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Do Auctioneers Pick Optimal Reserve Prices?

Andrew M. Davis, Elena Katok, Anthony M. Kwasnica

Smeal College of Business, Pennsylvania State University, University Park, Pennsylvania 16802
{adavis@psu.edu, ekatok@psu.edu, kwasnica@psu.edu}

We investigate how auctioneers set reserve prices in auctions. A well-established theoretical result, assum-
ing risk neutrality of the seller, is that the optimal reserve price should not depend on the number of
participating bidders. In a set of controlled laboratory experiments, we find that seller behavior often deviates
from the theoretical benchmarks. We extend the existing theory to explore three alternative explanations for
our results: risk aversion, anticipated regret, and probability weighting. After fitting our data to each of these
models through parameter estimation techniques on both an aggregate and individual level, we find that all
three models are consistent with some of the characteristics of our data, but that the regret model provides a

slightly more favorable fit overall.
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1. Introduction

What about the sellers? Although there has been
extensive effort devoted toward understanding
whether buyers (bidders) in auctions approximate the
predictions of the positive theory of auction bidding,
little effort has been devoted toward understand-
ing whether sellers (bid takers) follow the norma-
tive prescriptions for good auction design. In almost
all instances of experimental observation of auction
behavior, the role of the seller is played by the exper-
imenter and the rules of the auction are predeter-
mined. This is despite the fact that there are many
well-known instances in which observed seller behav-
ior appears to run contrary to normative theoretical
prescriptions. For example, consider the case of secret
reservation prices, the use of which cannot be justified
by standard theoretical results. In spite of mounting
evidence that secret reserve prices are detrimental to
sellers (Katkar and Reiley 2005), Anwar et al. (2006)
report that over 6% of eBay auctions in their large-
scale study used secret reserves.

Mechanism design, specifically optimal auction
design, provides strong recommendations about how
a seller, who is interested in maximizing her expected
profits, should conduct an auction. In seminal papers,
Myerson (1981) and Riley and Samuelson (1981) char-
acterize the optimal design of auctions. In addition
to such important principles as revenue equivalence,
both papers observe that, in general, an expected
revenue maximizing seller should set a nonnegligible
reserve price, one that exceeds her own value for the
object, whenever the bidders have independent pri-
vate values (IPV). An important implication of this

177

result is that the auction that maximizes the expected
revenue for the seller will sometimes be inefficient,
meaning that the object will occasionally not be sold
despite the potential for mutually beneficial trade.
Remarkably, whenever there are IPVs, this optimal
reserve price should not depend upon the number of
bidders at the auction.

Whereas the optimal reserve does not depend upon
the number of bidders, the number of bidders does
impact the importance of the reserve price decision.
When there is a large number of bidders, the reserve
price is not likely to matter; therefore, the seller’s
choice of a reserve price has a vanishingly small
impact on his or her actual expected revenue from
the auction. On the other hand, when the number of
bidders is small, the selection of an optimal reserve
price can be critical to obtaining substantial revenue.
For example, if there is only one bidder, it is the
reserve price that determines the sale price at the auc-
tion. Given that many auctions are conducted with
very few real bidders (Anwar et al. 2006 report that
about 17% of eBay auctions in their sample did not
attract any bids), the selection of a suboptimal reserve
price can mean substantial foregone revenue.

The objective of this study is to better understand
how human sellers set reserve prices in auctions.
Specifically, we wish to compare the behavior of sellers
in our laboratory experiment to normative theoreti-
cal benchmarks. In practice, there are many reasons
why a seller may select seemingly suboptimal reserve
prices. For example, if, as has been thoroughly doc-
umented in the literature, bidders are not following
the predictions of game theory, then the seller’s best
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reply may be to respond with a reserve price that
is different from what the standard theory suggests
(see Crawford et al. 2009). In addition, the real-world
auction environment may involve a number of com-
plications that are not a part of the standard model.
For example, competition between sellers can result in
efficient (lowered) reserve prices (McAfee 1993), and
nonindependent (affiliated) values can make it opti-
mal for the seller’s reserve price to converge to their
personal valuation as more bidders arrive (Levin and
Smith 1996). Because it is nearly impossible to disen-
tangle all of these competing reasons for reserve prices
that do not match predictions of the standard the-
ory in practice, we turn to the laboratory for a more
controlled examination. By conducting auctions in the
laboratory with well-defined value distributions, pay-
offs, and rules, we create an environment that mimics
the model presented in the standard theory as closely
as possible. Furthermore, by using simulated bidders
who are programmed to follow the game theoretic
predictions of risk-neutral bidders, we can eliminate
any strategic complications caused by the interaction
between a human seller and human bidders. Specifi-
cally, we conducted second-price sealed bid auctions
(described to the seller as English auctions) with sim-
ulated bidders, and systematically varied the number
of bidders, the identical value distributions of the bid-
ders, and the information provided to the sellers.

Whereas a majority of the experimental auction
literature focuses on buyers (see Kagel 1995 for a
comprehensive survey of laboratory auction research),
our research centers on the seller’s perspective. There
have only been a select few works that investigate
research similar to this. Greenleaf (2004) considers
regret and rejoicing in English auctions with secret
reserve prices and finds evidence that this behavioral
model influences how reserve prices are set. Chen
et al. (2005) consider the effect of ambiguity on reserve
prices with a fixed number of bidders and varying
auction formats. Our work extends and contributes
to the literature in two ways. First, we systematically
examine how sellers set reservation prices in the labo-
ratory when faced with a different number of bidders
and different distributions of bidder values. Second,
we develop new theory that organizes our data better
than the standard theory does.

Our laboratory results are twofold: We find evidence
that, qualitatively, the data matches certain aspects of
the standard theory well. Importantly, when a value
distribution dictates lower optimal reservation prices,
we observe significantly lower average reservation
prices in our experiment. Other features of our data,
however, are inconsistent with standard theoretical
benchmarks. First, overall reservation prices tend to
be lower than risk-neutral optimal. Although this fea-
ture can be potentially explained by risk aversion, we

also find that reservation prices increase with the num-
ber of bidders, to the extent that for a large number
of bidders, average reservation prices are (contrary
to what should be observed with risk-averse sellers)
above risk-neutral optimal levels. Moreover, although
we find a substantial amount of individual hetero-
geneity in behavior, we observe the above regularities
on both an aggregate and individual level.

We proceed to explore several models of seller
behavior that might rationalize the experimental data
we observe. We consider the impact of risk aversion,
anticipated regret, and probability weighting, on how
sellers set reservation prices, and find that on an aggre-
gate and individual level, all three models explain
some characteristics of our data, but that the antici-
pated regret model appears to be favored overall.

In the following section we provide an overview
of our experimental design and theoretical bench-
marks. In §3, we provide a summary of the results of
our experiment. In §4, we investigate two alternative
models and, in §5, we conclude with a final summary
and future research.

2. Experimental Design

We begin by providing a brief background of the
reserve price benchmarks for risk-neutral and risk-
averse sellers. We then follow this with a summary of
our experimental procedure and implementation.

2.1. Risk-Neutral Benchmarks
We investigate the following auction setting. There are
n bidders with values v, € [v, 7] drawn independently
from the identical distribution F with density given
by F' = f. We assume that ¢(v) = (1—F(v))/f(v) is
decreasing for all v or ¢(v) is concave.! Bidders place
bids (drop-out prices) to purchase a single indivis-
ible object from the seller in a second-price sealed
bid auction (English). Let b= (b;, ..., b,) be the vec-
tor of bids. It is a weakly dominant strategy for all
bidders to bid b(v;) = v; if v; > r and 0 otherwise.
The seller must determine the reserve price r in the
auction given that bidders are assumed to follow this
strategy.

