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Abstract
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PV installations in California between 2002 to 2012, during a stage of initial growth of
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1 Introduction

Policies to promote solar photovoltaic (PV) system adoption are common throughout

the world, as concerns over global climate change and energy independence continue

to grow. In the United States, commercial and residential solar installations remain eligi-

ble to receive a 30% solar energy investment tax credit. This federal subsidy comes on top

of individual state incentive programs, the most prominent of which was the California

Solar Initiative (CSI), a $2 billion program begun in 2006 to provide substantial upfront

rebates for rooftop solar installations (which have since been exhausted). Policies like the

CSI are often justified based on both emissions reductions and the existence of learning-

by-doing (LBD), whereby the cost of the technology declines as a function of cumulative

experience with the technology.

This study investigates LBD in solar PV installations in California. For LBD to jus-

tify government intervention based on improving economic efficiency, (non-internalized)

learning spillovers across firms must exist. Such learning spillovers are often called “non-

appropriable” LBD, similar to the non-appropriable benefits from research and develop-

ment, which are a standard justification for innovation policy. Using rich data on all solar

installations in California in the early stage of the growth of the market from 2002 to 2012,

we separately estimate the magnitude of appropriable LBD (internal learning) and non-

appropriable LBD (external learning) in the cost of an installation. This time period is

the crucial early period when one would expect the bulk of learning to occur. Since solar

PV panels and inverters are traded on a global market, we focus on localized learning in

non-hardware costs, which include labor, overhead, and marketing costs.

Two main challenges exist in identifying LBD in this industry. First, consumers’ util-

ity for a specific installer may increase with the installer’s installed base as quality or

perceived quality increases, which would increase the optimal markup for the installer,

pushing price upward despite cost reductions that may result from LBD.1 To address this

1It should be noted that quality improvements that result from installer experience also could be de-
scribed as LBD; however, these improvements are firm-specific and thus would classify as internal learning.
Throughout the paper, when we refer to LBD, we are referring to reductions in variable costs.
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challenge, we estimate a dynamic nested Logit model of solar PV demand using condi-

tional choice probabilities (CCP), following a similar approach as Hotz and Miller (1993).

The second challenge in estimation is that with appropriable LBD, installers also have an

incentive to lower prices in the short term to reduce costs (Benkard 2004), or to increase

prices in order for costs to decline for other reasons, both of which can further obfuscate

cost reductions from LBD. To tackle this second challenge, we estimate a dynamic model

of installation pricing, using forward simulation as in Bajari, Benkard, and Levin (2007),

aka BBL, to estimate future valuations. Thus, our approach is to directly estimate both

the static and dynamic markups in the installers’ first-order pricing condition.

We do indeed find that utility for an installer increases with the installer’s installed

base (i.e., cumulative installations) within the county, providing evidence of a quality or

perceived quality effect of installers’ local experience. We also find evidence of internal

learning in contractor non-hardware costs, and this internal learning increases with com-

petitors’ installed bases within the county, providing evidence for external learning as

well. However, the learning is small in magnitude; LBD can account for just a $0.12 per

watt decline in non-hardware costs over the data period. As a reference point, during

this period, hardware costs declined from over $7 per watt to less than $3.50 per watt.2

The difference between the transaction cost per watt and the hardware cost per watt, de-

scribed in the industry as the “balance-of-system” (BOS) and which includes both the

non-hardware costs (customer acquisition, labor, permitting, etc.) and the firm markup,

declined less than a dollar, from $3 per watt to a little over $2 per watt, only 15% of which

we can attribute to LBD. Thus it is hard to justify the substantial CSI incentives from an

economic efficiency argument alone.

In addition to these substantive findings, we contribute to the literature on the estima-

tion of dynamic models. We are one the the only papers to allow for dynamics on both the

demand and supply side, and we provide methodological contributions to both. On the

2Hardware costs include the modules and inverters. The inverter converts electricity from direct current
(DC) to alternating current (AC) and accounts for roughly 6 to 15 percent of the total cost. Both are traded
on a global market, with manufacturing in Asia, Europe, and North America for use anywhere in the world
(IEA 2009).
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demand side, we estimate the dynamic model by representing consumers continuation

values with the use of market-level conditional choice probabilities (CCPs), exploiting the

fact that installing solar is a terminating action, as in DeGroote and Verboven (2019). Un-

like DeGroote and Verboven (2019), we allow for correlated demand shocks through the

use of an aggregated nested Logit model, in which we assume that installing solar with

any of the active installers in the market (defined at the county level) are choices within

one nest, and not installing is in the other. We estimate the nest parameter to be 0.57, in-

dicating that much of the unobservable demand shock affects the decision of whether to

install solar at the current time, not which installer to use. We account for across-market

heterogeneity by including installer X market fixed effects, which allows consumers in

different markets to have different price elasticities for each installer. This essentially as-

sumes a representative consumer within each market. However, we also show that our

effects are robust to within-market unobserved heterogeneity, in which higher utility con-

sumers, the low-hanging fruit, adopt early, which changes the distribution of consumers

over time. Our novel method decomposes the observed market-level CCPs into CCPs for

the two latent types of consumers (adding more types is possible) as the distribution of

non-adopters evolves. With very durable purchases such as solar PV, this is necessary if

within-market heterogeneity is of concern and is to be accounted for correctly.

On the supply side, the dynamic pricing problem for each installer is fundamentally

a forward-looking optimization problem, in which each installers optimal pricing deci-

sion depends on the number of ongoing installations and installed bases for every other

installer operating in California, of which we observe over 3000. We develop a new,

tractable estimation approach for installers pricing problem, recognizing that the only

source of supply-side dynamics enters through the consumers choice probabilities. The

benefit to the installer of lowering price in the short run is due to the increased proba-

bility of performing the installation, which can contribute to economies of scale in the

short run, and increase market power and/or lower costs in the long run. Thus, for any

given installation, and with non-parametric policy function estimates in-hand, we can
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forward simulate states of the world (a la BBL) for each possible installer who might have

performed the installation (those installers operating in the market, plus the outside op-

tion of no installer performing the installation). As the installer who we observe in the

data performing the installation lowers its price, it increases the probability of the set of

forward simulations under that scenario (in which it performed the installation) being

the expected evolution of the market. Correspondingly, it lowers the probabilities of the

other sets of simulations representing the future, under the scenarios that one of them

performed the installation. By forward simulating a set of market paths for each installer

who might have performed the installation in the market, for each observation in the

data, we also do not need to calculate the value functions for the entire state space (which

is completely intractable given the fact there are four firm-specific variables in the state

space for over 3000 firms). Instead, the value is calculated only for the permissible states

that might be realized, starting from the set of observations we observe in the data. Once

we perform the forward simulations, the expected profits the firm would make under the

counterfactual outcomes of which installer performs the installation enters directly into

the installers first-order pricing condition.

The rest of the paper is organized as follows. Section 2 provides a conceptual back-

ground on LBD in the economics literature. Section 3 describes the empirical setting: the

California solar market. In Section 4, we develop our dynamic demand model and in Sec-

tion 5 our supply model. Section 6 describes the data we use and discusses identification

of our parameters. Section 7 presents our results. Finally, section 8 concludes.

2 Conceptual Background

The concept of LBD in economics dates to the early 1960s, beginning with theoretical work

by Arrow (1962). Since then, economists have developed a wealth of theoretical findings

based on LBD. For example, learning from cumulative experience has been shown to

play a critical role in both the functioning of markets (e.g., Spence 1981; Fudenberg and

Tirole 1983; Ghemawat and Spence 1985; Cabral and Riordan 1994; Besanko, Doraszel-
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ski, Kryukov, and Satterthwaite 2010) and in theories of endogenous growth (e.g., Stokey

1988; Young 1991, 1993; Jovanovic and Nyarko 1996). One notable theoretical finding is

that when firms can appropriate the benefits from learning, they have an incentive to

price dynamically by initially pricing below the short-run marginal cost in order to al-

low for future market dominance. We provide evidence suggestive of this force in our

empirical context.

LBD also underpins an extensive empirical literature. Studies have estimated the

speed of learning in a wide variety of contexts, including aircraft manufacturing (Alchian

1963; Benkard 2004), chemical processing (Lieberman 1984), semiconductor manufac-

turing (Irwin and Klenow 1994), agricultural technology (Foster and Rosenzweig 1995),

shipbuilding (Thompson 2001; Thornton and Thompson 2001), oil drilling (Kellogg 2011;

Covert 2014), and automobile manufacturing (Levitt, List, and Syverson 2013). LBD has

also long been used to examine the cost of new energy technologies, beginning with Zim-

merman (1982), and more recently as a common descriptive methodology for modeling

technological change in renewable energy technologies.3

Given the importance for policy of differentiating between internal and external learn-

ing, it is not surprising that several empirical studies distinguish between the two. Learn-

ing spillovers across firms have been studied in several contexts (Zimmerman 1982; Ir-

win and Klenow 1994; Thornton and Thompson 2001; Kellogg 2011; Covert 2014). These

spillovers have also been shown to influence market structure by undercutting barriers

to entry (Ghemawat and Spence 1985) and at the same time may represent a classic posi-

tive externality (Stokey 1985; Melitz 2005; van Benthem, Gillingham, and Sweeney 2008;

Gillingham and Sweeney 2010; Gillingham and Stock 2018). Both effects may be impor-

tant in the solar PV market. van Benthem, Gillingham, and Sweeney (2008) perform

an ex-ante welfare analysis of the CSI assuming non-appropriable LBD. They find that

prior to the addition of Federal tax credits, the CSI can be justified on economic efficiency

3See Grubb, Khler, and Anderson (2002) and Gillingham, Newell, and Pizer (2008) for reviews of the
modeling of endogenous technological change in climate policy models, and Nordhaus (2014) for an im-
portant critique of the naı̈ve use of LBD in such models.
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grounds based on the avoided environmental externalities and LBD spillovers–provided

that learning follows the rates found in the literature and the learning is non-appropriable.

This is important because the CSI was explicitly justified in the policy process based on

both environmental grounds and learning. However, Borenstein (2008), van Benthem,

Gillingham, and Sweeney (2008), and Burr (2014) clearly show that the CSI cannot easily

be justified on economic efficiency grounds based on environmental externalities alone–

non-appropriable learning is critical.

Learning can be expected to lower non-hardware costs for solar PV installations at

a regional or localized level by improving labor productivity. Employees can increase

the speed of installation with different types of roof layouts, discover ways to modify

the hardware to facilitate installation, refine the site-visit software, and improve the pro-

cessing of permits. Spillovers may occur through pathways such as hiring employees of

other firms, watching competitor strategies, increased efficiency of permitting by build-

ing permit offices, and more widespread adoption of best practices as are publicized by

industry organizations. Of course, labor markets may adjust in response to some of these

pathways based on labor productivity, but if there are sticky wages and sufficiently high

unemployment, as was the case in much of our empirical setting, LBD may still bring

down labor costs.

