping importance weights
may not always provide the desired effect of improved performance. Finally, in Section 6, we study



the properties of an alternative reweighting also commonly used which is based on normalized im-
portance weights, and discuss its relationship with the (unnormalized) weights w.

2 Preliminaries

Let X denote the input space, Y the label set, and let L: Y XY — [0, 1] be a loss function. We denote
by P the target distribution and by () the source distribution according to which training points are
drawn. We also denote by H the hypothesis set used by the learning algorithm and by f: X — Y
the target labeling function.

2.1 Rényi divergences
Our analysis makes use of the notion of Rényi divergence, an information theoretical measure of

the difference between two distributions directly relevant to the study of importance weighting. For
a >0, the Rényi divergence D, (P]|Q) between distributions P and @ is defined by [23]

P(.I) a—1
log P(x < > . (D)
The Rényi divergence is a non-negative quantity and for any « > 0, D, (P||Q) =0 iff P = Q. For

a =1, it coincides with the relative entropy. We denote by d, (P||Q) the exponential in base 2 of
the Rényi divergence D, (P||Q):

do(P||Q) = 2P=(PIQ) = [Z #}M .

Do (P||Q) =

()

2.2 Importance weights

The importance weight for distributions P and @ is defined by w(z) = P(z)/Q(z). In the follow-
ing, the expectations are taken with respect to Q.

Lemma 1. The following identities hold for the expectation, second moment, and variance of w:
Ewl=1  Eu’]=d(P|Q)  o*(w)=dx(PllQ)-1. )

Proof. The first equality is immediate. The second moment of w can be expressed as follows in
terms of the Rényi divergence:

P(z)\? P(x
Bl = 3 w) Q) = X (5 ) @) = X P g ) = o)

reX rzeX rzeX

Thus, the variance of w is given by o2 (w) = Eg[w?] — Eg[w]? = da2(P||Q) — 1. O

For any hypothesis h € H, we denote by R(h) its loss and by Ry, (h) its weighted empirical loss:

R
> ule 0. f(2)).

We shall use the abbreviated notation Ly (z) for L(h(x), f(x)), in the absence of any ambiguity
about the target function f. Note that the unnormalized importance weighting of the loss is unbiased:

Bl (@] = 3 5 1) Q) = 30 Plo)late) = R(A)

The following lemma gives a bound on the second moment.

R(h) = E [L(k(z), f(2))] =

1
z~P m
),

Lemma 2. For all « >0 and x € X, the second moment of the importance weighted loss can be
bounded as follows:

B [w?(z) L2(2)] < dat1(P]Q) R(h)"=. )

e~Q

For o = 1, this becomes R(h)? < E,q[w?(z) L (x)] < d2(P|Q).



Proof. The second moment can be bounded as follows:

2 2 _ - P(zx)
B 1) = 0w | 53

Q(z)
[ZP {Q H a [ZP (@) Li T (x)} T (Holder’s inequality)
_da+1 PHQ |: Lh( )Lz—ﬂ(x):|T
< da+1(P||Q)R( )1—*Bl+ da+1(P||Q)R(h)1_§. -

3 Learning Guarantees - Bounded Case

Note that sup, w(z)=sup,, ggfcg =ds(P||Q). We first examine the case d (P]|Q) <+oc and use
the notation M =d . (P||Q). The following proposition follows then directly Hoeffding’s inequality.
Proposition 1 (single hypothesis). Fix h € H. For any § > 0, with probability at least 1 — §,

IR~ R ()] < 2y 20,

The upper bound M, though finite, can be quite large. The following theorem provides a more
favorable bound as a function of the ratio M/m when any of the moments of w, dot1(P|Q),
is finite, which is the case when do.(P||Q) < oo since the Rényi divergence is a non-decreasing
function of «v [23, 2], in particular:

Va>0, dat1(PlQ) < doo(P[Q)- ®)

Theorem 1 (single hypothesis). Fix h € H. Then, for any o> 1, for any 6 >0, with probability at
least 1—4, the following bound holds for the importance weighting method.:

2Mlog} \/2[da+1(P|Q) R('% — R(h)?]log

R(h) < Ry(h) + (6)

3m m

1
For o = 1 after further simplification, this gives R(h) < R,,(h) + 2Mlogg | [2d2(PlIQ)log §

3m m

Proof. Let Z denote the random variable w(x) Ly, (2) — R(h). Then, |Z| < M. By lemma 2, the
variance of the random variable Z can be bounded in terms of the Rényi divergence d+1(P]|Q):

