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Abstract

We propose a multivariate online dictionary-learning method for obtaining de-
compositions of brain images with structured and sparse components (aka atoms).
Sparsity is to be understood in the usual sense: the dictionary atoms are constrained
to contain mostly zeros. This is imposed via an ℓ1-norm constraint. By "struc-
tured", we mean that the atoms are piece-wise smooth and compact, thus making up
blobs, as opposed to scattered patterns of activation. We propose to use a Sobolev
(Laplacian) penalty to impose this type of structure. Combining the two penalties,
we obtain decompositions that properly delineate brain structures from functional
images. This non-trivially extends the online dictionary-learning work of Mairal et
al. (2010), at the price of only a factor of 2 or 3 on the overall running time. Just
like the Mairal et al. (2010) reference method, the online nature of our proposed
algorithm allows it to scale to arbitrarily sized datasets. Preliminary xperiments
on brain data show that our proposed method extracts structured and denoised
dictionaries that are more intepretable and better capture inter-subject variability in
small medium, and large-scale regimes alike, compared to state-of-the-art models.

1 Introduction

In neuro-imaging, inter-subject variability is often handled as a statistical residual and discarded. Yet
there is evidence that it displays structure and contains important information. Univariate models are
ineffective both computationally and statistically due to the large number of voxels compared to the
number of subjects. Likewise, statistical analysis of weak effects on medical images often relies on
defining regions of interests (ROIs). For instance, pharmacology with Positron Emission Tomography
(PET) often studies metabolic processes in specific organ sub-parts that are defined from anatomy.
Population-level tests of tissue properties, such as diffusion, or simply their density, are performed on
ROIs adapted to the spatial impact of the pathology of interest. Also, in functional brain imaging,
e.g function magnetic resonance imaging (fMRI), ROIs must be adapted to the cognitive process
under study, and are often defined by the very activation elicited by a closely related process [18].
ROIs can boost statistical power by reducing multiple comparisons that plague image-based statistical
testing. If they are defined to match spatially the differences to detect, they can also improve the
signal-to-noise ratio by averaging related signals. However, the crux of the problem is how to define
these ROIs in a principled way. Indeed, standard approaches to region definition imply a segmentation
step. Segmenting structures in individual statistical maps, as in fMRI, typically yields meaningful
units, but is limited by the noise inherent to these maps. Relying on a different imaging modality hits
cross-modality correspondence problems.

Sketch of our contributions. In this manuscript, we propose to use the variability of the statistical
maps across the population to define regions. This idea is reminiscent of clustering approaches, that
have been employed to define spatial units for quantitative analysis of information as diverse as brain
fiber tracking, brain activity, brain structure, or even imaging-genetics. See [21, 14] and references
therein. The key idea is to group together features –voxels of an image, vertices on a mesh, fiber tracts–
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based on the quantity of interest, to create regions –or fiber bundles– for statistical analysis. However,
unlike clustering that models each observation as an instance of a cluster, we use a model closer to
the signal, where each observation is a linear mixture of several signals. The model is closer to mode
finding, as in a principal component analysis (PCA), or an independent component analysis (ICA),
often used in brain imaging to extract functional units [5]. Yet, an important constraint is that the
modes should be sparse and spatially-localized. For this purpose, the problem can be reformulated as
a linear decomposition problem like ICA/PCA, with appropriate spatial and sparse penalties [25, 1].

We propose a multivariate online dictionary-learning method for obtaining decompositions with
structured and sparse components (aka atoms). Sparsity is to be understood in the usual sense: the
atoms contain mostly zeros. This is imposed via an ℓ1 penalty on the atoms. By "structured", we mean
that the atoms are piece-wise smooth and compact, thus making up blobs, as opposed to scattered
patterns of activation. We impose this type of structure via a Laplacian penalty on the dictionary atoms.
Combining the two penalties, we therefore obtain decompositions that are closer to known functional
organization of the brain. This non-trivially extends the online dictionary-learning work [16], with
only a factor of 2 or 3 on the running time. By means of experiments on a large public dataset, we
show the improvements brought by the spatial regularization with respect to traditional ℓ1-regularized
dictionary learning. We also provide a concise study of the impact of hyper-parameter selection on
this problem and describe the optimality regime, based on relevant criteria (reproducibility, captured
variability, explanatory power in prediction problems).