To estimate how own experience (internal learning) and competitor experience (spillovers)

reduce the non-hardware costs, we face a classic empirical challenge in industrial organi-

zation: we observe hardware costs (i.e., module and inverter costs) and the price of the

system, but we do not separately observe the BOS and the markup. The optional static

markup will change over time, and these changes may be corrected with the contractor

cumulative number of installations if consumers perceive more experienced contractors

as higher quality, thus allowing them to charge a higher markup. We would also ex-

pect firms that anticipate LBD to be pricing dynamically, so the markup would be lower

in early periods and higher in later periods. For example, Benkard (2004) estimates a

dynamic model of aircraft pricing, using marginal cost data, and shows that it may be
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optimal for firms to begin pricing considerably below static marginal costs.

3 Empirical Setting

3.1 Solar Policy

There has been a long history of government support for solar energy in both the United

States in general and in California specifically. At the federal level, incentives for solar

date back to the Energy Tax Act (ETA) of 1978. More recently, the Energy Policy Act of

2005 created a 30% tax credit for residential and commercial solar PV installations, with

a $2,000 limit for residential installations. The Energy Improvement and Extension Act of

2008 removed the $2,000 limit and the American Recovery and Reinvestment Act of 2009

temporarily converted the 30% tax to a cash grant.

California’s activity in promoting solar began as early as 1974 with the creation of the

California Energy Commission (CEC). For several decades much of the emphasis was

on larger systems. In 1997, California Senate Bill 90 created the Emerging Renewables

Program, which directed investor-owned utilities to add a surcharge to electricity bills to

promote renewable energy. The proceeds of this surcharge supported a $3 per watt rebate

for distributed solar PV installations (Taylor 2008). Beginning in 1998 “net metering”

allowed owners of solar PV systems to receive credit for electricity sold back to the grid.

Moreover, from 2001 to 2005, a 15% state tax credit was granted for solar PV installations

(CPUC 2009).

While the California rebate program put in place in 1997 was substantial, it was re-

newed on a year-by-year basis, leading to uncertainty in the solar market. The elements

for a longer-term, more predictable policy originated in August 2004, with the announce-

ment of the “Million Solar Roofs Initiative,” a program with a goal of one million residen-

tial solar installations by 2015. In January 2006, the California Public Utilities Commission

(CPUC) established the CSI, the $2.167 billion program aiming to install 1,940 MW of new

solar by 2016 and “to transform the market for solar energy by reducing the cost of solar”
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(CPUC 2009).

The CSI is a somewhat unusual subsidy policy in that it counted on LBD bringing down

the cost of solar, for the subsidy declined in steps over time as the number of installed

MW increases. As shown in Figure 1, the CSI used a separate step schedule for each

of the three major investor-owned utilities in California: Pacific Gas & Electric (PG&E),

Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E).4 Outside of

these, there are also municipal utilities, such as the Los Angeles Department of Water and

Power. The larger program that included the municipal utilities aimed to install 3,000 MW

of solar PV by the end of 2016, for a total statewide budget of $3.3 billion. The number

of installations in California exceeded expectations and the programs in all three utility

regions are closed in 2015.

Adoption rates in CA increased quickly between 2002 and 2012, as shown in Figure

2. By the end of 2012, California accounted for nearly 50 percent of total US residential

and commercial solar PV capacity installed in the U.S., making it the largest and most

important market for distributed generation solar PV.5 The vast majority of these systems

were installed in 2002 or later, and thus our panel covers the major growth phase of the

CA residential solar market. Over 80 percent of the systems installed in both California

and the U.S. by the end of 2012 were under 10 kW, which is a common upper bound

size for a small-scale residential or commercial system. This paper does not include the

large-scale solar farms (Barbose, Darghouth, Weaver, and Wiser 2013).

Over the course of our time frame, the CA market has gradually become less concen-

trated although it also has seen the emergence of large players as well (e.g., SolarCity).

This latter phenomenon was aided in creation of solar lease (third-party owned) products

which were generally not available before 2008.

4SDG&E’s CSI program was run by the California Center for Sustainable Energy (CCSE)
5This estimate is based on the detailed 2013 “Tracking the Sun” report by Lawrence Berkeley National

Laboratory (LBNL), which includes roughly 72 percent of all grid-connected solar PV capacity from 1998 to
2012 (Barbose, Darghouth, Weaver, and Wiser 2013).
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4 Solar PV Demand

4.1 Demand Model

It is essential to identify how markups change over time since they likely do not change

by the same amount for all installers. Furthermore, the optimal markup itself may be a

function of the installed bases if installed bases are a signal of (or proxy for) the quality

of the installer. We thus estimate a demand model separately for each county-quarter in

order to capture these evolving markups. We aggregate at the quarterly level to avoid

zero shares for installers which are present in the market but happen to not perform any

installations in a particular month (if they perform no installations that quarter we assume

they are not active in the market). We assume a nested logit model of demand. The upper

nest models whether to purchase solar or not, and the lower nest models the decision of

which installer to use, i.e., all installers are in one group and the decision to not install

(j = 0) is in the other. The mean current period utility of not installing is normalized to

zero and installing solar is a terminating state. Following Berry (1994), we assume:

uijt = µmjt + εuigt(σ) + (1− σ)ǫuijt, (1)

in which the index j indicates the installer and g the nest group. We assume that ǫuijt is

distributed iid as type one extreme value and εuigt(σ) has the unique distribution such that

[εuigt(σ) + (1− σ)ǫuijt] is distributed as type one extreme value (Cardell 1997).

Let the mean utility of installing solar using installer j in market m be given by:

µmjt = α(Pmjt −Rmt) + θmbmj + θ−mb−mj + θEZmt + ωu
j + ηum + ζut + ξjmt, (2)

where Pmjt is the average installation price per watt for firm j in market m at time t, Rmt

is the rebate, bmj is the installer’s installed base inside the market, b−mj is the installer’s

installed base outside of the market. The Zmt include controls for housing prices, the

electricity rate, and the solar radiation for the county in that quarter, shown to positively
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affect solar adoption rates in Lamp (2014). We define ωu
j , ηum, and ζut as fixed effects for

contractor, market, and year, and ξjmt is a market-time unobserved shock for installer

j with mean zero, unobserved by the econometrician. We assume that the installation

decision is an exit decision and that all future value of the installation in captured in µijt,

making this an optimal stopping problem, as in Rust (1987).

Let the observed market state xmt be defined as:

xmt ≡ {Pmjt, Rmt, bmj, b−mj,Zmt, ω
u
j , η

u
m, ζ

u
t , ξjmt}. (3)

We assume that consumers do not anticipate the added hedonic utility they get from

installing solar in a sunnier period (county fixed effects capture baseline sunlight levels).

The value function for a household can be defined recursively by the following Bellman

equation:

V (xmt, ε
u
igt.ǫ

u
ijt) = max

jit
{uijt + βE

[
V (xmt, ε

u
igt+1.ǫ

u
ijt+1)

]
}, (4)

with discount rate β, and in which uijt depends on the current period shocks as shown in

(1) and jit is the consumer choice of which installer to select (including the option of not

installing).

We can thus write each household’s expected conditional value function as:

v(xmt, jt) = µmjt (5)

v(xmt, 0) = ρ

∫ ∫
max
j′

(
v(xmt+1, jt+1) + εuigt+1(σ) + (1− σ)ǫuijt+1

)

dF (xmt+1|xmt, jt)dG(ε
u
igt+1, ǫ

u
ijt+1)

in which we integrate over the transition distribution of the state variablesF (xmt+1|xmt, jt)

and the distribution of the unobservables, G(εuigt+1, ǫ
u
ijt+1).

Because any decision to install is a termination decision, the future value function

only appears for the decision to not install, and captures the continuation value. The
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share of households choosing installer j in market m conditional on installing is given by

the familiar nested Logit expression:

s
j/I
mjt =

exp (v(xmt, jt)/(1− σ))

DI
mt

, (6)

where we have the following inclusive value of installing solar:

DI
mt =

∑

j 6=0

exp (v(xmt, jt)/(1− σ)) (7)

The probability of (and share of people) installing is then given by:

sImt =
(DI

mt)
(1−σ)

exp (v(xmt, 0))
(1−σ) + (DI

mt)
(1−σ)

. (8)

and not installing by:

sm0t =
1

exp (v(xmt, 0))
(1−σ) + (DI

mt)
(1−σ)

. (9)

4.2 Estimation

Calculating the conditional value function can be achieved by integrating over the transi-

tion distribution of the state variables and the distribution of the unobservables, although

we can also calculate it in terms of the conditional choice probabilities (CCPs) for one of

the terminating options, set without loss of generality as j = 1 (Hotz and Miller 1993;

Arcidiacono and Ellickson 2011):

v(xmt, 0) = β

∫
µm1t+1(xmt+1)− ψ(δt+1(xmt+1))dF (xmt+1|xmt), (10)
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where we know from Arcidiacono and Miller (2011) that:

ψ(δt+1(xmt+1)) = γ − (1− σ) log (δm1t+1)− σ log
(
δj 6=0
mt+1

)

= γ − log (δm1t+1)− σ
(
log

(
δj 6=0
mt+1

)
− log (δm1t+1)

)
(11)

and we define the probability of choosing the arbitrarily selected terminating option j = 1

and the probability of choosing from that nest, i.e., to install solar at all indicated by j 6= 0,

with the following two expressions, respectively:

δj 6=0
mt+1 ≡

J∑

k=1

δ(jmt+1 = k|xmt+1) (12)

δm1t+1 ≡ δ(jmt+1 = 1|xmt+1) (13)

The only integration that remains in (11) is that over the state transitions. We as-

sume that consumers expect the state variables to evolve according to independent AR(1)

processes, with the exception of the rebate. Given that the adoption of solar during this

period exhibits large “pull-forward” effects as discussed in Rogers and Sexton, and is also

evidenced by the spikes in demand shown in Figure 2, we assume that consumers have

perfect foresight with regards to the rebate amount. Thus we can write:

∆vmjt ≡ v(xmt, jt)− v(xmt, 0) = µmjt − βE [µm1t+1 − ψ(δmt+1(xmt+1))] (14)

This yields the following linear equation which can be used in estimation:

log(smjt)− log(sm0t) + βγ − β log (δm1t+1) = α(P∆
mjt −R∆

mt) + θmb∆
mj + θ−mb∆

−mj (15)

+Z∆
mjtθ

Z + ω∆u
j + η∆u

m + ζ∆u
t + σ

(
log(smj/It) + βE

[
log

(
δj 6=0
mt+1

)
− log (δm1t+1)

])
+ ξ∆u

jmt

in which the ∆ superscript designates that we subtract off the discounted value of the

next period values for an arbitrary installer in the market whose probability of adop-

tion we use to calcite the continuation value. We use a quarterly discount rate of 0.966
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which correspond to an annual discount rate of 0.87, consistent with that estimated by

De Groote and Verboven (2016). The demand estimates are robust to varying the dis-

count rate.6. This expression only depends on the values of the current and next period

state variables and the next period adoption probabilities. These probabilities are calcu-

lated at the county-quarter level which is essential since the model includes market-level

unobservables.

