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Given a finite collection of estimators or classifiers, we study the problem
of model selection type aggregation, that is, we construct a new estimator or
classifier, called aggregate, which is nearly as good as the best among them
with respect to a given risk criterion. We define our aggregate by a simple
recursive procedure which solves an auxiliary stochastic linear programming
problem related to the original nonlinear one and constitutes a special case
of the mirror averaging algorithm. We show that the aggregate satisfies sharp
oracle inequalities under some general assumptions. The results are applied to
several problems including regression, classification and density estimation.

1. Introduction. Several problems in statistics and machine learning can be
stated as follows: given a collection of M estimators, construct a new estimator
which is nearly as good as the best among them with respect to a given risk cri-
terion. This target is called model selection (MS) type aggregation, and it can be
described in terms of the following stochastic optimization problem.

Let (Z,F) be a measurable space and let � be the simplex

� =
{
θ ∈ R

M :
M∑

j=1

θ(j) = 1, θ (j) ≥ 0, j = 1, . . . ,M

}
.

Here and throughout the paper we suppose that M ≥ 2 and we denote by z(j)

the j th component of a vector z ∈ R
M . We denote by [z(j)]Mj=1 the vector z =

(z(1), . . . , z(M))� ∈ R
M .

Let Z be a random variable with values in Z. The distribution of Z is denoted
by P and the corresponding expectation by E. Suppose that P is unknown and
that we observe n i.i.d. random variables Z1, . . . ,Zn with values in Z having the
same distribution as Z. We denote by Pn the joint distribution of Z1, . . . ,Zn and
by En the corresponding expectation.

Consider a measurable function Q :Z × � → R and the corresponding average
risk function

A(θ) = EQ(Z, θ),
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assuming that this expectation exists for all θ ∈ �. Stochastic optimization prob-
lems that are usually studied in this context consist in minimization of A on some
subsets of �, given the sample Z1, . . . ,Zn. Note that since the distribution of Z is
unknown, direct (deterministic) minimization of A is not possible.

For j ∈ {1, . . . ,M}, denote by ej the j th coordinate unit vector in R
M : ej =

(0, . . . ,0,1,0, . . . ,0) ∈ R
M , where 1 appears in j th position.

The aim of MS aggregation is to “mimic the oracle” minj A(ej ), that is, to con-
struct an estimator θ̃n measurable with respect to Z1, . . . ,Zn and called aggregate,
such that

EnA(θ̃n) ≤ min
1≤j≤M

A(ej ) + �n,M,(1.1)

where �n,M > 0 is a remainder term that should be as small as possible. Thus, the
stochastic optimization problem associated to MS aggregation is

min
θ∈{e1,...,eM }A(θ).

As an example, one may consider the loss function of the form Q(z, θ) =
�(z, θ�H) where � :Z × R → R and H = (h1, . . . , hM)� is a vector of prelimi-
nary estimators (classifiers) constructed from a training sample which is supposed
to be frozen in our considerations (thus, hj can be viewed as fixed functions). The
value A(ej ) = E�(Z,hj ) is the risk corresponding to hj . Inequality (1.1) can then
be interpreted as follows: the aggregate θ̃�

n H , that is, the convex combination of
initial estimators (classifiers) hj , with the vector of mixture coefficients θ̃n measur-
able with respect to Z1, . . . ,Zn, is nearly as good as the best among h1, . . . , hM .
The word “nearly” here means that the value minj A(ej ) is reproduced up to a rea-
sonably small remainder term �n,M . Lower bounds can be established showing
that, under some assumptions, the smallest possible value of �n,M in a minimax
sense has the form

�n,M = C logM

n
,(1.2)

with some constant C > 0; cf. [24].
Besides being in themselves precise finite sample results, oracle inequalities

of the type (1.1) are very useful in adaptive nonparametric estimation. They allow
one to prove that the aggregate estimator θ̃�

n H is adaptive in a minimax asymptotic
sense (and even sharp minimax adaptive in several cases; for more discussion see,
e.g., [18]).