1

o*(2) = g[wg(fv) Li(2)%] = R(h)?* < dat1 (P(|Q) R(h)'™= — R(h)*.
Thus, by Bernstein’s inequality [4], it follows that:
~ —me?/2
— < = ).
Pr[R(h) — Ry (h) > €] < exp (aQ(Z) n eM/3>

Setting ¢ to match this upper bound shows that with probability at least 1 — ¢, the following bound
holds for the importance weighting method:

N M log L M2log? Ll 202(Z)log L
R(h) < Ru(h) + —=2238 4 S *Z)logs

3m Im? m

Using the sub-additivity of /- leads to the simpler expression

2M log 5 N 202(Z)log +

R(h) < Ry(h) + Ly O

3m m

These results can be straightforwardly extended to general hypothesis sets. In particular, for a finite
hypothesis set and for av = 1, the application of the union bound yields the following result.



Theorem 2 (finite hypothesis set). Let H be a finite hypothesis set. Then, for any § > 0, with
probability at least 1—6, the following bound holds for the importance weighting method.:

R(h) < Ry (h) +

2M (105 |H| +log}) \/ 25(PQ)log || +lo})

3m m

For infinite hypothesis sets, a similar result can be shown straightforwardly using covering numbers
instead of | H| or a related measure based on samples of size m [20].

In the following proposition, we give a lower bound that further emphasizes the role of the Rényi
divergence of the second order in the convergence of importance weighting in the bounded case.

Proposition 2 (Lower bound). Assume that M < oo and o*(w)/M? > 1/m. Assume that H
contains a hypothesis ho such that Ly, (x) =1 for all x. Then, there exists an absolute constant c,
c=2/412, such that

d(PllQ) — 1

Pr | sup R(R) — Ry(h)| >
sup |R(h) — B 1) =

}Zc>0. (8)

Proof. Let oy =sup,cp o(wLy). If forall z € X, Ly, (x) =1, then 0?(wLyp,) =d2(P||Q) — 1=
o?(w)=o0%. The result then follows a general theorem, Theorem 9 proven in the Appendix. O

4 Learning Guarantees - Unbounded Case

The condition doo (P||Q) < 0o assumed in the previous section does not always hold, even in some
natural cases, as illustrated by the following examples.

4.1 Examples

Assume that P and @ both follow a Gaussian distribution with the standard deviations op and o¢
and with means . and z1:

1 (z — M)T 1 { (z — u’)z]
P X)) = ex _— Xr) = ex _— .
@ = e |- Cpt] 0w = Z—ew =
2 ()2 — o2 ()2
In that case, ggz; = Z2exp [ - b ’gazpag( #) } thus, even for op = o and 1 # i/ the

importance weights are unbounded, d, (P||Q) = sup,, ggg = 400, and the bound of Theorem 1

is not informative. The Rényi divergence of the second order is given by:

+00 2 2 _ 2 "2
oQ UQ(I_/L) —oplz— 1)
da (P =— — P(z)d
(PIQ) =22 [ e | — (a)d
_ %0 [ {_ 204 (x — )’ —ff%(w—u’)?dx
o421 J oo 20123(7(22 '

That is, for o > @crp the variance of the importance weights is bounded. By the additivity

property of the Rényi divergence, a similar situation holds for the product and sums of such Gaussian
distributions. Hence, in the rightmost example of Figure 1, the importance weights are unbounded,
but their second moment is bounded. In the next section we provide learning guarantees even for
this setting in agreement with the results observed. For o0 =0.30p, the same favorable guarantees
do not hold, and, as illustrated in Figure 1, learning is significantly more difficult.

This example of Gaussians can further illustrate what can go wrong in importance weighting. As-
sume that 4= p/ =0, 0g =1 and op = 10. One could have expected this to be an easy case for
importance weighting since sampling from @ provides useful information about P. The problem
is, however, that a sample from () will contain a very small number of points far from the mean
(of either negative or positive label) and that these points will be assigned very large weights. For
a sample of size m and o = 1, the expected value of an extreme point is v/2log m — o(1) and its



weight will be in the order of m Yo L/0G = 099, Therefore, a few extreme points will domi-
nate all other weights and necessarily have a huge influence on the selection of a hypothesis by the
learning algorithm.