We split the continuation value into its component that does not depend on σ, which

we add to the right hand side of the equation, and the component which does, which

can be include in the current within-group share term. For identification, we need instru-

ments for the price and for the within-group share parameter. We use two cost shifters

of the total installed cost: the mean rebate per watt, and the number of installations the

installer has finished in other counties. The first is a straightforward cost shifters, as the

rebate is given directly to the contractor. The second, the number of installations the in-

staller has finished in other counties, might be expected to be a strong instrument for

the within-group share parameter because if there are more finished installations in other

counties, this frees up labor that can be moved across county borders, influencing the

within-group share. At the same time, after inclusion of our time fixed effects, installa-

tions in other counties should not influence demand in the county of interest.

The number of installations the installer has finished in other counties should also

impact the within-group share, since this cost shorter is installer-specific. Similarly, we

would expect the number of installations the competitors have finished in other counties

to also shift within-group share. Thus we include this third instrument as well, provid-

ing us with an over-identified model, which allows us to then test the over identifying

restrictions.

Which firm is used to control for future utility does not matter in theory, but the chal-

lenge we face is that there is no one firm that is well represented in all markets in all

years. Thus we use a novel strategy in which we average the values for all firms in the

market that year. This will yield the same results asymptotically since we simply average

6We also use a 0.90 discount rate as is typical and corresponds to the value estimated by Bollinger (2015).
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equation (15) for each possible choice of the focal firm. The final estimation equation is:

log(smjt)− log(sm0t) + βγ − βE
[
log(δj)mt+1

]
= θmbmj + θ−mb−mj + α(P∆

mjt −R∆
mt)

+Z∆
mjtθ

Z + ω∆u
j + η∆u

m + ζ∆u
t + σ

(
log(sj/It) + β

(
log

(
δj 6=0
it+1

)
− log(δj)mt+1

))
+ ξ∆u

jmt (16)

where we define:

log(δj)mt+1 ≡
1

|Cmjt+1|

∑

k∈Cmjt+1

log (δikt+1) (17)

in which Cjt+1 is the set of installers active in the county, |Cmjt+1| is the cardinality of

Cmjt+1, and ∆ superscript now designates that we subtract off the discounted value of the

next period mean values for all installers in the market.

In order to calculate the expected next period probabilities, we assume that consumers

expect AR(1) transitions for the shares and inside good shares and use the predicted val-

ues. We do this because some of the state variables affect all markets and thus we would

not want to use only realized next period probabilities.7

We use aggregate data for our CCP estimation, just as was done by Derdenger and

Kumar (2015) and De Groote and Verboven (2016), because this enables us to use the full

dataset in estimation.8 Furthermore, there is little to be gained from using disaggregated

data since we the only household level state in our state space is whether the household

has already installed solar (if they have, this excludes them from installing in the future).

This approach does limit attempts to identify within-county unobserved heterogeneity,

but since solar PV adoption is still early along the adoption curve in our empirical setting,

the marginal consumer is likely not changing significantly. Dynamics, however, is a first

order concern which is confirmed by our estimation results.

7As an alternative, we can use the predicted state transitions and estimate the model iteratively, using
the previous iterations’ estimates to estimate the next period probabilities as a function of state, and then
integrate over the AR(1) transitions of the state variables.

8Including a separate observation for each household x month combination would make the estimation
intractable.
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We can calculate the derivative of market share with respect to price as follows:

∂smjt

∂Pmjt

= α
1

(1− σ)
smjt(1− σsmj/It − (1− σ)smjt) (18)

We can use the derivative of market share with respect to price to calcite the optimal static

markup,
smjt
∂smjt
∂Pmjt

.

5 Solar Pricing

5.1 Model

To account for the markup that results from the dynamic pricing incentives in addition

to the static markup, we develop a model of forward-looking solar PV contractor pricing.

This is complicated by several factors. First, we need to control for firm heterogeneity

in costs and in markups. Moreover, the drop in global module prices after 2008 did not

correspond to as much of a drop in installation price, suggesting that there may be con-

siderable time-varying market power at the contractor level.

5.1.1 Installer Profits

A contractor j ∈ J earns the following profits from installation i that it performs in

market m at time t:

πijt = (pijt − cijt − w(Sit,qmjt, eijt(bijt),Wmt), εijt)Sit, (19)

where pijt is the price per watt charged for the installation, cijt is the per-watt cost of the

solar panels and inverters, and w(·) denotes the non-hardware costs, defined here as all

costs minus the module and inverter costs. The non-hardware costs are a function of

the system size Sit (in kilowatts), the number of ongoing installations by the contractor
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within and outside the county, qmjt, which capture economies of scale,9 the contractor’s

knowledge or experience, eijt(bijt) that is relevant for installation i, and the prevailing

wage rate in installation’s market, Wmt.

The installer’s experience is a function of the vector of depreciated installed bases, bijt,

both its own and its competitors’ in both the local marketm, as well as in all other markets

m. We track installations for all firms by market to allow local installations to have a

different impact on non-hardware costs than installations performed farther away and to

capture the evolution of the four installed bases that affect an installer in a specific market

(own installations the market and own installations elsewhere to capture appropriable

learning, and competitors’ installations in the market and elsewhere to capture learning

spillovers). The system size accounts for possibly installation-specific economies of scale.

Solar installation prices are typically set on an installation-by-installation basis since

each potential installation has idiosyncracies that influence the cost. Furthermore, the size

of every installation is generally set in large increments (i.e., with the addition or removal

of a large panel) and is a function primarily of the available suitable roof space and the

amount of electricity the consumer uses. Importantly, the system size is not a strategic

choice variable for the installer.

We assume that an installer can quote an installation price to each potential customer.

As with the demand model, we will use δ to designate demand probabilities. Let the

probability that an installer is selected for installation i be δijt ≡ δijt(pijt,pi−jt,bit, Rmt),

which is a function of the price offered for installation i by this contractor, pijt, the prices

offered by other contractors pi−jt, and preferences for the installers based on the previ-

ous installed bases that affect installation i, bit (where bit is the stacked installed base

variables for the set of installers), and the rebate, Rmt. We define δδδit as the vector of all

probabilities over installers. Let pjt and p−jt be the vector of prices across installations

at time t for installer j and its competitors, respectively, and pt be the full set of prices

at time t. We drop the arguments from the marginal cost function for notational conve-

nience, and with slight abuse of notation write w(Sit, qmjt, eijt(bijt),Wit) as wijt. Let Qmt

9Defined as the number of non-completed installations.
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be the number of available potential installations in market m at time t i.e., the aggregate

demand and gmt(Sit) be the probability distribution of sizes. We define qjt be the vector

of ongoing installations for firm j in each market m at time t, and qt be the number of

ongoing installations for all installers.

The observable (to the econometrician) state variables are Xt ≡ {qt,pt, ct,bt,Wt,Qt,gt(S)},

in which we stack the market and installer-market variables into vectors subscripted by t.

εit is the vector of installer non-hardware cost shocks, εijt. An installer’s expected profits

(conditional on the vector of state variables) at time t are:

Πj(Xt, εijt,pt) =
M∑

m=1

Qmt∑

i=1

πijtδijt(Xt,pit)− FCj. (20)

We define FCj as the installer fixed costs, which are assumed not to vary with the size

of the systems installed. We assume that the installer is at least breaking even in the

medium-run and thus is not planning to exit the market.

Following Ericson and Pakes (1995) and BBL, prior to the realization of the non-hardware

cost shocks, a forward-looking profit-maximizing firm has an expected value of:

EVj(Xt) = E

[
∞∑

τ=t

ρ(τ−t) max
pijt

[Πj(Xτ , εijt,pτ )] |Xt

]
(21)

in which ρ is the installers’ discount rate.

Let us write the profile of Markov pricing strategies as σ(Xt). Today’s value function,

post-realization of the cost shoes, can be written recursively using the following Bellman

equation:

V (Xt, εit;σ) = Π(Xt, εijt, σ(Xt, εit)) + ρE

[∫
V (Xt+1, εit,σ(Xt+1, εit))dF (Xt+1|σ(Xt+1),Xt+1)

]

The pricing profile p = σ(Xt, εit) is a Markov Perfect Equilibrium (MPE) if and only if

each firm prefers σi to any alternative strategy, given the opponents’ strategies σ−i. We
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assume that the data are generated by a single MPE.

We assume that the state variable transitions can be broken up into independent pro-

cesses as follows:

f(Xt+1|Xt,pit) = fW (Wt+1|Wt)f
c(ct+1|ct)

∏

m

fQ(Qmt+1|Qmt)f
S(Smt+1|Smt) (22)

f b(qmt+1,bmt+1|qmt,bmt, δm(Xt,σ(Xt, εit))) (23)

We allow for market-specific wage rates and market x firm-specific hard costs, although

we assume a common evolution since these are more global processes. We assume that

hard costs, market-level wages, new demand, and average installations sizes (in market

m at time t) evolve according to AR(1) processes. We define the evolution of the installed

base for installer j in market m at time t as a function of the decay parameter κ and a

random process describing the number of completed installations:

b′mj = κ1bmj + qcmj, (24)

where the number of completed installations is distributed as a binomial distribution,

qcjt ∼ bin(qjt, ν) where ν is the probability each ongoing installation in qjt is completed

that period.

The ongoing installations state variable evolves such that each new potential installa-

tion in Qmt+1 is performed by firm j with probability δmjt as determined by the demand

model. Thus the vector of ongoing contracts for all firms in market m grows by the ex-

pected number of new installations and shrinks by the number of completed installations:

qmt+1 = qmt − qc
mt +

Qmt∑

q=1

MN(δm(Xt,pit)) (25)

in which MN indicates a multinomial distribution with probabilities given by the vector

δm of length Jm, the number of installers in market m.

The state transitions obviously depend on the installers’ pricing policy functions, which
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depend on the structural unobservable component to non-hardware costs. However, this

dependency is completely through the choice probabilities for that installation, δit. Before

solving for the installer’s first order pricing condition, we first define the state vectors

X
qk+
t+1 as the next period’s state if installation i is assigned to installer k and X

q0+
t+1 if it is as-

signed to the outside option, rather than it being determined by pit and εit. Note that the

transition probabilities for these objects do not depend on price because we are assigning

the installation i to a specific installer, and for the reason they are also the same for all

installers we might assign the installation to, i.e.:

f(Xqk+
t+1 |Xt,pit) = f(Xqk+

t+1 |Xt) = f(X
q0+
t+1|Xt) = f(X

qk′+
t+1 |Xt) ∀k

′ 6= k (26)

5.1.2 First Order Condition

The dynamics result from the fact that different prices will lead to different evolution

of the ongoing installations vector, and these installations then enter the installed base

variables after the installations are completed. Economies of scale, appropriable LBD,

and an increase in market power through installed base could all lead to an incentive to

lower price. In addition, due to the hard cost declines over time, there may also be value

in increasing price so that more installations are performed when costs are lower. Thus

the direction of the effect of accounting for dynamics on price is not clear a priori.