The aim of this paper is to obtain bounds of the form (1.1)–(1.2) under some
general conditions on the loss function Q. For two special cases [density estima-
tion with the Kullback–Leibler (KL) loss, and regression model with squared loss]
such bounds have been proved earlier in the works of Catoni [7–9] and Yang [29].
They independently obtained the bound for density estimation with the KL loss,
and Catoni [8, 9] solved the problem for the regression model with squared loss.
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Bunea and Nobel [5] improved the regression with squared loss result of [8, 9] in
the case of bounded response, and obtained some related inequalities under weaker
conditions. For a problem which is different but close to ours (MS aggregation in
the Gaussian white noise model with squared loss) Nemirovski [18], page 226, es-
tablished an inequality similar to (1.1), with a suboptimal remainder term. Leung
and Barron [15] improved upon this result to achieve the optimal remainder term.

Several other works provided less precise bounds than (1.1)–(1.2), with
K minj A(ej ) where the leading constant K > 1, instead of minj A(ej ) in (1.1)
and with a remainder term which is sometimes larger than the optimal one (1.2);
a detailed account can be found in the survey [4] or in the lecture notes [17]. We
mention here only some recent work where aggregation of arbitrary estimators is
considered: [1, 6, 16, 22, 28, 30]. These results are useful for statistical applica-
tions, especially if the leading constant K is close to 1. However, the inequalities
with K > 1 do not provide valid bounds for the excess risk EnA(θ̃n)−minj A(ej ),
that is, they do not show that θ̃n approximately solves the stochastic optimization
problem.

Below we study the mirror averaging MS aggregate θ̂n which is defined by a
simple recursive procedure (cf. Section 3). This procedure outputs a convex mix-
ture of initial estimators. Before defining the procedure, we give some arguments
in favor of considering mixtures rather than selectors. Selectors are estimators with
values in {e1, . . . , eM}, for example, minimizers of the empirical risk. In Proposi-
tion 2.1 we show that selectors cannot satisfy (1.1)–(1.2), even for the simplest case
where the loss function Q is quadratic. The main results of the paper are given in
Section 4; there we prove that the suggested mirror averaging aggregate satisfies
oracle inequalities (1.1)–(1.2) under some general assumptions on Q. Finally, we
show in Section 5 that these assumptions are fulfilled for several statistical models
including regression, classification and density estimation.

2. Suboptimality of selectors. Recall that our goal is to construct an estima-
tor θ̃n that satisfies an oracle inequality of the type (1.1). A traditional way to ap-
proach this problem is based on empirical risk minimization. Define the empirical
risk An by

An(θ) = 1

n

n∑
i=1

Q(Zi, θ)

and the empirical risk minimizer (ERM) by

θ̃ERM
n = arg min

θ∈{e1,...,eM }
An(θ).

Clearly, the ERM selects one of the M initial estimators. More generally we call
selector any estimator Tn based on the sample (Z1, . . . ,Zn) having this property,
that is, such that Tn takes values in {e1, . . . , eM}.
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The following example shows that under the squared loss the rate of conver-
gence �n,M in (1.1) for any selector θ̃n = Tn is not faster than

√
(logM)/n which

is substantially worse than the optimal rate given in (1.2).
Indeed, consider the squared loss

Q(z, θ) = 1
2θ�θ − z�θ, z ∈ R

M, θ ∈ �.(2.1)

For k = 1, . . . ,M denote by P k the distribution of a Gaussian random vector Z ∈
R

M with mean ek(σ/2)
√

(logM)/n and the covariance matrix σ 2I where I stands
for the identity matrix, and denote by Ek the corresponding expectation. It is easy
to see that the risk Ak(·) = Ek[Q(Z, ·)] satisfies

Ak(ek) = 1/2 − (σ/2)
√

(logM)/n, Ak(ej ) = 1/2, k �= j.(2.2)

Therefore Ak admits a unique minimum over the set of vertices {e1, . . . , eM} and
the minimum is attained at ek .