The optimal reserve price under risk neutrality
(which we will refer to as the standard theory here-
after) is given by

e A=F@)
= ey

where 7, is the seller’s personal valuation for the
object (Myerson 1981, Riley and Samuelson 1981).

1)

! These assumptions are sufficient to ensure that the second-order
conditions are satisfied for an interior maximum in the standard
theory.
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In our experiment some sellers always faced bidders ~ Simplifying we obtain the following:

whose values were drawn from the cumulative distri- u(r?)y  (1—F(r)

bution given by F(v) = (v/100)!/*, which we denote = . ®)

as the Cuberoot treatment; the remaining sellers faced
bidders whose values were drawn from the cumu-
lative distribution given by F(v) = (v/100)°, which
we denote as the Cube treatment. We assume that
the personal value of the object to the seller is equal
to zero. Therefore, the optimal reserve prices under
our two distributions are given by 42 (Cuberoot) and
63 (Cube).

We chose these distributions because they provided
valuations in which the majority of values were low
(Cuberoot, mean of 25, standard deviation of 28.4)
and in which the majority of values were high (Cube,
mean of 75, standard deviation of 19.4). Furthermore,
these distributions were simple for subjects to com-
prehend, and, importantly, the expected values of
each distribution did not match the optimal reserve
price (as is the case with the uniform distribution).
To ensure that subjects understood the value distri-
bution, subjects were shown a table of 100 values
from the distribution along with a histogram show-
ing the frequencies based on 10,000 randomly gener-
ated values. See the online appendix (provided in the
e-companion) for sample instructions.

2.2. Risk-Aversion Benchmarks

Let u(x) be the Bernoulli utility function for the seller.
Assume without loss of generality that 1(0) =0. The
seller’s ex post utility from the auction is given by

u(bp) if by >r,

0 if r>bg,

where the notation x, is taken to indicate the kth
highest element (bid or value) of an n-dimensional
vector. Given (2) and the bidders’ strategy, the seller’s
expected utility for an auction with reserve price r is
given by

Eo(r) = u(r)G(r) + / u(0)h(v) do, 3)

where G(v) = n(1—F(v))F""!(v) is the probability that
one value exceeds v and all others fall below v, g(v) =
G'(v) is the associated density, and H(v) = F"(v) +
G(v) is the distribution of the second highest value
with h(v) = H'(v) the density. Then, we have the fol-
lowing necessary first-order condition:

dEo(r)
dr

u' (r)G(r) +u(r)g(r*) —u(r)h(r*)=0. (4)

2 An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.

Wy =)

Note this shows that the same basic relationship
holds for risk-averse preferences (concave u(x)) as
it does for risk neutrality. In particular, the optimal
reserve price for a risk-averse seller is also indepen-
dent of the number of bidders n. When u(x) is linear,
this condition simplifies to the well-known standard
optimal reserve price condition given in (1). Let 7} be
the optimal reserve price associated with a seller with
Bernoulli utility function u, where r* is assumed to
refer to the risk-neutral seller’s optimal reserve price.

ProrosiTiON 1. For all (strictly) risk-averse u, v < r*.

Proor. Let m(r) = u(r)/u/(r) and note that
m(0) = 0 by assumption. Also note m'(r) =1 —
(u(r)u”(r)/u'(r)*). Because we assume u to be strictly
risk averse, we know that u is strictly concave so
u’(r) <0, and it must be that m'(r) > 1. But this
obviously implies that m(r) intersects (1 — F(r))/f(r)
(and thus satisfies the necessary condition given by
(5) at a lower r than the intersection implied by (1)
or 7y < r*). This proposition follows from Waehrer
et al. (1998). O

Constant relative risk-aversion (CRRA) preferences
have been used extensively to study risk aversion
in both laboratory settings and empirical studies
(Binswanger 1980, Chen and Plott 1998, Campo et al.
2011). CRRA utility functions are given by u(x) =x'"*
where 0 < a < 1 is the measure of relative risk aver-
sion. If values are drawn from the Cuberoot distri-
bution, then the risk-averse optimal reserve price is

given by
. [271—a)®
B [W] X100, ©

and when values are drawn from the Cube distribu-
tion, then the risk-averse optimal reserve is given by

_ \1/3

In Figure 1 we plot the optimal reserve price under
the assumption of CRRA preferences for different
values of a. Note that the risk-aversion parameter
impacts the choice of an optimal reserve price in a
nonlinear fashion. Although previous studies have
shown estimates for the level of risk aversion («) to
be between 0.45 and 0.67 and to vary depending on
the setting (Cox and Oaxaca 1996, Goeree et al. 2002,
Goeree and Holt 2004), all levels of risk aversion for
which 0 < & < 1 result in optimal reserves being below
risk-neutral theoretical optimums. Additionally, in a
range of risk aversion typically observed in the lab-
oratory, a risk-averse seller’s reserve price will vary
less from the optimal value under the Cube distribu-
tion than under the Cuberoot distribution.



Davis, Katok, and Kwasnica: Do Auctioneers Pick Optimal Reserve Prices?

180

Management Science 57(1), pp. 177-192, ©2011 INFORMS

Figure 1

(a) Cuberoot

Optimal Reserves with CRRA Utility Differing Levels of Relative Risk Aversion «

(b) Cube
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2.3. Experimental Implementation

Recall that in our experiments each subject acted as a
seller of a single, indivisible object with a value to the
seller of zero, and the object was offered for sale via
a second-price (or English) auction with n potential
buyers. The seller’s task was to determine a reserve
price r € [0,100] below which the object would not
be sold.?

The n buyers were computerized and programmed
to follow the weakly dominant strategy of setting
their bid equal to their valuation contingent upon
their value being equal to or above the chosen reserve
price. They had a private value v € [0, 100] drawn
from an identical distribution (Cube or Cuberoot).

Each seller participated in 60 separate auction peri-
ods. In each auction period, the seller faced a new set
of bidders with valuations drawn independently from
the same distribution. The seller was also informed of
the number of computerized bidders he would face
in advance of the auction period. We manipulated the
number of bidders that a seller faced so that in one
treatment n € {1, 2, 3, 4} and in the other treatment n €
{1,4,7,10}. For every period, we selected the number
of bidders n uniformly (with replacement) from one
of these sets. We chose the first treatment because the
reserve price decision is most salient when the seller is
facing only a small number of bidders. We conducted
the second treatment to determine if the effects we
observed for small numbers of bidders persisted in
auctions with more bidders. Under both treatments,
the standard theory for either risk-neutral or risk-
averse sellers predicts that the reserve price is invari-
ant in n.

We described the second-price auction to the
human sellers as an English auction. Because subjects,
in order to maximize their profit, had to perform a
number of complex calculations on their own regard-
ing order statistics and probabilities for this auction,

% Reserve prices were restricted to be integer valued.

we also conducted two additional treatments where
we provided the subjects with a testing field. In this
field, they could enter a reserve price and observe the
following information for that specific reserve price:
the probability of not selling the object, the proba-
bility of selling at the reserve price, the probability
of selling above the reserve price, the average selling
price if sold, and the average revenue from the stated
reserve price. For these two treatments, we investi-
gated both the Cuberoot and Cube distributions with
ne{l,4,7,10}. We will refer to these treatments as
Fulllnfo and the former as Nolnfo.