Differentiating with respect to price leads to the following first order condition for

installation i10:

∂
∂pijt

V (Xt;σ) = 0 = ∂
∂pijt

Π(Xt, εijt,σ(Xt, εt)) (27)

+ρ
∑

k∈{0, Cmt}

∂δk(Xt,εit)
∂pj

Et

[ ∫ (
V (Xqk+

t+1 , εit+1,σ(X
q0+
t+1 , εt+1))

−V (Xq0+
t+1 , εit+1,σ(X

q0+
t+1 , ε))

)
dFX(Xq0+

t+1 |Xt)
]

= ∂
∂pijt

Π(Xt, εijt,σ(Xt, εt)) + ρ
∑

k∈{0, Cmt}

∂δk(Xt,εit)
∂pj

∫ (
EV (Xqk+

t+1 )− EV (Xq0+
t+1)

)
dFX(Xqk+

t+1 |Xt)

10Note that dqmkt

dδijt
is equal to one for k = j for installation i in market m, and zero otherwise.
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The only link between current pricing and future value functions is dependent on the

expected evolution of the market under the different alternative scenarios in which any

installer in the market might receive the current installation, and how these probabili-

ties change with the firm’s pricing decision as determined by the derivative of demand

for each installer in the market with respect to pijt. Thus, the dynamic pricing incen-

tive is completely captured through the difference in the expected future values under

these alternative scenarios. Because we assume independence in the non-hardware costs

shocks across installations (after controlling for market and time fixed effects), the only

dependency on the future valuation term is through the demand elasticity. Intuitively,

the tradeoff from lowering price is between the decrease in profits today and the increase

in the number of ongoing installations for the firm (decreasing those for its competitors),

which in the short term may have positive or negative effects through the new ongoing

installations (due to economies of scale or capacity constraints) and in the long term, i.e.,

once the contracts are completed, will impact firm profits through the installed base vari-

ables, which may affect both consumer utility and the non-hardware costs through LBD.

Note we have that:

d

dpijt
Π(Xt) = δijt(Xt, εit)Sit +

(
p∗ijt − cijt − wijt

)
Sit
∂δijt(Xt, εit)

∂pijt
.

Thus we can write an installers optimal pricing equation as:

p∗ijt = cijt︸︷︷︸
hardware

costs

+ wijt︸︷︷︸
non-hardware

costs

−
δijt(Xt, εit)

∂δijt
∂pijt︸ ︷︷ ︸

static markup

(28)

−ρ
1

Sit

∑

k∈{0, Cmt}

hk(Xt, εit)

∫ (
EV (Xqk+

t+1 )− EV (Xq0+
t+1)

)
dFX(Xq0+

t+1 |Xt)

︸ ︷︷ ︸
dynamic markup

.

(29)

in which we define the function hk() as the ratio of the first derivatives of demand for
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the installation performed by installer k (where k = 0 indicates the outside option) with

respect to the price set by installer j:

hk(Xt, εit) ≡

∂δikt(Xt,pit)
∂pijt

∂δijt(Xt,pit)

∂pijt

. (30)

This expression is largely determined by the effect of own-price on own-demand prob-

ability, although this expression does account for the cross-derivatives as well. For the

focal installer j, this ratio is equal to one.

To integrate over the future states, we can forward simulate once we estimate the

state transition probabilities in a first stage. Because of the massive size of the state space

(since every installer’s installed base and ongoing contracts are relevant for every other

installer), instead of calculating the value function for every possible combination of state

variables, we instead perform a set of forward simulations starting from every observa-

tion in the data. In addition, we forward simulate the entire market (starting from any

given observed installation) under each counterfactual scenario in which a competing in-

staller in that market (or the outside option) receives the installation instead. As the focal

installer changes the price, the probabilities of these counterfactuals occurring change as

well, determined by ∂δit
∂pijt

.

The strategy of performing simulations starting from the realizations of the state vec-

tor captured in each observation makes estimation much more tractable, but it is still not

feasible if this very large set of simulations has to be performed many times during esti-

mation. Thus, we also linearize the non-hardware cost in the parameters (similar to BBL’s

linearization of the profit function) so the simulations only have to be performed once:

w(Sit, qmjt, eijt(bijt),Wmt)) = Ψ(Sit, qmjt,bijt,Wmt) · β + εijt, (31)
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in which Ψ(Sit, qmjt,bijt,Wmt) is an vector of basis functions. By substitution we have:

EV (Xt) =
∞∑

τ=t

ρ(τ−t)
E

[
M∑

m=1

Qmt∑

i=1

((pijt − cijt)Sit)δijt|

]

−
∞∑

τ=t

ρ(τ−t)
Et

[
M∑

m=1

Qmt∑

i=1

Ψ(Sit, qmjt,bijt,Wmt)Sitδijt

]
· β − FCj + εijt. (32)

Thus we can rewrite an installers optimal pricing equation as:

p∗ijt = cijt︸︷︷︸
hardware

costs

+ wijt︸︷︷︸
non-hardware

costs

−
δijt
∂δijt
∂pijt︸ ︷︷ ︸

static markup

(33)

−ρ
1

Sit

∑

k∈{0, Cmt}

hk(Xt, εit)

∫ (
EV (Xqk+

t+1 )− EV (Xq0+
t+1)

)
dFX(Xt+1|Xt, σ(Xt))

︸ ︷︷ ︸
dynamic markup

+ 1
S
εijt.

(34)

As previously discussed, the primary contributor to the future value term is through

the effect or price on future demand for the focal installer. The derivative of own-demand

with respect to price enters both the numerator and denominator, and so we have hj(Xt, εit) =

1, which does not depend on the εit; the unobservable in the dynamic markup term only

affects h(.) through the cross-derivatives. With higher cost shocks, the probability of all

installers receiving the installation goes down, and the probability of the focal installer

receiving it goes up.

Taking the first order Taylor expansion, let us write

hk(Xt, εit) = h(Xt,pmt, νijt) ≈ h̄(Xt,pmt) +
∂h̄(Xt,pmt)

∂pjm
ν (35)

in which h̄(Xt,pmt) ≡ h(Xt,pmt, 0) in which the deviation between any installation’s

optimal price pijt and the average price for that installer in that market in quarter t is

given by νijt, which is due both to εit and to differences in the state variables for that
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installation relative to the average by that installer in that market at that time.

Rewriting (33), we have:

p∗ijt = cijt︸︷︷︸
hardware

costs

+ wijt︸︷︷︸
non-hardware

costs

−
δijt
∂δijt
∂pijt︸ ︷︷ ︸

static markup

(36)

−ρ
1

Sit

∑

k∈{0, Cmt}

h̄(Xt,pmt)

∫ (
EV (Xqk+

t+1 )− EV (Xq0+
t+1)

)
dFX(Xt+1|Xt, σ(Xt))

︸ ︷︷ ︸
dynamic markup

.

−ρ
1

Sit

∑

k∈{0, Cmt}

∂h̄(Xt,pmt)

∂pjm
(Xt,pmt)

∫ (
EV (Xqk+

t+1 )− EV (Xq0+
t+1)

)
dFX(Xt+1|Xt, σ(Xt))νijt +

1

S
εijt

︸ ︷︷ ︸
error term

.

Although the structural cost shock εit leads to a difference in the average derivatives of

demand for other installers with respect to installer j’s price of installation i, its effect

leads only to further the heteroskedaticity of the error.

5.2 Estimation

With our demand estimates in hand, the first step in the supply estimation is estimating

the state transitions and policy functions. The estimation of the state transition probabili-

ties are straightforward, and the structure we imposed on these transitions is theoretically

motivated. For the policy function, we use the following flexible form:

log(pijt) = (Xp ⊗Xp)κ+ ξj + ηt + ǫijt (37)

Xp ≡ {log(pijt−1), Sijt, qmjt,
∑

k 6=j∈M

qmkt, Rmt, bijt} (38)

where ⊗ indicates the Kronecker product.

In simulating future prices, we model the evolution of the time fixed effects using an

AR(1) process, and we assume that the household-specific unobserved shocks are com-
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mon to installers (due to things like steeper roofs leading higher installation costs). In

simulating future shocks, we use the standard deviation of the residuals from the estima-

tion of the AR(1) process and assume normality.

With first-stage estimates of the transition probabilities and the parameters that gov-

ern the policy function in hand, we can use forward simulations for many possible real-

izations of all outcomes in future periods, as done in BBL, only in our context, we forward

simulate for each household in the data to calculate the expected profits (not including

the non-hardware costs) over time, where the expectation is taken over all of the installers

who might get that household’s installation. We can similarly calculate a term that repre-

sents the expected NPV of the non-hardware costs conditional on the learning parameters

βb, in which βb enters multiplicatively, as shown in equation (36). This means that the

forward simulation only has to occur once, although it must be done separately for every

observation in the data since the pricing of any installation has downstream consequences

for all installers in all markets.

The difference in the simulated future valuations and costs if installer k were to get the

installation versus no installer getting the installation are then multiplied by hk(Xt,pmt)

and summed together. Multiplying by −ρ 1
Sit

gives us the estimate of the dynamic pricing

term. The intuition for why inverse size enters into the term is that for bigger installations,

the profit sacrifice of lowering price does not justify the added learning as much as it does

for smaller installations.

The entire estimation procedure is as follows:

1. Estimate the demand model to calculate δ̂ikt as a function of the states, Xt.

2. Calculate σ̂jt and transition probabilities f̂(.).

3. For each installation i:

(a) Draw the random shocks for this simulation, rs, that will determine the evolu-

tion of the state variables for the next period.
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(b) For each firm in marketm at time t and for the outside option of no installation,

assign the installation to that firm and update qt.

(c) Simulate the realization at t + 1 for the state variables under each possible as-

signment of i to the installers in the market (Xjms), using the same random

shocks for each.

(d) Calculate optimal prices σ̂jt(X
jms) for all installers in all markets for each sce-

nario.

(e) Calculate
∑Qmt

i=1 ((pijt−cijt)Sit)δijτ and
∑Qmt

i=1 bijtSitδijτ ∀ τ > t for the simulation

path, rs, ∀k ∈Mi who might have gotten installation.

(f) Repeat the last three steps for T sim periods.

(g) Compute the NPV of the two values in step (e) and take the weighed sum over

the potential installers (as well as the outside option) who might have gotten

the installation using weights
∂δikt
∂pijt
∂δijt
∂pijt

for k ∈ {0, Cmt}.

(h) Repeat for RS simulations.

For each installer who is assigned the installation (including the outside option of the

installation not occurring), we simulate ten paths of the market transitions over 20 years,

the standard life of a solar panel system (using the same unobservable shocks for the

assignment of the installation to each installer). For example, if we have an installation

with 19 active installers, there are 20 possible assignments of the installation including

the no install option, and we perform 200 forward simulations from that observation to

calculate the value function.