2 Smooth Sparse Online Dictionary-Learning (Smooth-SODL)

Consider a stack X ∈ R
n×p of n subject-level brain images X1,X2, . . . ,Xn each of shape n1 ×

n2 × n3, seen as p-dimensional row vectors –with p = n1 × n2 × n3, the number of voxels. These
could be images of fMRI activity patterns like statistical parametric maps of brain activation, raw
pre-registered (into a common coordinate space) fMRI time-series, PET images, etc. We would
like to decompose these images as a mixture of k ≤ min(n, p) component maps (aka latent factors

or dictionary atoms) V1, . . . ,Vk ∈ R
p×1 and modulation coefficients U1, . . . ,Un ∈ R

k×1 called
codes (one k-dimensional code per sample point), i.e

Xi ≈ VUi, for i = 1, 2, . . . , n (1)

where V := [V1| . . . |Vk] ∈ R
p×k, an unknown dictionary to be estimated. Typically, p ∼ 105 –

106 (in full-brain high-resolution fMRI) and n ∼ 102 – 105 (for example, in considering all the 500
subjects and all the about functional tasks of the Human Connectome Project dataset [20]). Our
work handles the extreme case where both n and p are large (massive-data setting). It is reasonable
then to only consider under-complete dictionaries: k ≤ min(n, p). Typically, we use k ∼ 50 or 100
components. It should be noted that online optimization is not only crucial in the case where n/p is
big; it is relevant whenever n is large, leading to prohibitive memory issues irrespective of how big or
small p is.

As explained in section 1, we want the component maps (aka dictionary atoms) Vj to be sparse and
spatially smooth. A principled way to achieve such a goal is to impose a boundedness constraint on
ℓ1-like norms of these maps to achieve sparsity and simultaneously impose smoothness by penalizing
their Laplacian. Thus, we propose the following penalized dictionary-learning model

min
V∈Rp×k

(

lim
n→∞

1

n

n∑

i=1

min
Ui∈Rk

1

2
‖Xi −VUi‖22 +

1

2
α‖Ui‖22

)

+ γ

k∑

j=1

ΩLap(V
j).

subject to V1, . . . ,Vk ∈ C
(2)

The ingredients in the model can be broken down as follows:

• Each of the terms maxUi∈Rk

1

2
‖Xi −VUi‖22 measures how well the current dictionary V

explains data Xi from subject i. The Ridge penalty term φ(Ui) ≡ 1
2α‖Ui‖22 on the codes

amounts to assuming that the energy of the decomposition is spread across the different
samples. In the context of a specific neuro-imaging problem, if there are good grounds to
assume that each sample / subject should be sparsely encoded across only a few atoms of
the dictionary, then we can use the ℓ1 penalty φ(Ui) := α‖Ui‖1 as in [16]. We note that in
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contrast to the ℓ1 penalty, the Ridge leads to stable codes. The parameter α > 0 controls the
amount of penalization on the codes.

• The constraint set C is a sparsity-inducing compact simple (mainly in the sense that the
Euclidean projection onto C should be easy to comput) convex subset of Rp like an ℓ1-ball
Bp,ℓ1(τ) or a simplex Sp(τ), defined respectively as

Bp,ℓ1(τ) := {v ∈ R
p s.t |v1|+ . . .+ |vp| ≤ τ} , and Sp(τ) := Bp,ℓ1(τ) ∩ R

p
+. (3)

Other choices (e.g ElasticNet ball) are of course possible. The radius parameter τ > 0
controls the amount of sparsity: smaller values lead to sparser atoms.