For all treatments, following the determination of a
reserve price in each round, we provided the follow-
ing information to the sellers: the drop-out prices for
the losing bidders (if the drop-out price was equal to
or above r), whether some buyers were forced to drop
out because their values were below r, the winning
bid (r or the highest drop-out price above r), and the
seller’s resulting profit.*

After participants completed 60 periods of the auc-
tion, but before subjects received their cash earnings,
we used a modified version of the instrument intro-
duced by Holt and Laury (2002) to elicit a measure of
each subject’s level of risk aversion. The instrument
involved 10 lottery pairs. Option A in each pair was
a 50/50 chance of winning $4.50 or $5.50. Option B in
each pair involved a 50/50 chance of winning $1 or
$X, where X varied from $9 in pair 1 to $20 in pair
10 (see the online appendix for instructions from this
phase). Subjects were asked to select one option for
each pair. Immediately following this choice, a single
chosen lottery was selected at random and played by
the computer. The earnings from the lottery outcome
were added to the subject’s earnings from the auc-
tions. A more risk-averse person should select option

* Note that the highest drop-out price is equal to the second highest
valuation above r so the auctioneer did not learn the value of the
winning bidder.
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Table 1 Experimental Design and Sample Sizes
Cuberoot  Cube  Total
ne{l,2,3,4} 20 20 40
ne{l,4,7,10} 20 20 40
ne{1,4,7,10} (Fulllnfo) 20 20 40
Total 60 60 120

Note. The number of seller subjects in each particular
treatment combination.

A in more of the pairs only switching to option B
as the expected value of the “risky” lottery exceeded
some threshold.

Table 1 summarizes the design of the experiment.
Twenty subjects participated in each treatment, and,
because participants did not interact with each other,
each subject constituted a single independent obser-
vation, which we use as the main unit of statistical
analysis in this study.

We conducted all sessions at the Laboratory for
Economic Management and Auctions at the Penn-
sylvania State University, Smeal College of Business,
during the Spring and Summer of 2008. Participants
in all six treatments were students, mostly undergrad-
uates, from a variety of majors. Before each session,
subjects were allowed a few minutes to read over the
instructions themselves. Following this, we read the
instructions aloud and answered any questions (we
did this separately for both phases of the experiment
so that subjects would not “read ahead”). Each indi-
vidual participated in a single session only and was
recruited through an online recruitment system. Cash
was the only incentive offered, where subjects were
paid a $5 show-up fee plus an additional amount that
was based on their personal performance for all 60
decisions in phase 1 and their decisions in phase 2.
Average compensation for the participants, includ-
ing the show-up fee, was $20. Each session lasted
approximately 45 minutes, and the software was pro-
grammed using the zTree system (Fischbacher 2007).

3. Results

We begin by providing summary statistics for all
treatments. In Figure 2, we provide the mean reserve
price for each bidding distribution evaluated for
each n. We also display how these average reserve
prices compare to risk-neutral theoretical optimal
reserve levels (42 for Cuberoot; 63 for Cube).

We can make a number of observations from
Figure 2: (1) reservation prices are clearly not inde-
pendent of the number of bidders, they increase
in n, contrary to standard theory (assuming either
risk neutrality or risk aversion); (2) reservation
prices are higher in the Cube condition than in the
Cuberoot condition, consistent with standard theory;
(3) whereas reserve prices are generally below the

optimal reserve price for low #, reserve prices are
often above the optimal value when # is large (con-
trary to the assumption of risk aversion for any
value of «); and (4) all three of these results con-
tinue to hold when sellers are provided with detailed
information about reserve price outcomes (Fulllnfo).
To examine these and other regularities more rigor-
ously, we conducted a regression analysis. We ran all
regressions with random effects for individual sub-
jects and used the observed reserve price in a period
as the dependent variable.® The explanatory variables,
their descriptions, and model estimates for the Nolnfo
treatments are listed in Table 2.

We centered the 1 variable by subtracting the aver-
age number of bidders faced by all sellers in order
to be able to interpret the Comnstant as the average
reservation price in the Cuberoot condition with the
average number of bidders (we did the same with
the decision period). Below we summarize our major
results based on the regression models. First, consider
Model (1)—the baseline model that does not consider
the independent risk-aversion measure from the sec-
ond phase of the experiment or variables that relate
to more complex distributional effects.

As is evidenced by the value of the Constant coef-
ficient, subjects select reserve prices in the Cuberoot
treatment that are significantly below the optimal level
(p < 0.01). In the Cube treatment, subjects set reserve
prices that are significantly greater than in the Cube-
root treatment as is evidenced by the positive and sig-
nificant coefficient on the Cube indicator variable. In
fact, subjects set reserve prices that, on average, are not
significantly different from the optimal reserve price
of the standard theory; 63, the optimal reserve price
under the standard theory, is inside the joint 95% con-
fidence interval for the sum of the Constant and Cube
coefficients. Although the absolute value of the reserve
price in the Cuberoot treatment is not consistent with
the standard theory, these results indicate that subject
behavior with respect to the distribution manipulation
is consistent with the standard theory.

The other independent variables, however, indicate
how seller behavior deviates from theoretical predic-
tions. Sellers increase reservation prices with the num-
ber of bidders; the coefficient on (n — 71) is positive
and significant, indicating that, on average, sellers in
the Cuberoot treatment increase the reservation price
by 2.98 for each additional bidder.

To account for the possibility of learning, we
included the centered period number as an indepen-
dent variable. Other factors constant, sellers increase

5 We conducted a Hausman (1978) test to ensure that random effects
provided consistent estimates for each model; the interested reader
is referred to the online appendix, where we provide all results
with fixed effects.
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Figure 2 Average Reserve Prices for Each n
(a) Nolnfo (b) Fulllnfo
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reserve prices slightly over time, as evidenced by
the positive and significant coefficient on the (Per —
Per) variable. The time trend, although significant,
is slight, and is insufficient to bring average reserve
prices in the Cuberoot condition to standard optimal
levels, even at the end of the session.

To provide a direct test of the impact of risk aver-
sion on reserve price choice, we conducted a risk-
aversion elicitation exercise that was a modified ver-
sion of the instrument introduced by Holt and Laury
(2002). A more risk-averse seller should select fewer
of the risky (option B) lotteries and also charge a
lower reserve price. Model (2) from Table 2 adds the
number of risky options (#B) chosen as an indepen-
dent variable. We center the #B variable by looking
at the difference between the observed number of
option Bs chosen by a subject and the average number

of option Bs chosen (#B) so that the other regression
coefficients can have the same original interpretation
as describing the reserve price setting of the “aver-
age” risk-averse seller versus the average number of
bidders. The coefficient for Model (2) is significant
and positive, indicating that a less risk-averse seller
charges higher reserve prices, thus agreeing with the
theoretical predictions. Although risk aversion does
provide some explanation of the observed data, it
does not account for the pronounced increases in the
reserve price as the number of bidders increases or the
fact that reserve prices above the risk-neutral optimal
are frequently observed for large n. We will discuss
Model (3) in later sections.