Another related example is when 0g =op =1 and /' = 0. Let x> 0 depend on the sample size
m. If p is large enough compared to log(m), then, with high probability, all the weights will be
negligible. This is especially problematic, since the estimate of the probability of any event would
be negligible (in fact both an event and its complement). If we normalize the weights, the issue
is overcome, but then, with high probability, the maximum weight dominates the sum of all other
weights, reverting the situation back to that of the previous example.

4.2 Importance weighting learning bounds - unbounded case

As in these examples, in practice, the importance weights are typically not bounded. However, we
shall show that, remarkably, under the weak assumption that the second moment of the weights
w, da(P||Q), is bounded, generalization bounds can be given for this case as well. The follow-
ing result relies on a general learning bound for unbounded loss functions proven in the Appendix
(Corollary 1). We denote by Pdim(U) the pseudo-dimension of a real-valued function class U [21].
Theorem 3. Let H be a hypothesis set such that Pdim({ Ly, (x): h € H}) = p < co. Assume that
da(P||Q) < +o0 and w(x) # 0 for all x. Then, for any 6 > 0, with probability at least 1 — 0, the
following holds:

2me + log -

~ plog
R(h) < Ry(h) +2°/4\/ds(P| Q) i/—

Proof. Since d2(P||Q) < +00, the second moment of w(x) Ly (x) is finite and upper bounded by
dz(P||@) (Lemma 2). Thus, by Corollary 1, we can write
R(h) — Ry (h 2 8/3
Pr | sup M } 4 exp (plog an m; 3 ),
hel \/da(P|Q) 45/
where p is the pseudo-dimension of the function class H” = {w(z)Ly(x): h € H}. We now show
that p = Pdim({Ly(x): h € H}). Let H' denote {Lh( ):he H}. Let A= {xy,...,2x} bea

set shattered by H"'. Then, there exist real numbers 1, . . ., % such that for any subset B C A there
exists h € H such that
Vo, € B, w(w;)Lp(z) > 15 Vo, € A— B, w(x;)Lp(z;) <. 9)
Since by assumption w(x;) >0 for all i € [1, k], this implies that
Va; € B,  Lp(xi) > ri/w(w;) Vo, € A= B,  Ly(z) < rifw(z;). (10)
Thus, H' shatters A with the witnesses s; = r; /w(x;), 4 € [1, k]. Using the same observations, it is
straightforward to see that conversely, any set shattered by H’ is shattered by H". O

The convergence rate of the bound is slightly weaker (O(m /%)) than in the bounded case
(O(m -1/ 2)). A faster convergence can be obtained however using the more precise bound of Theo-
rem 8 at the expense of readability. The Rényi divergence d2(P||Q) seems to play a critical role in
the bound and thus in the convergence of importance weighting in the unbounded case.

5 Alternative reweighting algorithms

The previous analysis can be generalized to the case of an arbitrary positive function u: X — R,
u>0. Let R, (h)= LS u(w;)Ly(z;) and let Q denote the empirical distribution.

Theorem 4. Let H be a hypothesis set such that PdAim({Lp(z): h € H})=p < oo. Assume that
0 < Eg[u®(z)] < +o00 and u(x) # 0 for all x. Then, for any § > 0, with probability at least 1 — 6,

the following holds:
[R(R) = Ru(b)] < | B [[w(2) - ()| Ln(x)] | +
lo
2°/% max (\/ Eq[u?(2) L} ()], VEg[u” (x)Li(:c)]) i/ e

2me

—|—1og%

m
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Figure 2: Comparison of the convergence of 4 different algorithms for the learning task of Figure 1:
learning with equal weights for all examples (Unweighted), Importance weighting, using Quantiles
to parameterize the function u, and Capping the largest weights.

Proof. Since R(h) = E[w(x)Ly(x)], we can write
R(h) = Ru(h) = E [[w(z) = u(@)]Ln(2)] + Efu(z) Ly(2)] = Bu(h),

and thus

[R(h) = Ru(h)| < [E [[w(z) — u(@)]Ln(@)] ] + | Blu(z)La(@)] = Ru(h)].