• Finally, ΩLap is the 3D Laplacian regularization functional defined by

ΩLap(v) :=
1

2

p
∑

k=1

(∇xv)
2
k + (∇yv)

2
k + (∇zv)

2
k =

1

2
vT∆v ≥ 0, ∀v ∈ R

p, (4)

∇x being the discrete spatial gradient operator along the x-axis (a p-by-p matrix), ∇y along

the y-axis, etc., and ∆ := ∇T∇ is the p-by-p matrix representing the discrete Laplacian
operator. This penalty is meant to impose blobs. The regularization parameter γ ≥ 0 controls
how much regularization we impose on the atoms, compared to the reconstruction error.

The above formulation, which we dub Smooth Sparse Online Dictionary-Learning (Smooth-SODL)
is inspired by, and generalizes the standard online dictionary-learning framework of [16] –henceforth
referred to as Sparse Online Dictionary-Learning (SODL)– with corresponds to the special case
γ = 0.

3 Estimating the model

3.1 Algorithms

The objective function in problem (2) is separately convex and block-separable w.r.t each of U and V
but is not jointly convex in (U,V). Also, it is continuously differentiable on the constraint set, which
is compact and convex. Thus by classical results (e.g Bertsekas [6]), the problem can be solved via
Block-Coordinate Descent (BCD) [16]. Reasoning along the lines of [15], we derive that the BCD
iterates are as given in Alg. 1 in which, for each incoming sample point Xt, the loading vector Ut is
computing by solving a ridge regression problem (5) with the current dictionary Vt held fixed, and
the dictionary atoms are then updated sequentially via Alg. 2. A crucial advantage of using a BCD
scheme is that it is parameter free: there is not step size to tune. The resulting algorithm Alg. 1, is
adapted from [16]. It relies on Alg. 2 for performing the structured dictionary updates, the details of
which are discussed below.

Algorithm 1 Online algorithm for the dictionary-learning problem (2)

Require: Regularization parameters α, γ > 0; initial dictionary V ∈ R
p×k, number of passes /

iterations T on the data.
1: A0 ← 0 ∈ R

k×k, B0 ← 0 ∈ R
p×k (historical “sufficient statistics”)

2: for t = 1 to T do
3: Empirically draw a sample point Xt at random.
4: Code update: Ridge-regression (via SVD of current dictionary V)

Ut ← argminu∈Rk

1

2
‖Xt −Vu‖22 +

1

2
α‖u‖22. (5)

5: Rank-1 updates: At ← At−1 +UtU
T
t , Bt ← Bt−1 +XtU

T
t

6: BCD dictionary update: Compute update for dictionary V using Alg. 2.
7: end for

Update of the codes: Ridge-coding. The Ridge sub-problem for updating the codes

Ut = (VTV + αI)−1VTXt (6)
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is computed via an SVD of the current dictionary V. For α ≈ 0, Ut reduces to the orthogonal
projection of Xt onto the image of the current dictionary V. As in [16], we speed up the overall
algorithm by sampling mini-batches of η samples Xt, . . . ,Xη and compute the corresponding codes
U1, U2, ..., Uη at once. We typically use we use mini-batches of size η = 20.

BCD dictionary update for the dictionary atoms. Let us define time-varying matrices At :=
∑t

i=1 UiU
T
i ∈ R

k×k and Bt :=
∑t

i=1 XiU
T
i ∈ R

p×k, where t = 1, 2, . . . denotes time. We fix
the matrix of codes U, and for each j, consider the update of the jth dictionary atom, with all the
other atoms Vk 6=j kept fixed. The update for the atom Vj can then be written as

Vj = argminv∈C,V=[V1|...|v|...|Vk]

(
t∑

i=1

1

2
‖Xi −VUi‖22

)

+ γtΩLap(v)

= argminv∈C Fγ(At[j,j]/t)−1(v,Vj +At[j, j]
−1(Bj

t −VA
j
t )

︸ ︷︷ ︸

refer to [16] for the details

),
(7)

where Fγ̃(v,a) ≡ 1
2‖v − a‖22 + γ̃ΩLap(v) =

1
2‖v − a‖22 + 1

2 γ̃v
T∆v.