PROPOSITION 2.1. Let Q be the squared loss function (2.1). Assume that we
observe i.i.d. random vectors Z1, . . . ,Zn with the same distribution as Z. Denote
by Ek

n the expectation with respect to the sample Z1, . . . ,Zn when Z has distribu-
tion Pk . Then there exists an absolute constant c > 0 such that

inf
Tn

sup
k=1,...,M

{
Ek

n[Ak(Tn)] − min
1≤j≤M

Ak(ej )

}
≥ cσ

√
logM

n
,(2.3)

where the infimum is taken over all the selectors Tn.

A weaker result of similar type [with the rate 1/
√

n instead of
√

(logM)/n] is
given in [14]. Proposition 2.1 implies that the slow rate

√
(logM)/n is the best

attainable rate for selectors, since the standard ERM selector satisfies the oracle
inequality (1.1) with rate �n,M ∼ √

(logM)/n. Proof of Proposition 2.1 is given
in Section 6.

The squared loss function (2.1) satisfies the assumptions of Theorems 4.1
and 4.2 below. As a consequence, the corresponding aggregated estimate θ̂n, pro-
vided by the algorithm of Section 3, attains the bound with fast rate (logM)/n:

Ek
nAk(θ̂n) ≤ min

1≤j≤M
Ak(ej ) + C

(σ 2 + 1) logM

n
∀ k = 1, . . . ,M.

On the other hand, for the same squared loss, Proposition 2.1 shows that a selec-
tor with values in {e1, . . . , eM}, in particular the ERM, cannot satisfy an oracle
inequality of the type (1.1) with the rate faster than

√
(logM)/n. This observation

suggests that extending the set of possible values of the estimator to the whole
simplex � may help to obtain faster rates of aggregation.
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3. The algorithm. Procedures with values in �, that is, convex mixtures of
the initial estimators, can be constructed in various ways. One of them originates
from the idea of mirror descent due to Nemirovski and Yudin [19]. This idea has
been further developed in [3, 20], mainly in the deterministic optimization frame-
work. A version of the mirror descent method due to Nesterov [20] has been ap-
plied to the aggregation problem in [12] under the name of mirror averaging. As
shown in [12], for convex loss functions Q the mirror averaging estimator θ̃n sat-
isfies under mild assumptions the following oracle inequality:

EnA(θ̃n) ≤ min
θ∈�

A(θ) + C0

√
logM

n
,(3.1)

where C0 > 0 is a constant depending only on the supremum norm of the gradient
∇θQ(·, ·). The name mirror averaging reflects the fact that the algorithm does a
stochastic gradient descent in the dual space with further “mirroring” to the primal
space and averaging; for more details and discussion see [12].

Note that in (3.1) the minimum is taken over the whole simplex �, so an in-
equality of the type (1.1) holds as well, but for large n the remainder term in (3.1)
is of larger order than the optimal one given in (1.2).

To improve upon this, consider the following auxiliary stochastic linear pro-
gramming problem. If A is a convex function, we can bound it from above by a
linear function:

A(θ) ≤
M∑

j=1

θ(j)A(ej ) � Ã(θ) ∀ θ ∈ �,

where Ã(θ) = EQ̃(Z, θ), with

Q̃(Z, θ) � θ�u(Z), u(Z) � (Q(Z, e1), . . . ,Q(Z, eM))�.

Note that

Ã(ej ) = A(ej ), j = 1, . . . ,M.

Since � is a simplex, the minimum of the linear function Ã is attained at one of
its vertices. Therefore,

min
θ∈�

Ã(θ) = min
1≤j≤M

A(ej ),

which shows that the linear stochastic programming problem of minimization of Ã

on � is linked to the problem of MS aggregation. This also suggests that the mirror
averaging algorithm of [12] applied to minimization of the linear function Ã could
make sense to achieve our MS aggregation goal. Particularizing the definition of
mirror averaging procedure from [12] for linear function Ã, we get the following
algorithm.
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For β > 0 define the function Wβ : RM → R by

Wβ(z) � β log

(
1

M

M∑
j=1

e−z(j)/β

)
, z = (

z(1), . . . , z(M)).(3.2)

The gradient of Wβ is given by

∇Wβ(z) =
[
− e−z(j)/β∑M

k=1 e−z(k)/β

]M

j=1
.