We estimated the same model for the Fulllnfo treat-
ments, and present these results in Table 3. In focusing
on Model (4), one can see the value of the Constant

Table 2 Regression Results for the Nolnfo Treatments Table 3 Regression Results for the Fullinfo Treatments

Variable Description Model (1)  Model (2) Model (3) Variable Description Model (4) Model (5) Model (6)

Constant Intercept 29.45* 29.52* 29.53* Constant Intercept 34.86* 34.12* 3412+

[1.83] [1.77] [1.76] [3.64] [3.63] [3.65]

n-n No. of bidders minus 2.98* 2.98* 3.24* n-n No. of bidders minus 3.57* 3.57* 4.26*
the average [0.08] [0.08] [0.11] the average number  [0.08] [0.08] [0.12]
number of bidders of bidders

Per — Per No. of decision period 0.04* 0.04* 0.03 Per — Per No. of decision period ~ —0.10* —0.10* —-0.10
minus the average [0.011] [0.011] [0.011] minus the average [0.016] [0.016] [0.016]
number of periods number of periods

Cube 1 if bids from 31.78* 31.64* 31.64* Cube 1 if bids from 28.29* 29.78* 29.76*
Cube distribution [2.59] [2.51] [2.49] Cube distribution [5.15] [5.19] [5.22]

#B—#B No. of B choices 1.40+ 1.40* #B—#B No. of B choices —-1.30 —1.38
selected minus [0.49] [0.49] selected minus [0.97] [0.97]
the average number the average number
of B choices of B choices

(n—n) x Cube Interaction for —0.55* (n—n) x Cube Interaction for —1.38*
(n—n) and Cube [0.15] (n—n) and Cube [0.16]

R? 0.499 0.519 0.522 R? 0.449 0.464 0.469

*p < 0.01. Standard errors are in brackets.

*p < 0.01. Standard errors are in brackets.



Davis, Katok, and Kwasnica: Do Auctioneers Pick Optimal Reserve Prices?

Management Science 57(1), pp. 177-192, ©2011 INFORMS

183

term is slightly lower than the Cuberoot optimal value
of 42 (42 is just outside the confidence interval). Com-
bining the coefficient on Cube with the Constant results
in the optimal reserve price of 63 being within the
joint confidence interval. Similar to the Nolnfo treat-
ments, subject behavior with respect to the bidding
distributions is consistent with the standard theoreti-
cal predictions.

As with the Nolnfo treatments, the other inde-
pendent variables in Model (4) indicate how our
results differ with the standard theory. Once again,
the coefficient on (n — n) is positive and signifi-
cant, suggesting that subjects increase reserve prices
by 3.57 for each additional bidder, even when pre-
sented with additional information about their reserve
price choice. Another way that the Fulllnfo treatments
relate to the Nolnfo treatments pertains to learning
effects. Whereas both coefficients are significant, in the
Fulllnfo treatments the coefficient is small and nega-
tive (compared to small and positive for Nolnfo). In
Model (5), the coefficient on this risk-aversion param-
eter is not significant at any level, implying that risk
aversion does not play a significant role when sell-
ers are provided with information about reserve price
outcomes. We will discuss Model (6) in later sections.
The previous analysis shows how aggregate behavior
varies with the treatment conditions. We next turn to
examine whether these aggregate relationships were
consistent with the behavior of the individuals.

We completed regressions on reserve prices for each
of the 120 participants for all 60 periods of each treat-
ment, with (n — 71) as the only independent variable.
We conducted this analysis to determine what portion
of the subjects systematically increased, decreased, or
did not change their reserve prices as n changed. If
the coefficient was statistically significant at the 95%
level and positive, we classified the n effect as “posi-
tive” on reserve prices. Similarly, if the coefficient was
statistically significant at the 95% level and negative,
we classified it as “negative,” and if the coefficient was
not significant at the 95% level, we categorized it as
“neutral.” By reviewing the constant term and its cor-
responding 95% confidence interval, we classified sub-
jects as on average setting reserve prices above, below,
or at theoretical optimum levels. Table 4 displays the
proportion of individuals in each of the nine categories
based on the 120 individual regression models, where
all results are pooled together.®

In Table 4, one can see that a large portion of sub-
jects increased reserve prices as n went up (73.3%).
Additionally, average reserves prices were generally
below risk-neutral theoretical predictions (56.7%), but
also a large portion set reserves above risk-neutral

®The interested reader is referred to the online appendix, where
Cube and Cuberoot are separated between Nolnfo and Fulllnfo.

Table 4 Classification of How Subjects Set Reserve Prices on Average,
and How They Set Reserve Prices with Respect to Different
Numbers of Bidders
Average r (%)
n effect Below Neutral Above Total (%)
Negative 9.2 0.8 0.0 10.0
Neutral 13.3 2.5 0.8 16.7
Positive 34.2 8.3 30.8 73.3
Total 56.7 1.7 31.7 100.0

theoretical predictions (31.7%). One last observation
from this table is that the center cell, neutral /neutral,
is very rarely seen in our data, suggesting serious
deviations from the standard theory. We will investi-
gate these deviations further in §4.

Because a seller’s expected profits are affected most
by reserve prices when facing a small number of bid-
ders, we examine more closely the data when sub-
jects faced n =1 bidder. The plot of the cumulative
distributions for average reserve prices when facing
one bidder is shown in Figure 3 for both distributions
and information conditions. The figure clearly shows
that in the Cuberoot treatment, for both conditions,
subjects set reserve prices far below optimal; approx-
imately 25% of the time they set reserves between 0
and 10 in the Nolnfo treatment, and approximately
50% of the time they set reserves between 0 and 10 in
the Fulllnfo condition. In contrast, we find that in the
Cube treatment, a large percentage of reserve prices
are in the neighborhood of the optimal value of 63.

4. Alternative Models
As we have seen, the experimental data has a num-
ber of features that are inconsistent with the stan-
dard theory and risk aversion. Participants routinely
set lower than optimal reserve prices when the num-
ber of bidders in the auction is low, but as the num-
ber of bidders increases, sellers increase the reserve
price until, with high numbers of bidders (n = 10),
the reserve price is often above the risk-neutral opti-
mum. In an attempt to explain some of this behav-
ior, we consider two separate models that have been
previously advanced to explain why auction bidders
deviate from the risk-neutral Nash equilibrium:

1. Winner and loser anticipated regret.

2. Probability weighting.
We consider each model independently in order to
understand the potential effect of incorporating each
feature into a model of seller behavior. Although
actual behavior may be more fully described by a
combination of some of these (and other) models,
the approach we take here is to attempt to under-
stand what features are necessary and sufficient to
produce the qualitative results observed in the labo-
ratory experiments.
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Figure 3 Cumulative Distribution of Reserve Prices for n =1
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4.1. Anticipated Regret

A model that has shown to consistently describe the
behavior of bidders in auctions is that of anticipated
regret (Filiz-Ozbay and Ozbay 2007, Engelbrecht-
Wiggans and Katok 2008). In these types of models,
the agent feels bad (experiences some disutility) when
his or her ex ante action fails to capture all of the
potential earnings that are available (and known) ex
post. For the seller in an auction, this is likely to
happen in two ways: (1) the seller fails to sell the
object even though there were bidders willing to pay
for the object, and thus she regrets those foregone
revenue; (2) the price exceeds the reserve price and
the seller realizes that a higher reserve price might
have extracted more revenues from the winning bid-
der. Following Bell (1982) and Engelbrecht-Wiggans
(1989), we term the first type of regret loser’s regret
and the second type winner’s regret. A model of antic-
ipated regret assumes that the agent correctly antic-
ipates these feelings of regret and modifies his or
her ex ante actions in order to maximize his or her
expected payoffs modified by this regret.