Algorithm 2 BCD dictionary update with Laplacian prior

Require: V = [V1| . . . |Vk] ∈ R
p×k (input dictionary),

1: A = [A1| . . . |Ak] ∈ R
k×k, Bt = [B1

t | . . . |Bk
t ] ∈ R

p×k (history)
2: while stopping criteria not met, do
3: for j = 1 to r do
4: Fix the code U and all atoms k 6= j of the dictionary V and then update Vj as follows

Vj ← argminv∈C Fγ(At[j,j]/t)−1(v,Vj +At[j, j]
−1(Bj

t −VAj)) (8)

(See below for details on the derivation and the resolution of this problem)
5: end for
6: end while

Problem (7) is the compactly-constrained minimization of the 1-strongly-convex quadratic functions
Fγ̃(.,a) : R

p → R defined above. This problem can further be identified with a denoising instance
(i.e in which the design matrix / deconvolution operator is the identity operator) of the GraphNet
model [11, 13]. Fast first-order methods like FISTA [4] with optimal rates O(L/√ǫ) are available1

for solving such problems to arbitrary precision ǫ > 0. One computes the Lipschitz constant to be
LFγ̃(.,a) ≡ 1 + γ̃LΩLap

= 1 + 4Dγ̃, where as before, D is the number of spatial dimensions (D = 3
for volumic images). One should also mention that under certain circumstances, it is possible to
perform the dictionary updates in the Fourier domain, via FFT. This alternative approach is detailed
in the supplementary materials.

Finally, one notes that, since constraints in problem (2) are separable in the dictionary atoms Vj ,
the BCD dictionary-update algorithm Alg. 2 is guaranteed to converge to a global optimum, at each
iteration [6, 16].

How difficult is the dictionary update for our proposed model ? A favorable property of the
vanilla dictionary-learning [16] is that the BCD dictionary updates amount to Euclidean projections
onto the constraint set C, which can be easily computed for a variety of choices (simplexes, closed
convex balls, etc.). One may then ask: do we retain a comparable algorithmic simplicity even with the
additional Laplacian terms ΩLap(V

j) ? YES!: empirically, we found that 1 or 2 iterations of FISTA

[4] are sufficient to reach an accuracy of 10−6 in problem (7), which is sufficient to obtain a good
decomposition in the overall algorithm.

However, choosing γ “too large” will provably cause the dictionary updates to eventually take forever
to run. Indeed, the Lipschitz constant in problem (7) is Lt = 1 + 4Dγ(At[j, j]/t)

−1, which will
blow-up (leading to arbitrarily small step-sizes) unless γ is chosen so that

γ = γt = O
(

max
1≤j≤k

At[j, j]

)

= O
(

max
1≤j≤k

t∑

i=1

‖Uj‖22/t
)

= O(‖At‖∞,∞/t). (9)

1For example, see [8, 24], implemented as part of the Nilearn open-source library Python library [2].
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Finally, the Euclidean projections onto the ℓ1 ball C can be computed exactly in linear-time O(p) (see
for example [7, 9]). The dictionary atoms j are repeatedly cycled and problem (7) solved. All in all,
in practice we observe that a single iteration is sufficient for the dictionary update sub-routine in Alg.
2 to converge to a qualitatively good dictionary.

Convergence of the overall algorithm. The Convergence of our algorithm (to a local optimum) is
guaranteed since all hypotheses of [16] are satisfied. For example, assumption (A) is satisfied because
fMRI data are naturally compactly supported. Assumption (C) is satisfied since the ridge-regression
problem (5) has a unique solution. More details are provided in the supplementary materials.