Consider the vector

ui � (Q(Zi, e1), . . . ,Q(Zi, eM))� = u(Zi) = ∇θ Q̃(Zi, θ),

and the iterations:

• Fix the initial values θ0 ∈ � and ζ0 = 0 ∈ R
M .

• For i = 1, . . . , n − 1, do the recursive update

ζi = ζi−1 + ui,
(3.3)

θi = −∇Wβ(ζi).

• Output at iteration n the average

θ̂n = 1

n

n∑
i=1

θi−1.(3.4)

Note that the estimator θ̂n is measurable with respect to (Z1, . . . ,Zn−1). The com-
ponents θ

(j)
i of the vector θi from (3.3) can be written in the form

θ
(j)
i = exp (−β−1 ∑i

m=1 Q(Zm, ej ))∑M
k=1 exp (−β−1 ∑i

m=1 Q(Zm, ek))
, j = 1, . . . ,M.

The “mirroring” function ∇Wβ maps the variables ζi that take on values in the
dual space (which is R

M equipped with the �∞ norm) to the primal space (which
is the �1 body �); cf. [12]. Note that Wβ defined in (3.2) is not the only possible
choice; other functions Wβ satisfying the conditions described in [12] can be used
to construct the updates (3.3).

We arrived at the algorithm (3.3)–(3.4) by a linear stochastic programming ar-
gument. It is interesting that several particular cases or versions of this algorithm
are well known, and they were derived from different considerations. We men-
tion first the literature on prediction of individual deterministic sequences. For a
detailed account on this subject see [10]. A general problem considered there is
for an agent to compete against the observed predictions of a group of experts,
so that the agent’s error is close to that of the best expert. In that framework the
observations Zi are supposed to be uniformly bounded nonrandom variables, and
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the risk function is defined as the cumulative loss over the trajectory. Interestingly,
for such problems, which are quite different from ours, methods similar to (3.3)
constitute one of the principal tools; cf. [11, 13, 23, 26, 27]. However, in con-
trast to our procedure, those methods do not involve the averaging step (3.4); they
do not need it because they deal with non-random observations and cumulative
losses. Note that the algorithm with the averaging step (3.4) included, that is, the
one that we consider here, has also been discussed in the literature, though only for
two specific combinations of loss function/model: the squared loss Q in regression
model [5, 8, 9] and the Kullback–Leibler loss Q in density estimation [7, 9, 29]. It
is interesting that in the latter case the algorithm (3.3)–(3.4) can be derived using
information-theoretical arguments from the theory of source coding; cf. [9].

Remark that we define algorithm (3.3)–(3.4) for a general loss function Q, and
we consider arbitrary i.i.d. data Zi , not restricted to a particular model.

Since (3.3)–(3.4) is a special case of the mirror averaging method of [12] cor-
responding to a linear function Ã, the coarse oracle inequality (3.1) remains valid
with A replaced by Ã. But we show below that in fact θ̂n satisfies a stronger in-
equality, that is, one with the optimal rate (1.2).

4. Main results. In this section we prove two theorems. They establish oracle
inequalities of the type (1.1) for θ̂n. Theorem 4.1 requires a more conservative as-
sumption on the loss functions Q than Theorem 4.2. This assumption is easier to
check, and it often leads to a sharper bound but not for such models as nonparamet-
ric density estimation with the L2 loss which will be treated using Theorem 4.2.
In some cases (e.g., in regression with Gaussian noise) Theorem 4.1 yields a sub-
optimal remainder term, while Theorem 4.2 does the correct job. In both theorems
it is supposed that the values A(e1), . . . ,A(eM) are finite. We will also need the
following definition.

DEFINITION 4.1. A function T : RM → R is called exponentially concave if
the composite function exp◦T is concave.

It is straightforward to see that exponential concavity of a function −T implies
that T is convex. Furthermore, if −T/β is exponentially concave for some β > 0,
then −T/β ′ is exponentially concave for all β ′ > β . Let Q1 be the function on
Z × � × � defined by Q1(z, θ, θ ′) = Q(z, θ) − Q(z, θ ′) for all z ∈ Z and all
θ, θ ′ ∈ �.