Let w(x) be the amount of winner’s regret. We
assume winner’s regret to be a function of only the
observed sales price or revenue x. Let I(r) be the
amount of loser’s regret given the chosen reserve
price r. We assume that these terms enter into the
seller’s payoff function in a linearly separable fashion;
the seller’s ex post utility function is then given by

u(by) — w(by) if by >,

o(b; r)={u(r) — w(r) if byy >7r>by, (8)

0—1I(r)

Given these payoffs and bidders” equilibrium strate-
gies, the seller’s expected utility for a second-price
auction with reserve price r is given by

Ev(r) = [=1(]F"(r) + [u(r) — w(r)]G(r)

+/r5[u(v) —w(v)]h(v) do. ©)

if r>bg.

0 10 20 30 40 50 60 70 80 90 100
Reserve prices

Then, we have the following necessary first-order
condition:

dEv(r*)
dr
= —1'(r")F"(r*) + [ 1(r")]nF" (") f (1)
+ [ (r) = ' (rM)]G(r) + [u(r) — w(r)]g (")
— [u(r’) —w(r)]h(") =0.

(10)

Divide by nF""!(r*) and rearrange terms to obtain

- l/(f*)%F(r*) + =IO + [ (r7) — ' (r7)]
S(I=F(@) = [u(r) —w(r)]f () =0, (11)

which can be rearranged to obtain the following
condition:
u(r) —w(r) +1(r") _ (A=F(@)

w(re) —w'(re) = I'(r)(1/n)(K(r*)) f(r) ;12)
where K(r*) = F(r*)/(1—F(r*)). To consider the poten-
tial effect of anticipated regret on optimal reserve
prices, we assume that the seller is risk neutral” and
posit regret functions that are consistent with the
information available to the seller after the auction is
completed. Let W(r) = w(r) — ¢(r)w'(r) be the term’s
associated winner’s regret from the first-order condi-
tions and let L(r) =I'(r)(1/n)(r) + I(r) be the term’s
associated loser’s regret from the first-order condi-
tions where ¢(v) = F(v)/f(v). Note that, despite not
appearing as an argument of the function, w(v) and
I(r) may be functions of the number of bidders n.
Thus, particular formulations of these functions may
result in the optimal reserve price increasing with n
as was observed for many experimental subjects. The
following are sufficient conditions for particular direc-
tional changes in r* with respect to 7.

7 Qualitatively similar results can be derived in the event that the
seller is risk averse, yet winner and loser regret enter into the
seller’s utility function in a similar fashion to that modeled here.
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ProrosiTION 2. If ¢'(r*) + W'(r*) — L'(r*) < 1,
then

1. the optimal reserve price r* is increasing in n when-
ever dL(r*)/dn — IW (r*)/dn < 0;

2. the optimal reserve price r* is decreasing in n when-
ever dL(r*)/on — dW (r*)/dn > 0.

Proor. Given the notation presented above, the
necessary first-order conditions can be expressed as
follows:

(") + W(r*) —L(r*) — r* = 0. 13)

We differentiate with respect to 1 at the optimal solu-
tion to obtain the following:

ar*  IW(r*) B aL(r*)

[0/(r)+ W/ () =L () ~1] 57 2 = 2 =0,
(14)
Rearranging terms we obtain
ar*  dL(r*)/dn—dW(r*)/on (15)

an () +W(r) —L(r)—1]
Note that the denominator is the second-order con-
dition that must be less than or equal to zero if
r* is a local maximum. Obviously, ¢'(r*)+ W' (r*)—
L'(r*) <1 is sufficient to guarantee that the denom-
inator is strictly negative.® Then it follows that if
dL(r*)/on — dW(r*)/dn < 0 we have that dr*/dn >0
and if dL(r*)/on — IW(r*)/dn > 0 we have that
ar/on <0. O

To understand the conditions of this proposition,
note that, in general, loser’s regret will encourage
lower reserve prices whereas winner’s regret will lead
to higher reserve prices. Thus, whenever the change
in winner’s regret due to an increase in n is bigger
than the change in loser’s regret, reserve prices should
increase, and whenever the change in loser’s regret
due to an increase in n is bigger than the change in
winner’s regret, reserve prices should decrease.

The appropriate choice of winner’s and loser’s
regret functions likely depends upon the frame of the
auction institution as well as the information avail-
able to the seller ex post. The following is an example
of winner’s and loser’s regret that matches the qual-
itative features of our data and is consistent with the
information conditions of the auctions we conducted.
When the auction has ended with a sale, the seller’s
information may be of two different forms:

1. If the item sold at the reserve price r, then the
seller knows that the second highest value v, (and
all lower values) was below r and the highest value
v was above r.

8 A more obvious but slightly less tight sufficient condition is that
¢'(r*) <0, L'(r*) = 0, and W'(r*) <0. These conditions are almost
always satisfied for most models of regret and distributions we
have examined.

2. If the item sold above the reserve price, then the
seller knows that the price was equal to the second
highest value v, and the highest value v, was (triv-
ially) above v,).

We assume that winner’s regret is proportional to
the difference between the obtained price (r or higher)
and expected high value given the seller’s informa-
tion. In the first case above, this implies that

w(r) = a,[E(vqy | vqy > 7,00 <7) —7], (16)

and in the second case when the sale price is v > r,
we have that

w(v) = a, [E(vg) | v =v) — 7], (17)

where a, > 0. However, because E(v, | vq) > 7,
Vo < 1) = E(vy) | v = 7) we can merge these
two information conditions into a common winner’s
regret function given by (17) for all v > r. See the tech-
nical appendix for the derivation of these two expec-
tations and their equivalence.

Next, let loser’s regret be proportional to the
reserve price or I(r) = a;r or that the seller generally
feels worse for setting a higher reserve price that did
not result in a sale. In our experiments, a loser’s regret
functional form of this type seems particularly reason-
able given the general lack of information provided
when there is no sale; when all values are below the
reserve price the seller simply observes that fact and
does not observe the realizations of values. Therefore,
she cannot calculate exactly how much money was
left on the table by not selling in that instance.’

Then, substituting these functional forms for w(x)
and [(r) into W(r) and L(r), we have that W(r) =
a,d(r) so dIW(r*)/on = 0. We also have that L(r) =
a;(1/n)(r)+ayr so IL(r*)/dn = —a,(1/n?)(r*), which
is clearly negative. Therefore, we have that dL(r*)/dn—
dW(r*)/dn < 0 and the optimal reserve price should
increase with n according to Proposition 2. Figure 4
depicts the optimal reserve prices for sellers who
anticipate winner’s and loser’s regret as specified
above for ¢; =0.3, ,, = 0.5, and number of bidders n
from 1 to 10. The effect of «; is to change the impor-
tance of loser’s regret relative to the winner’s regret.
When loser’s regret is relatively low (a; small), the
seller is induced to charge higher than (standard the-
ory) optimal reserve prices in order to avoid selling at
too low a reserve price where the winning bidder (if
there is one) is likely to have substantial profits. This
family of intuitive and simple regret functions approx-
imate our data reasonably well. For example, in both
cases, the reserve price is increasing, and for particular

? Greenleaf (2004) examines models where this information is
assumed to be known and arrives at results regarding the optimal
reserve price.
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Figure 4 Optimal Reserve Prices in the Regret Model with o, = 0.3 and «,, = 0.5 as a Function of n
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Note. The horizontal line represents the standard theory optimal r*.

choices of «,, the reserve price goes from being below
the risk-neutral optimal reserve price to being above it.