3.2 Practical considerations
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Figure 1: Influence of model parameters. In the
experiments, α was chosen according to (10). Left:
Percentage explained variance of the decomposi-
tion, measured on left-out data split. Right: Aver-
age normalized sparsity of the dictionary atoms.

Hyper-parameter tuning. Parameter-
selection in dictionary-learning is known to
be a difficult unsolved problem [16, 15], and
our proposed model (2) is not an exception
to this rule. We did an extensive study of the
quality of estimated dictionary varies with the
model hyper-parameters (α, γ, τ). The data
experimental setup is described in Section 5.
The results are presented in Fig. 1. We make
the following observations: Taking the sparsity
parameter τ in (2) too large leads to dense
atoms that perfectly explain the data but are not
very intepretable. Taking it too small leads to
overly sparse maps that barely explain the data.
This normalized sparsity metric (small is better,
ceteris paribus) is defined as the mean ratio
‖Vj‖1/‖Vj‖2 over the dictionary atoms.

Concerning the α parameter, inspired by [26], we have found the following time-varying data-adaptive
choice for the α parameter to work very well in practice:

α = αt ∼ t−1/2. (10)

Likewise, care must be taken in selecting the Laplacian regularization parameter γ. Indeed taking it
too small amounts to doing vanilla dictionary-learning model [16]. Taking it too large can lead to
degenerate maps, as the spatial regularization then dominates the reconstruction error (data fidelity)
term. We find that there is a safe range of the parameter pair (γ, τ) in which a good compromise
between the sparsity of the dictionary (thus its intepretability) and its explanation power of the data
can be reached. See Fig. 1. K-fold cross-validation with explained variance metric was retained as a
good strategy for setting the Laplacian regularization γ parameter and the sparsity parameter τ .

Initialization of the dictionary. Problem (2) is non-convex jointly in (U,V), and so initialization
might be a crucial issue. However, in our experiments, we have observed that even randomly initialized
dictionaries eventually produce sensible results that do not jitter much across different runs of the
same experiment.

4 Related works

While there exist algorithms for online sparse dictionary-learning that are very efficient in large-scale
settings (for example [16], or more recently [17]) imposing spatial structure introduces couplings
in the corresponding optimization problem [8]. So far, spatially-structured decompositions have
been solved by very slow alternated optimization [25, 1]. Notably, structured priors such as TV-ℓ1
[3] minimization, were used by [1] to extract data-driven state-of-the-art atlases of brain function.
However, alternated minimization is very slow, and large-scale medical imaging has shifted to online
solvers for dictionary-learning like [16] and [17]. These do not readily integrate structured penalties.
As a result, the use of structured decompositions has been limited so far, by the computational cost of
the resulting algorithms. Our approach instead uses a Laplacian penalty to impose spatial structure at
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a very minor cost and adapts the online-learning dictionary-learning framework [16], resulting in a
fast and scalable structured decomposition. Second, the approach in [1] though very novel, is mostly
heuristic. In contrast, our method enjoys the same convergence guarantees and comparable numerical
complexity as the basic unstructured online dictionary-learning [16].

Finally, one should also mention [23] that introduced an online group-level functional brain mapping
strategy for differentiating regions reflecting the variety of brain network configurations observed in a
the population, by learning a sparse-representation of these in the spirit of [16].

5 Experiments

Setup. Our experiments were done on task fMRI data from 500 subjects from the HCP –Human
Connectome Project– dataset [20]. These task fMRI data were acquired in an attempt to assess
major domains that are thought to sample the diversity of neural systems of interest in functional
connectomics. We studied the activation maps related to a task that involves language (story under-
standing) and mathematics (mental computation). This particular task is expected to outline number,
attentional and language networks, but the variability modes observed in the population cover even
wider cognitive systems. For the experiments, mass-univariate General Linear Models (GLMs) [10]
for n = 500 subjects were estimated for the Math vs Story contrast (language protocol), and the
corresponding full-brain Z-score maps each containing p = 2.6× 105 voxels, were used as the input
data X ∈ R

n×p, and we sought a decomposition into a dictionary of k = 40 atoms (components).
The input data X were shuffled and then split into two groups of the same size.