By Corollary 2 applied to the function u Ly, |E[u(z)Ly(2)] — Ru(h)| can be bounded by
3 [plog 22 4 log 4
2°/4 max(y/Bq (@) L} (@], VEQZ (@) L (w)]) {/ 72

- with probability 1 — 4, with
p = Pdim({Ly(x): h € H}) by a proof similar to that of Theorem 3. O

The theorem suggests that other functions u than w can be used to reweight the cost of an error
on each training point by minimizing the upper bound, which is a trade-off between the bias term
| Eq[(w(z)—u(z))Ly(z)]| and the second moment max (y/Eq[u?(z) L2 (z)], \/E@ [w?(z)L3 (z)]),
where the coefficients are explicitly given. Function u can be selected from different families. Using
an upper bound on these quantities that is independent of / and a multiplicative bound of the form

max (VE[?], VER?]) < VER? (1+001/vm),
Q Q Q
leads to the following optimization problem:

min E [w(z) - u(2)[] +7VER?, (11)

uel Q

where v > 0 is a parameter controlling the trade-off between bias and variance minimization and
where U is a family of possible weight functions out of which w is selected.

Here, we consider a family of functions U parameterized by the quantiles ¢ of the weight function
w. A function u, € U is then defined as follows: within each quantile, the value taken by u, is the
average of w over that quantile. For small values of y, the bias term dominates, and very fine-grained
quantiles minimize the bound of equation (11). For large values of « the variance term dominates
and the bound is minimized by using just one quantile, corresponding to an even weighting of
the training examples. Hence by varying v from small to large values, the algorithm interpolates
between standard importance weighting with just one example per quantile, and unweighted learning
where all examples are given the same weight. Figure 2 also shows the results of experiments for
the learning task of Figure 1 using the algorithm defined by (11) with this family of functions. The
optimal ¢ is determined by 10-fold cross-validation. We see that a more rapid convergence can be
obtained by using these weights compared to the standard importance weights w.

Another natural family of functions is that of thresholded versions of the importance weights
{ug: 6>0,Vxe X, up(z)=min(w(z), d)}. In fact, in practice, users often cap importance weights
by choosing an arbitrary value §. The advantage of this family is that, by definition, the weights are



bounded. However, in some cases, larger weights could be critical to achieve a better performance.
Figure 2 illustrates the performance of this approach. Compared to importance weighting, no change
in performance is observed until the largest 1% of the weights are capped, in which case we only
observe a performance degradation. We expect the thresholding to be less beneficial when the large
weights reflect the true w and are not an artifact of estimation uncertainties.

6 Relationship between normalized and unnormalized weights

An alternative approach based on the weight function w = P(z)/Q(x) consists of normalizing the
weights. Thus, while in the unnormalized case the unweighted empirical error is replaced by

—Zw x;) Lp(z;) = Z EnZ) Ly (z;),

=1

in the normalized case it is replaced by

s

i=1 w
with W = >"", w(x;). We refer to w(x) = w(x)/W as the normalized importance weight. An
advantage of the normalized weights is that they are by definition bounded by one. However, the

price to pay for this benefit is the fact that the weights are no more unbiased. In fact, several issues
similar to those we pointed out in the Section 4 affect the normalized weights as well.

Here, we maintain the assumption that the second moment of the importance weights is bounded
and analyze the relationship between normalized and unnormalized weights. We show that, under
this assumption, normalized and unnormalized weights are in fact very close, with high probability.

Observe that for any ¢ € [1,m)],

w(m

w(zi)
w

< |1 — . Since E[w(z)] =1, we also have

Es[W]=L Y1, Elw(zs)]=1. Thus, by Corollary 2, for any 0 >0, with probability at least 1 — 4,
the following inequality holds

W 3 [log 2me + log 2
’ ‘ 25/4max{¢d2 PQ). \Jdsf P”Q} is/w,
m

w(z;
m

< 1, we can write ‘@(:v

which implies the same upper bound on ’@(:cz) —

, simultaneously for all ¢ € [1, m)].

7 Conclusion

We presented a series of theoretical results for importance weighting both in the bounded weights
case and in the more general unbounded case under the assumption that the second moment of the
weights is bounded. We also initiated a preliminary exploration of alternative weights and showed its
benefits. A more systematic study of new algorithms based on these learning guarantees could lead
to even more beneficial and practically useful results. Several of the learning guarantees we gave
depend on the Rényi divergence of the distributions P and (). Accurately estimating that quantity
is thus critical and should motivate further studies of the convergence of its estimates from finite
samples. Finally, our novel unbounded loss learning bounds are of independent interest and could
be useful in a variety of other contexts.
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