One can immediately recognize from these figures
that the effect of anticipated regret is more dramatic
with the Cuberoot distribution than the Cube distri-
bution. In Model (3) in Table 2, and Model (6) in
Table 3, we explore whether the effect of the number
of bidders is different across the two value treatments
by adding a variable that interacts the distribution
treatment Cube and the number of bidders (n — ).
We find that the coefficient on the interaction term
between the number of bidders and the indicator vari-
able for the Cube treatment is negative and significant
at the 99% level (coefficient of —0.55) for the Nolnfo
condition, and negative and significant at the 99%
level for the Fulllnfo condition (coefficient of —1.38).
This illustrates that our data agrees with the qual-
itative direction of the regret theory; the impact of
regret has a more pronounced effect in the Cuberoot
treatment compared to the Cube distribution treat-
ment. Additionally, it appears as though the positive
relationship between reserve prices and n that we
observed in our experiment agrees with the theoreti-
cal predictions from the regret model.

4.2. Probability Weighting

Although anticipated regret models change the pay-
offs associated with particular outcomes in order to
depart from standard models of expected utility, it
still maintains that a human seller calculates correctly
and maximizes expected utilities given those payoffs.
An alternative model is that the human seller might
fail to calculate expected utilities correctly. In these
models, the agent might behave as if some events
are more likely and others are less likely. It has been
well documented that human subjects often behave as
if small probability events have a greater probability
of occurring than their given probabilities and high
probability events are less likely to occur than their

given probabilities (Kahneman and Tversky 1979). To
incorporate this potential behavioral model into the
reserve price setting decision of sellers, we assume
that the cumulative probability of certain events are
distorted by a probability weighting function w(p) that
takes the actual probability of occurrence and maps
it to some other probabilistic value (value between
zero and one). In particular, we assume the probabil-
ity weighting function has the following features: (1)
w(0) =0 and w(1) =1, (2) w'(p) > 0 for all p, and (3)
there exists a p* such that for all 0 < p < p* w(p) >
p and w”’(p) <0 and for all 1 > p > p* w(p) <p and
w”(p) > 0.

These are standard assumptions made in the lit-
erature on probability weighting (Wu and Gonzalez
1996). The first assumption means that events of
probability zero and one are easily discernible and
are therefore not subject to distortions. The second
assumption means that greater probabilities still imply
greater weights. The final assumption indicates the
empirical regularity that low probability events are
typically overweighted and high probability events
typically underweighted. In addition, these features
allow the probability weighting model to be incorpo-
rated into the calculus of expected utility calculations
with a minimal amount of complications.?

A closely related explanation for probability weight-
ing is that the sellers, particular in the Nolnfo treat-
ments, had to calculate these probabilities themselves.

“However, it should be noted that these probability weighting
functions essentially imply a nonadditive probability measure, so
this is a special case of the broad class of nonexpected utility mod-
els such as those where subjects are ambiguity averse. Chen et al.
(2005) examine bidder and auctioneer behavior in settings where
ambiguity aversion is likely to be present. It is possible that some
of the observed behavior in the Nolnfo treatment may also be due
to ambiguity aversion. In the Fulllnfo treatment ambiguity should
not be an issue, but we observe substantially similar behavior.
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Although all the necessary information was pro-
vided, these are nontrivial calculations that may have
involved substantial errors. By using a probability
weighting model we are assuming the errors in cal-
culation take a particular form. The seller’s expected
utility calculation is given by

Ev(r) = u(r)w(G(r)) + /5 u(v) dw(H(v)). (18)

The following necessary first-order condition results:

dEv(r*)
ar

= w (rMw(G(r)) +u(r)w(G(r))g(r)
—u(r)w' (H(r*))h(r) =0, (19)
which can be simplified to yield

u(r) _ w(G(r))

W™~ W ) —w o)

This condition is equivalent to the first-order condi-
tions from the standard theory if w(p) =p or there is
no distortion due to probability weighting. Also note
that this first-order condition is only defined for n > 2
because g(v) is only appropriately defined when there
at least two bidders. When n =1 the first-order con-
dition is easily found to be

u(r) _ w(@—F@)
w(r) — w(1—F(r))f(r)

To provide a more concrete example, we assume
sellers are risk neutral and consider a probability
weighting function extensively utilized in the litera-
ture. The following is a one-parameter weighting func-
tion used by Tversky and Kahneman (1992), Camerer
and Ho (1994), and Wu and Gonzalez (1996):!!

1)

i 22
G+ 0P 2
Figure 5 depicts the probability weighting function for
the parameter 8 = 0.65. Previous studies have found
a wide range in the values of B for different scenarios,
0.57 to 0.94 (Tversky and Kahneman 1992), 0.28 to 1.87
(Camerer and Ho 1994), and a slightly different prob-
ability weighting function utilized by Prelec showed
the parameter to vary from 0.03 to 0.95 (Prelec 1998).
Although an exact analytical solution given the dis-
tributions of values used and the weighting function
is not readily available, the results show that for n > 2
under both distributions the optimal reserve price is
varying with the number of bidders. Figure 6 depicts
the optimal reserve price for both value distributions
as a function of the number of bidders.

w(p) =

1t should be noted that for this probability weighting function,
(21) is only satisfied uniquely when B is sufficiently large.

Figure 5 One Parameter Probability Weighting Function g = 0.65
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Although this figure demonstrates that we might
expect similar behavior under the two distribu-
tion treatments, substantially different behavior is
expected when n = 1. The optimal reserve price is
approximately 64 and 61 under the Cube and Cube-
root distributions, respectively. Importantly, under the
Cube distribution the optimal reserve price for n=1is
lower than that for higher numbers of bidders (n =2
optimal reserve is 69). Under the Cuberoot distribu-
tion treatment the optimal reserve price for n=1 is
substantially higher than it is for higher numbers of
bidders; the optimal reserve falls to 43 for n = 2.
This behavior holds for many parameters and alter-
native probability weighting functions.’ Additionally,
Figure 6(b) shows that for the Cube treatment when
n exceeds 6, sellers should set slightly lower reserve
prices as the number of participating buyers increases.
Comparing these figures to our experimental data
results in some key differences. Specifically, for the
Cuberoot condition, when 7 is less than or equal to
two bidders, we should observe a negative relation-
ship between n and reserve prices. In reality, what
we observe is the opposite of this. Likewise, there is
no evidence that the effect of 1 decreases for larger n
under the Cube condition.

In many cases the predictions of probability weight-
ing models are virtually indistinguishable from those
of models that change the payoffs of associated out-
comes (such as models of regret) (Goeree and Holt
2004). Interestingly, the predictions of (at least these
particular implementations) of probability weighting
and anticipated regret are substantially different for
the treatments we have considered. At least qualita-
tively, the data appears to favor a model of antici-
pated regret over probability weighting.

4.3. Model Estimation
So far we have seen that some features of these mod-
els are consistent with the qualitative behavior of

12 This feature is also true for the uniform distribution.
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Figure 6 Optimal Reserve Prices Given One Parameter Probability Weighting Function g = 0.65
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Note. The horizontal line represents the standard theory optimal r*.

the sellers in our experimental sessions. However,
the models also differ from the empirical regularities
of the data. In this section, we estimate parameters
for the different alternative models (including CRRA)
and use maximum likelihood to assess the quality of
their fit to the observed data. We then allow for bid-
der heterogeneity in both choice of parameters and
behavioral models.