6 Identification and Data

6.1 Identification

Our identification strategy depends on our ability to both separately estimate the static

and dynamic markup in order to isolate the non-hardware costs. For the former, we rely

25



on calculations of the static markup that we get from estimating the dynamic demand

model. For the dynamic markup, we are able to directly calculate the dynamic pricing

incentive using the first order condition, using forward simulations as in BBL. By forward

simulating states of the world from multiple starting points in which every competing

installer is assigned that observation’s installation, we can then incorporate the change

in future value in the focal installer’s first-order pricing equation by accounting for the

effect of price on the likelihood of which installer gets the installation (if any), and thus the

likelihood that each set of forward simulations are indicative of the market’s evolution.

Forward simulations starting from each observation in the data allow us to capture the

effect of the pricing decision on the entire market in which there are over 3000 installers.

Identification is aided by the fact that larger size installations have less of a dynamic

pricing incentive, because the value of learning is smaller relative to the profits from the

current installation.

One may be concerned about serial correlation leading to endogeneity due to a corre-

lation between our installed base variables and the error. This is less of an issue in our

setting for there is on average a six month lag between when an application for an instal-

lation is submitted (i.e., when the sale is made) and when the installation is completed.

Thus, any serial correlation would have to be quite substantial. Examining the Durbin-

Watson test statistic, we find serial correlation of only a few months, suggesting that this

is not a concern.

Fundamentally, our coefficients of interest are identified from within-installer, within-

county, and within-quarter variation in the installed base variables and the BOS across

installations of different sizes. We can separately identify the effect of experience from

economies of scale through the differing variation in the installed base variables and the

on-going contracts variables.

26



6.2 Data

Our dataset, compiled by Lawrence Berkeley National Laboratory, is unique in that it

includes both the price and the hardware costs for most of installations in California

through 2012. Our data includes all installations in California that received an incen-

tive payment. For the three investor-owned utilities, it covers both the earlier Emerging

Renewables Program and the CSI. It also covers all municipal utility solar incentive pro-

grams. The data includes the type of installation (residential, commercial, government or

nonprofit), price and size of the installation, whether the system is third-party owned or

appraised value, the module and inverter costs, any financial incentives, PV installer and

manufacturer information, average electricity rate in the zip code of the installation, and

zip code of the installation.

The raw dataset has 135,654 observations. We include all of these installations in cre-

ating the installed base and ongoing installations variables. For 34,148 observations, the

cost or price data appear unreliable, with reported prices of more than $12/kW or less

than $1/kW or hardware costs of more than $8/kW or less than $0.30kW. Many of these

appear to be extra zeros added or removed by the installer when the installation was

reported, but it appeared difficult to correct them, and thus we opted to drop these obser-

vations. We focus on non-utility scale installations (removing the 100 installations greater

in size than 100 kW) and we drop the 95 ground-mounted systems as well. Finally, for

26 installations have no wage data. This leaves us with 979,709 installations. 38 of these

have no installer information and 11,623 only have an appraised rather than a transacted

price, which we drop as well. This leaves 88,048 installations. Of these, we can only esti-

mate the static markup for 76,838 (due to limited installations for some of the very small

installers) which is our final estimation sample.

Table 1 provides summary statistics for the key variables in our final dataset. All

dollar-valued variables are converted to real 2012 dollars. As we hypothesize that LBD

occurs with installations at different levels, we create the installed base variables which

are the cumulative number of installations by a specific contractor and/or in a specific
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county.11

The installed base variables are calculated first for a given installer at both the California-

wide level and at the county level, assuming a continuous decay rate equivalent to an

annual decay rate of 11%, as found by Benkard (2004) and Kellogg (2011). Then, since

LBD spillovers are most likely to occur between competing contractors, we create a vari-

able for the cumulative installations by the contractor’s competitors within the county. To

control for potential economies of scale or capacity constraints, we also create a variable

for the contractor’s on-going contracts, which is defined as the number of contacts that

are in-progress between the contract signing and the actual installation.12

Since the dataset contains both residential and non-residential installations, we pro-

vide summary statistics for key variables in each of these categories respectively in Tables

2 and 3. Most of the observations are residential systems, with only 2,396 non-residential

systems. Residential systems tend to be significantly smaller, with a mean size of 5.5

kW versus 20.38 kW, but slightly less expensive per watt on average than non-residential

systems ($7.27 per W versus $7.46 per W).

We plot the number of installations over time in Figure 2. During the period of the

CSI, we see rapid acceleration of solar PV adoption. This is not surprising; since 2002,

the average installation price has declined from approximately ten dollars per watt to

under six dollars per watt, with much of this decline occurring after 2009 (Figure 3).13

This figure shows that while average solar PV prices have declined along with the hard

costs, the BOS has not decreased as much as one might expect LBD were greatly lowering

11We also code up every merger and acquisition in the California solar PV market so that we can include
the experience of both firms when they merge – our results are robust to the alternative assumption that
learning is not transferred.

12The average time between signing of the contract and installation is roughly 120 days.
13For reference, we can compare the levelized cost (i.e., the present value cost of owning and operating the

generation asset) of solar to other electricity generation sources. We assume a 30 year solar system lifespan,
a 30 year mortgage with an interest rate of 3%, an inverter lifespan of 8 years, solar PV system output from
Borenstein (2008), limited losses from soiling, and a PV panel decay for multi-crystalline silicon panels
of 0.5% corresponding to the best available evidence (Osterwald, Adelstein, del Cueto, Kroposki, Trudell,
and Moriarty 2006). Our calculations suggest that the 2009 residential system average cost of $8 per DC
W corresponds to a levelized cost of roughly $0.30-$0.35 per kWh before any incentives, whereas centrally
generated electricity sources, such as coal or natural gas had a 2009 levelized cost in the range of $0.05-$0.07.
The cost of solar has dropped substantially since then.
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non-hardware costs.

One possible justification for the lack of a large drop in BOS is simply that there is no

learning. However, other factors must be accounted for before coming to this conclusion.

For example, in 2008, there is is a large increase in third party systems. Figure 4 plots BOS

for all systems as well as for just owned systems, and there is a drop of just over 1$/W

in BOS for owned systems between 2008 and 2013. Third party systems are recorded as

more expensive per watt, and so their increase in market share hides the BOS declines

that are happening concurrently. Another explanation for less of a decline than expected

with LBD is the competitive landscape.

Figure 5 provides a histogram after removing contractors who perform less than 10

installations and shows that most firms in this market still fall into the competitive fringe.

This competitive fringe installs the majority of solar PV systems, but 31.2 percent of sys-

tems are installed by the top 10 installers (over the full time period of the data), so there

is still significant concentration in the market. Table 4 provides summary statistics over

the 3,017 installers that appear at any point in the dataset (there were 21 in 1998, 353 at

the start of our panel in 2002, and 790 in 2012). On average, contractors operate in 2.4

counties and have performed 33.2 installations. As is clear in Figure 5, the distribution of

installer size is very skewed with a dozen or so very large firms and a huge tail of tiny

installers.

Another potential explanation for BOS not dropping as much as expected with LBD

is the dynamic pricing incentive for firms. In the model, we showed that this incentive is

larger for smaller installations than for large installations. We therefore plot BOS versus

installation size in Figure 6. If firms are pricing dynamically, we would expect to see BOS

decline more for large installations than for small installations, since in the early years

before firms move down the learning curve, installers have an incentive to lower price in

order to perform an installation and move father does the learning curve, but the profit

reduction for the current installation is large if the installation is large. As is clear in the

figure, the larger installations (with smaller relative dynamic pricing terms) exhibit larger
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BOS declines over time.

7 Estimation and Results

7.1 Demand Estimates

For the demand model, we calculate market shares by collapsing the dataset so that the

unit of observation is an installer-county-quarter. We calculate the share of new contracts

for each installer at this unit of observation. For our model, we need an estimate of the po-

tential market size. We begin with the number of owner-occupied homes and businesses,

the latter taken from the UC Census County Business Patterns for 2012. To determine the

fraction of potential adopters who would make up the relevant market, we use Google

sunroof data to calculate the share of buildings for which adopting solar would lead to

a positive net present value (using Google’s assumed discount rate and current electric-

ity prices). The share of buildings suited for solar ranges between 40% and 100% of the

market.14 Summary statistics for this dataset are shown in Table 5.

We estimate the demand model using both OLS and instrumental variable regression.

We present our regression results in Table 6. We start with a static OLS regression to

provide a benchmark. The price coefficient is negative and significant as expected. Both of

the installer’s installed base variables increase consumer utility of an installation, and the

nest parameter is 0.726. We find positive and significant effects of monthly solar radiation

as expected, but no statistically significant effect of electricity rates, likely due to the fact

that much of the variation in rates is cross sectional and thus absorbed by the county fixed

effects. Upon instrumenting for price using the exogenous rebate schedule, the estimated

price coefficient is much larger, in magnitude. We also estimate positive effects of own-

installations within the county on consumer utility.

These static estimates ignore the fact that consumers are forward-looking with re-

spect to price and the other state variables. Columns 3 through 5 allow consumers to

14For the small number of counties without these data, we use 50%.
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be forward-looking. Our preferred specification is column 5, in which we allow for for-

ward looking behavior and instrument for both price and the (mechanically) endogenous

within-group share. There is a positive effect of own-installations within the county and

no effect of installations outside the county. In addition, there is a positive and significant

coefficient on the average quarterly radiation.

We can estimate the demand elasticities as follows:

elastjt = α
1

1− σ
(1− σsj/It − (1− σ)sjt)Pmjt

elastj/It = α
1

1− σ
(1− sj/It)Pmjt (39)

in which sjt is the share of consumers installing from installer j, sj/It is the share of con-

sumers installing from installer j conditional on installing solar, and as before, Pmjt is the

average price for installations performed by j in market m at time t.

We plot the estimated elasticity over time in Figure 7 where the unit of observation is

the installer-county-quarter. We include fractional polynomial best fit lines as well. We

break down the elasticity into the group elasticity and the within-group elasticity. The

group-level elasticity is consumer’s response to solar price on the decision to install at

all, irrespective of which installer is chosen. The average group elasticity first decreases

(becomes more elastic) and then increases (becomes less elastic), with a low of -1.2 and

a high of -0.8. The group elasticities in the literature can be compared to others in the

literature. Hughes and Podolefsky (2015) find an elasticity of -1.2 for CA, Gillingham and

Tsvetanov (2017) find an elasticity of -0.65 for CT, and Rogers and Sexton (2014) find a

rebate elasticity of 0.4 for CA. None of these papers allow for dynamic demand.

The second figure shows the elasticity conditional on installing reaches its largest mag-

nitude in 2005. The installer elasticity is much higher than the group elasticity, as we

would expect, with the annual average ranging between -4.0 and -2.5. Again we see the

U-shaped pattern over time. After 2009, a handful of large installers see greatly increas-

ing installed bases, decreasing the consumer elasticity and leading to more market power.
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One thing that is notable in both graphs is the increased variation in these elasticities over

time, which is indicative of increasing asymmetry in market power between large and

small firms.