Models compared and metrics. We compared our proposed Smooth-SODL model (2) against
both the Canonical ICA –CanICA [22], a single-batch multi-subject PCA/ICA-based method, and
the standard SODL (sparse online dictionary-learning) [16]. While the CanICA model accounts for
subject-to-subject differences, one of its major limitations is that it does not model spatial variability
across subjects. Thus we estimated the CanICA components on smoothed data: isotropic FWHM of
6mm, a necessary preprocessing step for such methods. In contrast, we did not perform pre-smoothing
for the SODL of Smooth-SODL models. The different models were compared across a variety of
qualitative and quantitative metrics: visual quality of the dictionaries obtained, explained variance,
stability of the dictionary atoms, their reproducibility, performance of the dictionaries in predicting
behavioral scores (IQ, picture vocabulary, reading proficiency, etc.) shipped with the HCP data [20].
For both SODL [16] and our proposed Smooth-SODL model, the constraint set for the dictionary
atoms was taken to be a simplex C := Sp(τ) (see section 2 for definition). The results of these
experiments are presented in Fig. 2 and Tab. 1.

6 Results

Running time. On the computational side, the vanilla dictionary-learning SODL algorithm [16]
with a batch size of η = 20 took about 110s (≈ 1.7 minutes) to run, whilst with the same batch size,
our proposed Smooth-SODL model (2) implemented in Alg. 1 took 340s (≈ 5.6 minutes), which
is slightly less than 3 times slower than SODL. Finally, CanICA [22] for this experiment took 530s
(≈ 8.8 minutes) to run, which is about 5 times slower than the SODL model and 1.6 times slower
than our proposed Smooth-SODL (2) model. All experiments were run on a single CPU of laptop.

Qualitative assessment of dictionaries. As can be seen in Fig. 2(a), all methods recover dictionary
atoms that represent known functional brain organization; notably the dictionaries all contain the
well-known executive control and attention networks, at least in part. Vanilla dictionary-learning
leverages the denoising properties of the ℓ1 sparsity constraint, but the voxel clusters are not very
structured. For, example most blobs are surrounded with a thick ring of very small nonzero values. In
contrast, our proposed regularization model leverages both sparse and structured dictionary atoms,
that are more spatially structured and less noisy.

In contrast to both SODL and Smooth-SODL, CanICA [22] is an ICA-based method that enforces no
notion of sparsity whatsoever. The result are therefore dense and noisy dictionary atoms that explain
the data very well (Fig. 2(b) but which are completely unintepretable. In a futile attempt to remedy
the situation, in practice such PCA/ICA-based methods (including FSL’s MELODIC tool [19]) are
hard-thresholded in order to see information. For CanICA, the hard-thresholded version has been
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(a) Qualitative comparison of the estimated dictionaries. Each column represents an atom of the estimated
dictionary, where atoms from the different models (the rows of the plots) have been matched via a Hungarian
algorithm. Here, we only show a limited number of the most “intepretable” atoms. Notice how the major
structures in each atom are reproducible across the different models. Maps corresponding to hard-thresholded
CanICA [22] components have also been included, and have been called tCanICA. In contrast, the maps from the
SODL [16] and our proposed Smooth-SODL (2) have not been thresholded.
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Figure 2: Main results. Benchmarking our proposed Smooth-SODL (2) model against competing
state-of-the-art methods like SODL (sparse online dictionary-learning) [16] and CanICA [22].

named tCanICA in Fig. 2. That notwithstanding, notice how the major structures (parietal lobes,
sulci, etc.) in each atom are reproducible across the different models.