Each behavioral theory outlined above predicts
some optimal reserve price as a function of parame-
ters of the model (which we generically label 6) and
(potentially) the number of bidders 1, and the value
distribution F. Let r*(0, n, F) be the optimal reserve
price under a given model for a particular selection
of 6, n, and F. We begin by positing a simple nor-
mal likelihood function for the choice of an observed
reserve price 7; or f(r;|0,n,F)=N(r*(6,n, F), 0?) or
that each subject selects the observed reserve price 7,
with some mean zero, normal error around the opti-
mal reserve price predicted by theory. Because n and
F are controlled and observed in the experiment, for
each given model, the objective is to select a 6 that
maximizes the likelihood function:

rgl%xL(G,UZU, n,F)=[]f(r,a*6,n,F). (23)
€ i=1

In addition to considering the risk-neutral model,
using standard numerical maximum likelihood tech-
niques, we estimate a single parameter class of each of
the three alternative models. Specifically, we examine
the following:

e For the risk-aversion model, we estimate a €
[0, 1] the coefficient of relative risk aversion in the
CRRA model.

¢ For the anticipated regret model, we estimate
the model where it is assumed that a; =1 — «,, and
a; €0, 1].

¢ For the probability weighting model, we estimate
the weighting function given in (22), where 8 € (0, 1).

In Table 5 we provide a summary of the maximum
likelihood estimates. Focusing on the Nolnfo treat-
ments first and considering the pooled data where all
individuals are assumed to have the same parame-
ter value for the particular model being evaluated, we
see that the anticipated regret model has the high-
est log likelihood of the three models. Whereas the
differences in the log likelihoods do not appear very
substantial, a Vuong test (Vuong 1989) for comparing
nonnested models reveals that the models are statis-
tically different from one another, favoring the model
of anticipated regret. We also applied a likelihood-
ratio test to compare the standard theory as a nested
version of the other models. Results from those tests
agree with the Vuong test at even higher levels of
significance.

The estimated parameters provide insights into the
ability of the model to fit the data for reasonable val-
ues of the parameters. For the Nolnfo condition, the
CRRA parameter estimate of a = 0.29 is somewhat
lower than observed in previous studies suggest-
ing that sellers in our experiment appear to act less
risk averse. The anticipated regret parameter suggests
that, on average, subjects seem to put slightly higher
emphasis on loser regret but that the effect of the two
are roughly similar. This weighting rationalizes the
increase in reserve price with respect to n because

Table 5 Maximum Likelihood Estimates for Standard Theory, Risk
Aversion, Anticipated Regret, and Probability Weighting

Aggregated Between Nolnfo and Fullinfo

Nolnfo treatments Fullinfo treatments

Log(L) Parameter Log(L) Parameter
Behavioral model for pool for pool for pool for pool
Standard theory —21,556 — -11,092 —
Risk aversion —21,141 «=029 —11,050 a=017
Anticipated regret —20,851 =055 —10,880 o, =048
Probability weighting  —21,571 B=0.99 —11,093 B=0.99
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Table 6 Parameter Estimates for Risk Aversion, Anticipated
Regret, and Probability Weighting When Allowing for

Subject Heterogeneity

Nolnfo treatments Fulllnfo treatments

Mean Mean
Log(L) for ~ parameter Log(L) for  parameter
Behavioral model individuals value individuals value
Standard theory —261 — —264 —
Risk aversion —242 a=0.28 —253 a=0.20
Anticipated regret —237 a, =054 —251 a, =042
Probability weighting —253 B=0.89 —254 B=0.82

the loser regret term matters less as the number of
bidders increases. Finally, the probability weighting
parameter (0.99) is far from that observed in other
experiments and suggests that a risk-neutral nonprob-
ability weighting model (e.g., B=1) is a better fit to
the data. In fact, if we removed the restriction that
B <1, we would have found that the best fit would
have been obtained via a model in which subjects
appear to act as if 8 > 1 or they place lower weight
on low probability events and higher weight on high
probability events; this is counter to most other exper-
imental observations of probability weighting.

For the Fulllnfo treatments, the results are much the
same. The regret model generates the largest log like-
lihood, with the Vuong test showing it to be signifi-
cantly higher than the other models and thus favoring
it overall (the only models not statistically different
from each other were standard theory and probability
weighting).

As discussed earlier, the high degree of subject
heterogeneity obviously affects the quality of the fit
of the pooled model and substantially lowers the
log likelihood. Therefore, we next allow for differ-
ent parameter values for every subject and examine
the behavioral models in turn. As one can see from
Table 6, in the Nolnfo and Fulllnfo treatments, the
regret model is once again slightly favored. A descrip-
tion of the estimated parameter values when within
model subject heterogeneity is allowed for is provided
in Table 6 as well. Whereas the mean parameter val-
ues for the risk aversion and anticipated regret mod-
els do not change significantly, the mean probability
weighting estimate is now slightly more consistent
with previous studies.

Because of the difficulty in drawing conclusions
about individual behavior using average log likeli-
hoods, we now take a different approach. Specifically,
it may be that individual heterogeneity is not only
in terms of parameters within a model but also is
in terms of different subjects using different mod-
els; whereas some may be risk averse, others may
be driven primarily by regret or probability weight-
ing. This provides a more accurate depiction of which

Table 7 Proportion of Largest Log-Likelihood Function for Each

Subject by Behavioral Model

Nolnfo treatments Fullinfo treatments

% of Mean % of Mean
subjects  parameter  subjects parameter
Behavioral model best fit estimate best fit estimate
Standard theory 0.00 — 2.50 —
Risk aversion 33.75 a=0.52 12.50 a=0.77
Anticipated regret 40.00 a,=0.54 47.50 a,=0.51
Probability weighting 26.25 B=0.67 37.50 B=0.58

model is favored by subjects, compared to the results
in Table 6. We summarize the proportion of subjects
for whom each of the three models provides the best
fit in Table 7. Interestingly, each model, except for the
standard theory, fits a considerable percentage of the
subjects for the Nolnfo treatments with anticipated
regret being the best fit with 40%. A similar situa-
tion exists in the Fulllnfo treatments, where 47.5%
were best fit by anticipated regret. Furthermore, when
considering the estimated parameter values for each
behavioral model for only those subjects best fit by
that model, the mean parameter estimates for the
risk aversion and probability weighting models are
more consistent with the values observed in previous
experiments.