We can demonstrate this in a bin-scatter plot of the optimal static markup for the four

quantile ranges of an installer’s own installed base (Figure 8). Although in general the

estimated static markups decline over time, the largest quantile of firms see their markups

actually increase after 2009. We see the same pattern when we split firms by quantiles

within each county. These results demonstrate the need to control for the changing market

power of firms in assessing LBD. Time fixed effects can capture changing markups only

when they change for all installers by the same amount, but this does not appear to be the

case in our setting. The asymmetry in the trends, and specifically the increase in markups

for the largest firms, helps to explain the discrepancy in the BOS trends in the raw data,

which show BOS declining for the smaller firms over time but increasing for the largest

firms.

To test to see whether unobserved, within-market heterogeneity needs to be accounted

for, in Appendix A, we allow for an evolving distribution of heterogeneity as high type

consumers adopt early and leave the market. Results are shown in Table A.1. We find that

the results are largely unaffected by the inclusions of this added heterogeneity, largely

because only a small fraction of potential adopters have adopted by the end of our panel.

We find that installers that move farther down the learning curve continue to price

as if they had not. Investor reports for SolarCity confirm this story. For example, a 2013

SolarCity Investor presentation discusses the value creation due to the fact that they out-

paced their cost reduction targets and experienced a reduction in labor hours for instal-

lations, in conjunction with the expanding size of the market. Profits increased between

2012 and 2013 from $27.5 to $39.4 million (21.6% of revenues to 24.0% of revenues).
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7.2 Supply-Side Estimates

We estimate the supply-side pricing decision using equation (36) and show the results

in Table 7. We cluster standard errors at the county level. We also include county and

installer fixed effects, and thus inference results from within-installer and within-county

variation over time. We begin in columns 1-3 with no controls for either the static markup

or dynamic pricing incentives. In columns 4-6, we include the static markup control, and

in columns 7-9, we include the controls for dynamic pricing. In each set of specifications,

we start with a quadratic model, including the rebate amount and statewide installations

as regressors. We then replace the rebate amount with utility x quarter fixed effects, and

finally add the installed base interaction terms, which are necessary if learning from one

installed base is a substitute or complement for learning through another. The quadratic

specification with interactions allows for the learning based on the installed base to occur

in a highly flexible manner.

Without controlling for the changing static markup, we see no effect of the installed

base variables on non-hardware costs (columns 1-3), with the exception of a positive

quadratic term for own installations within the county and an increasing effect of statewide

installations on costs reductions. In the column (1) results, we also find that higher rebates

lead to higher demand, as expected. The statewide installed base effect and rebate effect

cannot be identified with the inclusion of utility-quarter fixed effects in columns (2) and

(3).

When the effect of installed base on on markups is accounted for in columns 4-6, we

find evidence supportive of county-level, appropriable LBD. Looking at the column (5)

results, with no installations we find that for every 1000 installations the installer per-

forms in the county, costs decline by $0.95 per Watt. This marginal effect declines as in-

stalled base increases. Accounting for the quadratic term, we for every 1000 installations

the installer performs in the county, costs decline on average by $0.40-$0.44 per Watt.

We find similar average effects when we allow for installed base interactions in column

(6). There is notably a significant, negative interaction effect between own-installations
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in the county and competitor installations within the county, indicating that firms with

more own-experience are also affected more by learning spillovers. The significant pos-

itive effects between own installations inside and outside the county indicate that these

installations serve as substitutes in their contribution to LBD. The combined effect of the

four terms that include own installations within the county (installer installed base, in-

staller installed base squared, the interaction between installer and competitor installa-

tions within the county, and the interaction between the installers installations within

and outside the county) is significant at 5% (using an F-test of joint significance). The

combined effect of the three terms that include own installations outside the county is

also significant at 5%.

Focusing on the effect of competitor installations within the county, we find that the

total effect of the three terms (competitor installations within the county, competitor in-

stallations within the county squared, and the interaction with the installer’s own instal-

lations) is significant at 10%. Thus we find evidence for learning spillovers, albeit fairly

weak evidence given the small magnitude of the effect. The joint significant of all the in-

stalled base coefficients is also significant at 5%. The results are largely unaffected when

accounting for the dynamic pricing incentives in columns 7-9. The fact that the dynamic

pricing incentive does not substantially alter the estimates of appropriable LBD is not sur-

prising. We find that the dynamic pricing incentive leads to maximum price changes of

less than three cents per Watt, (i.e. less than $150 for a typical installation); this is likely

because we find that appropriable LBD is small.

To get a better sense of the magnitudes of learning, we plot the estimated installed base

effects for the observations in the data over time in Figure 9, for the six specifications that

include the utility x quarter fixed effects. The solid lines indicate the average learning

over time and the dotted lines indicate the 95th percent interval of learning across all

observations in the data (using the point estimates). Without accounting for the dynamic

markup, the total learning that occurs results in a price decline of approximately $0.12/W

when using the more flexible quadratic with interactions. Thus, although we do find
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suggestive evidence of appropriable LBD, it is relatively small in magnitude, which may

not be too surprising given the modest decline in BOS.

In Figure 10, we also plot the utility x quarter fixed effects for column (9), in which

both markups are accounted for and we use the quadratic function of installed bases. As

discussed, LBD that happens at the utility, state, or national level cannot be separately

identified from other secular trends (other than with functional form assumptions). The

PG&E fixed effects decline over time, whereas the SDG&E and SCE trends increase and

then decrease, peaking in 2006 for SDG&E and 2009 for SCE. Much of the increase in 2007

can be explained by high silicon prices. It is possible that the overall decline in PG&E

may be due to utility-level LBD–we cannot rule this out–but it is just as plausible that

these effects would have occurred without the CSI policy.

In all the specifications when accounting for dynamic pricing incentives, we find sig-

nificant local economies of scale, which are often confounded with LBD. Indeed the main

effect of accounting for dynamics was the fact that these effects were insignificant without

the dynamic pricing term. We estimate that a 20% increase in ongoing installations in the

county leads to a non-hardware cost decline of one cent per watt. However, the economic

benefits that result these economies scale should be internalized by the installer through

its pricing decisions, and thus they also do not justify the large incentives on economy

efficiency grounds. However, they do lead to larger environmental benefits that result

from the CSI incentives than those that would have accrues without economies of scale.

7.3 Robustness Checks

To test the robustness of our findings, we re-estimate the model assuming no depreciation

in installed bases over time. Demand estimates under this assumption are in Appendix

C, in Table C.2 and the supply-side estimates in Table C.3. We also estimate the model

in which installed base effects only occur through their interaction with the roofing wage

rates, which assumes all learning is in labor costs. These results are in Table C.4. Finally,

we estimate the model under the alternative assumptions that learning does not transfer
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with firm acquisition and that there is no learning depreciation (Table C.5).

Under all alternatives, we find evidence of small LBD, which reduces installation costs

from between $0.10 and $0.20 per Watt when accounting for the static markup or both

markups. As with our main results, it is critical to account for the changing static markup

over time, otherwise an incorrect conclusion of no LBD would be reached. Accounting

for the dynamic pricing incentive changes the magnitude of the estimates but not the

qualitative conclusions.

7.4 Welfare effects of the CSI

We run a simple counterfactual scenario in which we remove the CSI incentives, assum-

ing 100% pass-through, consistent with the findings in Pless and Benthem (2018). We

find that removing the CSI leads to reductions in the number of installations of 22% in

2007, increasing to 28% in 2012, as shown in Figure 11. This is due to the effect not only

on price, but on the local installed bases which affect consumer utility for solar.15 The

installed base at the end of 2012 is reduced from 110 thousand installations to 84.7 thou-

sand installations, a drop of 23%. The increased consumer surplus as a result of the CSI

is calculated to be $491 million, in comparison to the costs of $3.3 billion.

We also calculate the avoided environmental external costs, using county-level esti-

mates of averted environmental damages in California, which we construct using the

population-weighted zip code values calculated by Sexton, Kirkpatrick, Harris, and Muller

(2018). The environmental benefits of new installations are plotted in Figure 12. The NPV

of these averted damages (assuming similar adoptions rates under both regimes after

2012 once the subsidies disappear, which is approximately the case in years 2011 and

2012)) is $875 million using an annual discount rate of 13% which we used for the in-

stallers, based on the findings of De Groote and Verboven (2016). With a 5% discount

rate, the NPV of the averted damages is $2.29 billion. Part of the reason the averted dam-

ages are not higher is that CA has a relatively clean energy mix, in comparison to other

15We assume invariance of the policy function that determines pre-incentive prices to this counterfactual
environment, which we would expect to approximately hold with full pass through.
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regions of the United States where the averted damages would be higher.

Even with the low level of discounting, the combined welfare benefits from the in-

crease in consumer surplus and the avoided environmental damages are lower than the

costs of the CSI program. If the LBD spillovers were larger, then the cost of the CSI

would be better justified. Further, if the time fixed effects that we estimate are due to

non-localized learning (i.e. learning at the state level) which would not have occurred in

the absence of the CSI, then this would lead to greater estimates of both the consumer

surplus and environmental benefits.

There may also be longer-run altruistic motivations. For example, Gerarden (2018)

argues that from a global perspective, subsidies in individual regions can help foster in-

novation in panel manufacturing. Our analysis focuses on localized learning, as this was

a major motivation for the CSI, but does not examine such broader innovation effects.

However, our quantification of learning spillovers in the solar market is important for

informing policymakers about the full effects of technology-oriented policies.

8 Conclusions

This paper develops a model of solar PV installer pricing to examine evidence for both

appropriable LBD and non-appropriable LBD in the California solar PV market. We lever-

age a rich dataset of solar installations in California from 2002 to 2012 and develop a

model of both dynamic supply and demand for solar installations in the California small-

scale solar market. Our approach accounts for changing market power, economies of

scale, capacity constraints, and firm dynamic pricing incentives. Disentangling these fac-

tors is particularly important in our setting for estimating localized learning in the non-

hardware costs of a solar installation, which are combined with the markup in our data.

The results of our dynamic model of demand indicate that the markup is declining

over time as the market has grown, but not for the largest installers. This is important for

it immediately helps to explain why it appears that the BOS has not been declining much

over time despite a decline in overall installed prices. It thus follows intuitively that our

37



supply model provides evidence of LBD, albeit small LBD. The overall LBD we find is

about $0.12 per watt (out of an average BOS of about $2.50 per watt). Following standard

learning curves, our results suggest greater learning in the beginning of our time period

and lesser learning later in the time period. Our results also provide evidence of learning

spillovers from competitors to an individual firm. Perhaps the most interesting spillover

coefficient suggests that firms with the largest cumulative number of installations showed

even greater cost declines with competitor experience, suggesting that larger firms are

better able to appropriate some of the learning from their competitors. This may occur

from factors such as hiring of employees from competitors or watching how competitors

install systems.