Stability-fidelity trade-offs. PCA/ICA-based methods like CanICA [22] and MELODIC [19] are
the optimal linear decomposition method to maximize explained variance on a dataset. On the training
set, CanICA [22] out-performs all others algorithms with about 66% (resp. 50% for SODL [16]
and 58% for Smooth-SODL) of explained variance on the training set, and 60% (resp. 49% for
SODL and 55% for Smooth-SODL) on left-out (test) data. See Fig. 2(b). However, as noted in the
above paragraph, such methods lead to dictionaries that are hardly intepretable and thus the user
must recourse to some kind of post-processing hard-thresholding step, which destroys the estimated
model. More so, assessing the stability of the dictionaries, measured by mean correlation between
corresponding atoms, across different splits of the data, CanICA [22] scores a meager 0.1, whilst the
hard-thresholded version tCanICA obtains 0.2, compared to 0.4 for Smooth-SODL and 0.1 for SODL.
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Is spatial regularization really needed ? As rightly pointed out by one of the reviewers, one does
not need spatial regularization if data are abundant (like in the HCP). So we computed learning curves
of mean explained variance (EV) on test data, as a function of the amount training data seen by
both Smooth-SODL and SODL [16] (Table 1). In the beginning of the curve, our proposed spatially
regularized Smooth-SODL model starts off with more than 31% explained variance (computed on
241 subjects), after having pooled only 17 subjects. In contrast, the vanilla SODL model [16] scores
a meager 2% explained variance; this corresponds to a 14-fold gain of Smooth-SODL over SODL. As
more and more data are pooled, both models explain more variance, the gap between Smooth-SODL
and SODL reduces, and both models perform comparably asymptotically.

Nb. subjects pooled mean EV for vanilla SODL Smooth-SODL (2) gain factor

17 2% 31% 13.8

92 37% 50% 1.35

167 47% 54% 1.15

241 49% 55% 1.11

Table 1: Learning-curve for boost in explained variance of our proposed Smooth-SODL model over
the reference SODL model. Note the reduction in the explained variance gain as more data are pooled.

Thus our proposed Smooth-SODL method extracts structured denoised dictionaries that better capture
inter-subject variability in small, medium, and large-scale regimes alike.

Prediction of behavioral variables. If Smooth-SODL captures the patterns of inter-subject variabil-
ity, then it should be possible to predict cognitive scores y like picture vocabulary, reading proficiency,
math aptitude, etc. (the behavioral variables are explained in the HCP wiki [12]) by projecting new
subjects’ data into this learned low-dimensional space (via solving the ridge problem (5) for each
sample Xt), without loss of performance compared with using the raw Z-values values X. Let RAW
refer to the direct prediction of targets y from X, using the top 2000 most voxels most correlated with
the target variable. Results of for the comparison are shown in Fig. 2(c). Only variables predicted
with a a positive mean (across the different methods and across subjects) R-score are reported. We
see that the RAW model, as expected over-fits drastically, scoring an R2 of 0.3 on training data and
only 0.14 on test data. Overall, for this metric CanICA performs best than all the other models in
predicting the different behavioral variables on test data. However, our proposed Smooth-SODL
model outperforms both SODL [16] and tCanICA, the thresholded version of CanICA.

7 Concluding remarks

To extract structured functionally discriminating patterns from massive brain data (i.e data-driven
atlases), we have extended the online dictionary-learning framework first developed in [16], to learn
structured regions representative of brain organization. To this end, we have successfully augmented
[16] with a Laplacian penalty on the component maps, while conserving the low numerical complexity
of the latter. Through experiments, we have shown that the resultant model –Smooth-SODL model (2)–
extracts structured and denoised dictionaries that are more intepretable and better capture inter-subject
variability in small medium, and large-scale regimes alike, compared to state-of-the-art models. We
believe such online multivariate online methods shall become the de facto way to do dimensionality
reduction and ROI extraction in the future.

Implementation. The authors’ implementation of the proposed Smooth-SODL (2) model will soon
be made available as part of the Nilearn package [2].
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