4.4. Model Predictive Power

We have demonstrated that the regret model tends to
fit our data slightly better than the risk aversion and
probability weighting models. However, this result
does not prove that the regret model, or any of the
alternative models, can fully account for the varia-
tion of reserve prices we observe with respect to n.
One possible way to address this issue is to run a
regression of reserve prices on the number of bidders
and an independent variable that represents the pre-
dicted reserve price, 7;, for each subject’s best model
and maximume-likelihood estimate (for example, if a
subject’s maximum log likelihood of all four models
was the probability weighting model with 8 = 0.5,
then 7; is the predicted reserve price for probability
weighting with that parameter estimate). The regres-
sion model is

;=" +n(n—i)+y.f; + e (24)

If the coefficient on (1 — 1) becomes insignificant, and
the coefficient on #; is 1, then the behavioral mod-
els fully explain the n effect. However, introducing a
regressor that is highly dependent on other indepen-
dent variables, such as 7; with (n— 1), presents a num-
ber of econometric issues. Therefore, we can impose
a restriction on the coefficient of #; so that y, =1 and
estimate

(ri=f)=ytnh-n)+e (25)
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Table 8 Regression Results Comparing the Predictive Power of the Alternative Models for the n Effect in the Nolnfo and Fullinfo Treatments
Nolnfo Fullinfo

Dependent variable Independent variable Description Cuberoot Cube Cuberoot Cube

I Constant Intercept 29.46* 61.67* 34.85* 63.14*

[0.28] [0.26] [0.34] [0.44]

n—n No. of bidders minus the 3.24* 2.70* 4.28* 2.90*

average number of bidders [0.11] [0.11] [0.10] [0.13]

(n—="1) Constant Intercept 1.93+ —3.18* 2.42¢ —7.69*

[0.27] [0.25] [0.31] [0.39]

n—n No. of bidders minus the 1.88* 1.73* 2.80* 1.54*

average number of bidders [0.11] [0.10] [0.09] [0.12]

Note. Note how the coefficient on (n — n) is reduced, but not entirely eliminated, when the alternative models’ predicted reserve prices are incorporated.

*p < 0.01. Standard errors are in brackets.

If the coefficient on (n — 71) is significant, then the
behavioral models do not fully account for the n effect
that we see in our data. However, if we see a reduction
in the coefficient on (n — 71) compared to a regression
that omits #;, then the models partially explain the
n effect.

Table 8 compares regressions with dependant vari-
able r; and the dependant variable r; — 7; from (25).
We estimated these models using fixed effects, where
Cuberoot and Cube are separated to better interpret
the constant.

As we reported in §3, when we do not incorporate
any alternative models, there is a largely positive and
significant coefficient on (n — 7). When we incorpo-
rate each subject’s best prediction, based on their most
favorable model, we find that the coefficient on (n —n)
is reduced, and that for all four regressions, the dif-
ferences in the coefficient on (1 — 1) are all statistically
significant at 99% based on a Wald test. Nevertheless,
the coefficient on (1 — 1) remains positive and signifi-
cant. This result indicates that the alternative models
we consider explain part but not all of the n effect
that we see in our data.

5. Conclusion and Discussion

We examine, in the laboratory, the standard normative
model of setting the optimal reservation price in an
auction with bidders who have independent private
values. We find that the data is consistent with cer-
tain aspects of the theory but not with others. When
we vary the distribution of values of the bidders,
we find that the actual reservation prices our sell-
ers set shift in the direction predicted by the model.
However, we also find that reservation prices increase
with the number of bidders, even in situations where
sellers are provided with detailed information about
reserve price outcomes. This is contrary to theoretical

3 The Hausman (1978) test for consistency of random effects mod-
els was not always satisfied, hence fixed effects is appropriate.

predictions that state the optimal reservation price is
independent of the number of bidders.

To examine whether an alternative model organizes
the data better, we proceed to extend the standard
theory along three separate dimensions: risk aversion,
anticipated regret, and probability weighting. We find
that whereas risk aversion is consistent with average
reservation prices our sellers set for a small number of
bidders being below theoretical optimums, it does not
predict a dependence between the reservation prices
and the number of bidders. The model in which sell-
ers anticipate regret fits most of the qualitative aspects
of our data by predicting that the optimal reserve
price increases with the number of bidders, and may
even exceed the risk-neutral optimum level when the
number of bidders is large enough. The model in
which sellers distort probabilities does not fit par-
ticularly well on aggregate, but it does seem to fit
a reasonable proportion of our subjects when we fit
the model on an individual level. Overall, we find
that all three alternative models fit some portion of
our subjects, whereas only a single individual is best
described by the standard theory. Many experiments
tend to focus on a single behavioral explanation, but
we feel it is important to recognize that human actors
may exhibit highly heterogeneous behavior and that
such heterogeneity may persist in the population, so
attempting to fit one model to such individual data is
dangerous.

One practical implication of our work is that sell-
ers are subject to behavioral biases at least as much,
if not more, than are the bidders. Even in our sim-
ple laboratory setting, sellers are not able to set the
reservation prices optimally, which leads us to conjec-
ture that in more complex auctions in the field, sell-
ers may well be foregoing a substantial amount of
potential profit by not setting the reservation prices
in a profit-maximizing way. Further research into sell-
ers’ behavior in other auctions such as first-price auc-
tions or auctions with affiliated values is needed in
order to provide better insights into how our findings
might translate to other auction environments where
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changes in the information structure may vary the
predictions of the models. Finally, the introduction of
human bidders might pull auctioneer behavior further
from standard theoretical predictions, because issues
such as equity and fairness may now become salient.
All these factors need to be considered when provid-
ing analysis or decision-support tools associated with
real-world auctions.

6. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Technical Appendix

To consider the expected values needed for the computa-
tion of winner’s regret first consider the expectation given
in (16). The joint density of the highest and second highest
values is given as follows (see Krishna 2002):

fa, W1, y2) =n(n — Df () f () F ()", (26)

so the conditional joint density is given by

f(1),(2)(y1/ ¥ Uay>71,0 < r)

1
- mf m, W, v2) 7)
1
= SFo A —Fay " D fRF@)) (28)
n—1 .
- mﬂyl)ﬂyz)ls(%) ? (29)

for y; > r and y, < r and 0 otherwise. The expected value is
then given by

E(vay vy >1,00 <7)

:/; / Yifay,@ Wi, Y2100 > 1,02 <1)dy,dy, (30)

-1 [
= Fey ). [ O Fe) Cdndy (Y

n

:Wll—m»/f%f (yn( / rf(yz)F(yz)”’zdyZ)dyl. )

Consider the y, integral (inside parentheses). Via integration
by parts, we know that

[ FE@y 2y,

=F()" *F(y)ly— (n=2) fv ) ) F ) dy,  (33)
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=) = (1-2) [ F) Py, 64
(1=1) [ F)F()" 2y =F (1) 9)

o ( )n 1
/ FOF () 2 dy, = (36)
Substitute into (32) to obtain the following:
E(vgy | vqy > 7,00 <7)
-1 E(r)*~ 1
= F(T)n_’;l(l —F(T’)) 1f(y1 ( ) dyl (37)
1 7
= m/y vif (y1) dy- (38)

Now consider the expectation given in (17). The density
of the highest value given that the second highest value is
known to be v is given by

f(l)/ oW, )
f(Z)(U) ’

where the joint density of the highest and second high-
est values is given by (26) and the denominator is the
marginal density of the second highest value evaluated at v
and is given by (see Krishna 2002) f,)(v) = n(n — 1)(1 —
F(v))F(v)"2f(v), so we obtain the following:

n(n—1)f () f(0)F(0)"?

foWily=0)= (39)

Tl =9 = - FopF @
_ f)
T 1-F(v) (41)

for y; > v and 0 otherwise. Then calculating the expected
value of the highest value we have that

Ey oo =0)= [ nfotln=0dn @)

= %mf:%f(yl)dyp (43)

Notice that for r = v we have that (38) and (43) are identical.
The derivative of winner’s regret with respect to the
observed price is given by

w/(0)

—au| Lo [ st - e 1]
. f(v) 1 g 1—-F(v)
—awl_F(v)[l_F(v)fvylf(yl)dyl—v— ) } (45)
—aur Lo {E (w0 o =0) - 0= O] (46)
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