However, by running an illustrative counterfactual, we find that the CSI is very likely

to be reducing short-run economic efficiency, even after accounting for the positive ex-

ternality from the learning spillovers and environmental externalities. However, without

learning, the finding would be even more stark and it would be extremely difficult to

justify the CSI on economic efficiency grounds.
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Table 2: Installation price and size, residential

Variable Mean Std. Dev. Min. Max.

size 5.559 3.808 0.6 98.88
price 7.237 1.798 1.24 11.996
hard costs (2012$ per W) 4.699 1.585 0.379 11.987

N 75,653

Table 3: Installation price and size, non-residential

Variable Mean Std. Dev. Min. Max.

size 20.23 18.16 1.17 99.75
price 7.37 1.904 1.82 11.985
hard costs (2012$ per W) 4.855 1.674 0.373 10.617

N 2,396

Table 4: Installations by contractor

Variable Mean Std. Dev. Min. Max.

Contractor number of installations 26.144 162.963 1 4664
Contractor MW of installations 0.164 0.969 0.001 28.219
Contractor number of counties 2.37 3.508 1 53

N 3,017
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Table 5: Demand Data Summary Statistics

Variable Mean Std. Dev. N

log odds ratio -7.493 1.539 32162
log within-group share -3.848 1.515 32167
price ($/W) 5.805 1.45 31716
contractor installed base in county 0.018 0.062 32167
contractor installed base outside county 0.331 0.975 32167
house value ($1000K) 462.508 219.709 31964
electricity rate ($/kWh) 0.151 0.009 32167
average monthly radiation 5.292 1.938 32167

Table 6: Demand Results with Depreciation

(1) (2) (3) (4) (5)
OLS static IV static OLS dynamic IV dynamic I IV dynamic II

price/W ($/W) -0.013*** -5.288* -0.010*** -0.280*** -0.233***
(0.003) (2.864) (0.003) (0.076) (0.017)

log within-group share 0.733*** 1.102*** 0.894*** 0.910*** 0.719***
(0.021) (0.217) (0.012) (0.015) (0.045)

contractor installed base in county 1.339*** 4.112 0.309*** 0.400*** 0.743***
(0.292) (2.687) (0.085) (0.152) (0.109)

contractor installed base outside county 0.053*** -1.021+ 0.003 -0.035*** 0.002
(0.012) (0.608) (0.006) (0.013) (0.008)

electricity rate ($/kWh) -10.666 84.456 2.680 5.871 7.352**
(7.885) (82.690) (7.932) (8.338) (2.919)

average monthly radiation 0.038*** -0.122 0.029*** 0.032*** 0.030***
(0.010) (0.086) (0.007) (0.006) (0.004)

contractor fixed effects Y Y Y Y Y
county fixed effects Y Y Y Y Y
R-squared 0.743 0.008 0.934 0.787 0.777
N 24081 24081 24081 24081 24062

Notes: Robust standard errors clustered on county and installer in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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Figure 1: The California Solar Initiative incentive steps.

Figure 2: Average requested installations per month
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Figure 3: CA solar prices over time
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Figure 4: BOS all vs. owned systems
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Figure 5: Distribution of firms by firm size
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Figure 6: Balance-of-System (BOS) over time by installation size
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Figure 7: Demand Elasticity over Time

(a) Solar (group) demand elasticity

(b) Installer demand elasticity
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Figure 8: Optimal Static Markup over Time, By Installer Size
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Figure 9: Estimated Non-Hardware Costs over Time
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Figure 10: Quarter Fixed Effects
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Figure 11: Cumulative Installations with vs. without CSI
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Figure 12: Quarterly Environmental Benefits of New Installations due to CSI
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Appendix A: Demand Model with Evolving Heterogeneity

Distribution

Let demand now be given by:

uijt = µmjt + ηi + εuigt(σ) + (1− σ)ǫuijt,

in which ηi leads to within-market individual or segment level heterogeneity in utility

for solar (recall there are also market-installer fixed effects in µmjt that shift the entire

distribution for the market). We define sijt and sijt as the probability of choice j and 0,

respectively, for consumer (or consumer type) i. We assume that the heterogeneity in

utility for solar is not firm specific, and thus the ηi drives heterogeneous substitution to

the outside good.

We can write the log odds equation for any consumer in the dynamic model as:

log sijt − log si0t = ∆vijt + ηi, (40)

where similar to before, we define:

∆vijt ≡ v(xmt, jt)− v(xmt, 0) = µmjt − βE [µm1t+1] + βE [ψ(pit+1(xmt+1))] (41)

The only difference than in the homogenous case is that the next period purchase proba-

bilities are individual-specific.

Aggregating, we have that:

∑

i∈Mm

wit (log sijt − log si0t) = ∆vmjt +
∑

i∈Mm

wiηi.

where the probability of consumer type i, i.e. the share of type i, is wit at time t. If the

initial distribution of ηi is symmetric and centered at zero, we have that
∑

i∈Mm
wi0ηi = 0.

Now we do not observe sijt and sijt for every consumer – instead we observe the
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aggregated market share for the market. However, we know that:

∑

i∈Mm

sijtwit = smjt

∑

i∈Mm

si0twit = sm0t

sij/It = smj/It ∀i ∈Mm (42)

Note that the observed within-group share for each installer j conditional on observing

is the same for all consumers, since the heterogeneity scales utility for all installers by

exp(ηi).

The distribution of consumer types, represented by the wit, does evolve over time. As

installations occur in the market, those consumers with larger ηi are more likely to install

earlier, leaving more consumers with lower ηi. Because of this, we need to account for the

change in substitution to the outside good over time.

Let us consider a simple two-segment market with ηH = ηl and ηL = −ηl such that the

probability of the high type is wmt. We can aggregate across segments to get the combined

market shares:

smHjtwmt + smLjt(1− wt) = smjt, (43)

for each installer j. The log-odds equation for each segment is:

log smljt − log sml0t = ∆vmljt + σ log(smj/It) + ηl,

for l = L,H . We can subtract of the low segment from the high segment to get:

(log smHjt − log smH0t)− (log smLjt − log smL0t) = 2η, (44)
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We also know of course that:

∑

j

smHjt = 1− smH0t

∑

j

smLjt = 1− smL0t (45)

(46)

Across (43), (44), and (45), we have 2j+2 equations with 2j+2 unknowns for each market

m, if we know η. We first solve for the market shares of each type of consumer (H and L)

in the first period, given the starting probability distribution determined by wm0. Given

the share of installations that we observe, we can calculate the share that comes from each

type in expectation, and then we update wmt = w0 for the next period, repeating for all

periods.

This approach allows us to control for the evolution of market heterogeneity. After

each period, the share of remaining non-adopters of the high type will decline, while the

share of low types will increase (relative to the new market size of non-adopters). We test

whether this evolution of consumer types over time matters for our estimation by using

different combinations of w0 and η. Results are shown in Table A.1.

We expect that the largest differences from the model assuming a representative con-

sumer (for each market) will be situations in which the share of high types is low to begin

with, because the number of high types becomes exhausted over the course off the panel,

resulting in only fewer high types remaining. We find that even for the case in which het-

erogeneity is large (eta = 1) and the share of low types is initially low (1%), the results are

not significantly different than those when assuming a representative consumer. This is

likely due to the fact that solar adoption is fairly low still in 2012 relative to the potential

market size, and thus the distribution of types within markets does not change enough

to alter the results, given the extensive market, time, and installer fixed effects we also

include.

We would expect our results to possibly differ the most in the last specification, in
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Table A.1: Demand Results with Evolving Heterogeneity
(1) (2) (3) (4) (5) (6)

wm0 0.5 0.1 0.01 0.5 0.1 0.01
η 0.5 0.5 0.5 1.0 1.0 1.0

price/W ($) -0.234*** -0.237*** -0.237*** -0.225*** -0.234*** -0.241***
(0.045) (0.045) (0.045) (0.044) (0.045) (0.046)

log within-group share 0.717*** 0.714*** 0.715*** 0.727*** 0.715*** 0.709***
(0.075) (0.075) (0.075) (0.074) (0.076) (0.075)

contractor installed base in county 0.747** 0.758*** 0.755*** 0.716** 0.752** 0.774***
(0.227) (0.230) (0.228) (0.222) (0.229) (0.230)

contractor installed base outside county 0.003 0.003 0.002 0.002 0.003 0.003
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

electricity rate ($/kWh) 7.373 7.429 7.429 7.164 7.331 7.463
(7.080) (7.107) (7.064) (7.069) (7.163) (7.039)

average monthly radiation 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

contractor fixed effects Y Y Y Y Y Y
county fixed effects Y Y Y Y Y Y
R-squared 0.776 0.771 0.772 0.790 0.774 0.764
N 24062 24062 24062 24062 24062 24062

Notes: Robust standard errors clustered on county and installer in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level

which there is only a small segment of consumers who have much higher utility for solar,

and it is these consumers that are adopting early, such that a much smaller proportion

of high types remain by the end of the panel. However, across all specification, we find

that the results are very similar to the results when assuming homogenous consumers.

The time fixed effects presumably are sufficient to capture much of the effect of declining

average utility for solar as the ”low-hanging fruit” are picked. Another reason we see a

negligible effect from adding the within-market heterogeneity is that the market sizes are

still much bigger than the installed bases within the county by the end of the panel, and

thus there are still enough high types remaining.
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Appendix B: Dynamic Model Estimation Details

State transitions

Table B.1: State Transitions

(1) (2) (3) (4)
log labor rate county new installs log cost per W log average size

lagged DV 0.7217*** 0.7733*** 0.9019*** 0.0805***
(0.0098) (0.0124) 0.0040 (0.0079)

log average size -0.0234***
(0.0030)

county fixed effects Y Y N N
contractor X county FE N N Y Y
R-squared 0.9090 0.8010 0.8933 0.4556
N 1,579 2,155 17,685 17,685
S.E. of residuals 0.0021 0.0636 0.0577 .01631

Notes: Robust standard errors clustered on county and installer in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level

Policy function

The policy function regression is a flexible quadratic including all interactions between

lag price, the three installed base variables, installer ongoing contracts (both in the county

and outside), rebate levels, and labor costs. The R squared of the policy function regres-

sion is 0.7513 and the standard deviation of the residuals of policy function regression

is 0.1313. We include time fixed effects in this regression to ensure that we do not over

parametrize it. In the forward simulations, for periods not yet observed we use predicted

values of the fixed effects, calculated from regressing the time fixed effects on the previous

period fixed effect.

To get a sense of firms’ strategy functions, we plot the price policy as a function of

time and own-county installed base for the observations in the data in Figure B.1. We also

show how the price changes if the own-installed base in the county were to be increased

by one, which has direct implications for the current-period incentive to lower price in

order to increase the installed base.
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Figure B.1: Pricing policy function
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(b) Price as a function of own county installations
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(c) Change in price with extra own county installa-
tion as a function of time
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(d) Change in price with extra own county instal-
lation as a function of own county installations

Optimal prices of course go down over time, and they also go down with own county

installed base in the data, but of course this can simply be reflecting the fact that installed

bases increase with time. With an increase in own county installed base, the optimal

price increases, especially in the earlier period of the data, which can reflect both the fact

that consumers are more willing to pay for installations by that installer and also that the

dynamic pricing incentive has declined now that the firm is farther down the learning

curve (assuming convexity of the learning curve). When we graph this price difference

as a function of own county installed base, we see that at larger installed bases the price

premium actually increases more in the data.
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Appendix C: Additional Results

Table C.1: First Stage Demand Model

price ($/W) log within-group share

contractor installed base in county 0.854*** 2.020***
(0.200) (0.141)

contractor installed base outside county -0.057*** 0.070***
(0.016) (0.011)

electricity rate ($/kWh) 22.967*** 2.914
(8.013) (5.642)

average monthly radiation 0.037*** -0.010
(0.010) (0.006)

rebate ($/W) 0.345*** 0.076
(0.084) (.059)

installer installations finished outside county -0.883*** 0.650***
(0.102) (0.072)

competitor installations finished outside county -0.162*** -0.053***
(0.011) (0.008)

contractor X county fixed effects Y Y
F-statistic 54.51 37.82
R-squared 0.0300 0.600
N 24062 24062

Notes: Robust standard errors clustered on county and installer in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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Table C.2: Demand Results with No Depreciation

(1) (2) (3) (4) (5)
OLS static IV static OLS dynamic IV dynamic I IV dynamic II

price ($/W) -0.011*** -6.292* -0.015*** -0.254*** -0.222***
(0.003) (3.610) (0.003) (0.092) (0.045)

log within-group share 0.737*** 1.155*** 0.894*** 0.911*** 0.568***
(0.017) (0.259) (0.013) (0.018) (0.059)

contractor installed base in county 1.275*** 4.247 0.354*** 0.414*** 0.839***
(0.259) (2.827) (0.094) (0.119) (0.165)

contractor installed base outside county 0.026* -1.139 0.009 -0.022 0.018
(0.012) (0.698) (0.006) (0.014) (0.013)

electricity rate ($/kWh) -14.095 91.569 1.620 3.750 10.120*
(10.212) (109.348) (5.637) (7.383) (5.556)

average monthly radiation -0.010 -0.217* 0.023** 0.026*** 0.016**
(0.011) (0.116) (0.009) (0.008) (0.007)

contractor fixed effects Y Y Y Y Y
county fixed effects Y Y Y Y Y
R-squared 0.673 0.004 0.914 0.793 0.701
N 23999 23999 23999 23999 23980

Notes: Robust standard errors clustered on county and installer in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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Table C.3: Learning Estimate Robustness Checks: Depreciation of Installed Bases

(1) (2) (3) (4) (5) (6)
With Static Markup With Both Markups

installer installed base within county (1000s) -0.714** -0.676** -0.630** -0.711** -0.673** -0.626**
(0.291) (0.294) (0.282) (0.292) (0.295) (0.284)

installer installed base within county squared 0.773*** 0.777*** 0.987*** 0.770*** 0.773*** 0.984***
(0.266) (0.261) (0.233) (0.268) (0.263) (0.233)

installer installed base outside county (1000s) 0.029 0.026 -0.001 0.029 0.026 -0.001
(0.039) (0.040) (0.043) (0.039) (0.040) (0.043)

installer installed base outside county squared -0.006 -0.003 -0.006 -0.006 -0.003 -0.006
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

competitor installed base within county (1000s) 0.020 -0.026 -0.020 0.020 -0.026 -0.020
(0.027) (0.022) (0.024) (0.027) (0.022) (0.024)

competitor installed base within county squared -0.003 0.001 0.001 -0.003 0.001 0.001
(0.002) (0.001) (0.001) (0.002) (0.001) (0.001)

installer installed base inside X outside county 0.169** 0.169**
(0.074) (0.075)

installer X competitor installed base inside county -0.070*** -0.071***
(0.026) (0.026)

installed base (1000s) 0.017*** 0.017***
(0.004) (0.004)

roofing wage rate ($10,000) 0.063 0.018 0.014 0.063 0.018 0.014
(0.047) (0.041) (0.040) (0.047) (0.041) (0.040)

non-residential -0.062 0.001 -0.001 -0.063 0.001 -0.001
(0.067) (0.063) (0.063) (0.068) (0.063) (0.063)

third-party owned -0.184*** -0.182*** -0.173*** -0.184*** -0.182*** -0.173***
(0.027) (0.025) (0.025) (0.027) (0.025) (0.025)

size (kW) -0.012*** -0.011*** -0.011*** -0.012*** -0.011*** -0.011***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

installer ongoing installations (1000s) -0.042** -0.048*** -0.048*** -0.042** -0.048*** -0.048***
(0.018) (0.017) (0.017) (0.018) (0.017) (0.017)

installer ongoing installations in county (1000s) -0.046*** -0.045*** -0.045*** -0.046*** -0.045*** -0.045***
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

rebate ($/W) 0.220*** 0.220***
(0.041) (0.041)

County FEs Y Y Y Y Y Y
Installer FEs Y Y Y Y Y Y
Quarter X Utility FE N Y Y N Y Y
R-squared 0.562 0.568 0.569 0.562 0.568 0.569
N 71728 71728 71728 71727 71727 71727

Notes: Robust standard errors clustered on county in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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Table C.4: Learning Estimate Robustness Checks: Interactions with Wage Rate

(1) (2) (3) (4) (5) (6)
With Static Markup With Both Markups

installer installed base within county (1000s) -0.247** -0.237** -0.171** -0.247** -0.237** -0.171**
(0.101) (0.099) (0.084) (0.100) (0.099) (0.084)

installer installed base within county squared 0.256* 0.256** 0.294*** 0.256* 0.256** 0.294***
(0.128) (0.122) (0.107) (0.128) (0.122) (0.107)

installer installed base outside county (1000s) 0.008 0.004 -0.011 0.008 0.004 -0.011
(0.014) (0.015) (0.015) (0.014) (0.015) (0.015)

installer installed base outside county squared -0.003 -0.000 -0.004 -0.003 -0.000 -0.004
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

competitor installed base within county (1000s) 0.007 -0.007 -0.003 0.007 -0.007 -0.003
(0.012) (0.010) (0.010) (0.012) (0.010) (0.010)

competitor installed base within county squared -0.002 0.000 0.001 -0.002 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

installer installed base inside X outside county 0.163*** 0.163***
(0.052) (0.052)

installer X competitor installed base inside county -0.080** -0.080**
(0.038) (0.038)

installed base (1000s) 0.036*** 0.036***
(0.009) (0.009)

roofing wage rate ($10,000) 0.071* 0.039 0.034 0.071* 0.039 0.034
(0.042) (0.033) (0.034) (0.042) (0.033) (0.034)

non-residential 0.030 0.099* 0.095 0.030 0.099* 0.095
(0.063) (0.058) (0.057) (0.063) (0.058) (0.057)

third-party owned -0.164*** -0.160*** -0.149*** -0.164*** -0.160*** -0.149***
(0.026) (0.025) (0.025) (0.026) (0.025) (0.025)

size (kW) -0.256*** -0.259*** -0.259*** -0.256*** -0.260*** -0.260***
(0.015) (0.015) (0.014) (0.015) (0.015) (0.014)

installer ongoing installations (1000s) -0.032** -0.042*** -0.040*** -0.032** -0.042*** -0.040***
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

installer ongoing installations in county (1000s) -0.016 -0.015 -0.018 -0.016 -0.015 -0.018
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

rebate ($/W) 0.248*** 0.248***
(0.050) (0.050)

County FEs Y Y Y Y Y Y
Installer FEs Y Y Y Y Y Y
Quarter X Utility FE N Y Y N Y Y
R-squared 0.573 0.579 0.580 0.573 0.579 0.580
N 76846 76846 76846 76837 76837 76837

Notes: Robust standard errors clustered on county in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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Table C.5: Learning Estimate Robustness Checks: No Learning Transfer with Acquisition

(1) (2) (3) (4) (5) (6)
With Static Markup With Both Markups

installer installed base within county (1000s) -0.987** -0.887* -0.710* -0.986** -0.886* -0.707*
(0.447) (0.449) (0.392) (0.447) (0.448) (0.391)

installer installed base within county squared 1.100* 1.037* 1.293*** 1.103* 1.039* 1.288***
(0.580) (0.562) (0.466) (0.579) (0.562) (0.465)

installer installed base outside county (1000s) 0.012 0.012 -0.042 0.012 0.011 -0.042
(0.065) (0.069) (0.073) (0.065) (0.069) (0.073)

installer installed base outside county squared -0.007 0.000 -0.015 -0.007 0.000 -0.015
(0.016) (0.017) (0.016) (0.016) (0.017) (0.016)

competitor installed base within county (1000s) 0.030 -0.027 -0.014 0.030 -0.027 -0.014
(0.041) (0.043) (0.045) (0.041) (0.043) (0.045)

competitor installed base within county squared -0.007 0.002 0.003 -0.007 0.002 0.003
(0.005) (0.003) (0.004) (0.005) (0.003) (0.004)

installer installed base inside X outside county 0.631*** 0.628***
(0.201) (0.200)

installer X competitor installed base inside county -0.301** -0.299**
(0.117) (0.117)

installed base (1000s) 0.037*** 0.037***
(0.009) (0.009)

roofing wage rate ($10,000) 0.079* 0.022 0.017 0.078* 0.022 0.017
(0.046) (0.038) (0.038) (0.046) (0.038) (0.039)

non-residential 0.037 0.099* 0.095 0.037 0.099* 0.095
(0.063) (0.059) (0.059) (0.063) (0.059) (0.059)

third-party owned -0.168*** -0.161*** -0.150*** -0.168*** -0.161*** -0.150***
(0.026) (0.026) (0.026) (0.026) (0.026) (0.026)

size (kW) -0.252*** -0.255*** -0.255*** -0.252*** -0.255*** -0.255***
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

installer ongoing installations (1000s) -0.042** -0.050*** -0.048** -0.042** -0.050*** -0.048**
(0.018) (0.017) (0.018) (0.018) (0.017) (0.018)

installer ongoing installations in county (1000s) -0.025** -0.024** -0.026** -0.025** -0.024** -0.026**
(0.011) (0.011) (0.010) (0.011) (0.011) (0.010)

rebate ($/W) 0.220*** 0.220***
(0.044) (0.044)

County FEs Y Y Y Y Y Y
Installer FEs Y Y Y Y Y Y
Quarter X Utility FE N Y Y N Y Y
R-squared 0.570 0.576 0.577 0.570 0.576 0.577
N 72654 72654 72654 72654 72654 72654

Notes: Robust standard errors clustered on county in parentheses.
*** indicates significant at the 1% level, ** at the 5% level, * at the 10% level
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