THEOREM 4.1. Assume that Q1 can be decomposed into the sum of two func-
tions Q1 = Q2 + Q3 such that:

• The mapping θ �→ −Q2(z, θ, θ ′)/β is exponentially concave on the simplex �,
for all z ∈ Z, θ ′ ∈ �, and Q2(z, θ, θ) = 0 for all z ∈ Z, θ ∈ �.

• There exists a function R on Z integrable with respect to P and such that
−Q3(z, θ, θ ′) ≤ R(z), for all z ∈ Z, θ, θ ′ ∈ �.
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Then the aggregate θ̂n satisfies, for any M ≥ 2, n ≥ 1, the following oracle in-
equality:

En−1A(θ̂n) ≤ min
1≤j≤M

A(ej ) + β logM

n
+ E[R(Z)].

THEOREM 4.2. Assume that for some β > 0 there exists a Borel function
	β :�×� → R+ such that the mapping θ �→ 	β(θ, θ ′) is concave on the simplex
� for any fixed θ ′ ∈ �, 	β(θ, θ) = 1 and E exp(−Q1(Z, θ, θ ′)/β) ≤ 	β(θ, θ ′) for
all θ, θ ′ ∈ �. Then the aggregate θ̂n satisfies, for any M ≥ 2, n ≥ 1, the following
oracle inequality:

En−1A(θ̂n) ≤ min
1≤j≤M

A(ej ) + β logM

n
.

Proofs of both theorems are based on the following lemma. Introduce the dis-
crete random variable ω with values in the set {e1, . . . , eM} and with the distribu-
tion P defined conditionally on (Z1, . . . ,Zn−1) by P[ω = ej ] = θ̂

(j)
n where θ̂

(j)
n is

the j th component of θ̂n. The expectation corresponding to P is denoted by E.

LEMMA 4.1. For any measurable function Q and any β > 0 we have

En−1A(θ̂n) ≤ min
1≤j≤M

A(ej ) + β logM

n
+ S1,(4.1)

where

S1 � βEn log
(

E exp
[
−Q1(Zn,ω,E[ω])

β

])
.

PROOF. By definition of Wβ(·), for i = 1, . . . , n,

Wβ(ζi) − Wβ(ζi−1) = β log
( ∑M

j=1 e−ζ
(j)
i /β

∑M
j=1 e−ζ

(j)
i−1/β

)

(4.2)
= β log(−v�

i ∇Wβ(ζi−1)) = β log(v�
i θi−1),

where

vi =
[
exp

(
−u

(j)
i

β

)]M

j=1
.

Taking expectations on both sides of (4.2), summing up over i, using the fact that
(θi−1,Zi) has the same distribution as (θi−1,Zn) for i = 1, . . . , n, and applying
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the Jensen inequality, we get

En[Wβ(ζn) − Wβ(ζ0)]
n

= β

n

n∑
i=1

En log

(
M∑

j=1

θ
(j)
i−1 exp

[
−Q(Zi, ej )

β

])

= β

n

n∑
i=1

En log

(
M∑

j=1

θ
(j)
i−1 exp

[
−Q(Zn, ej )

β

])
(4.3)

≤ βEn log

(
M∑

j=1

θ̂ (j)
n exp

[
−Q(Zn, ej )

β

])
� S.

Since Q1(z,ω,E[ω]) = Q(z,ω) − Q(z,E[ω]) and E[ω] = θ̂n, the RHS of (4.3)
can be written in the form

S = βEn log
(

E exp
[
−Q(Zn,ω)

β

])

= βEn log
(

exp
[
−Q(Zn,E[ω])

β

])
+ S1(4.4)

= −En−1A(θ̂n) + S1.

We now bound from below the LHS of (4.3). For any j� = 1, . . . ,M , by
monotonicity of the function log(·), we have

Wβ(ζn) ≥ β log
(

1

M
e−ζ

(j�)
n /β

)
= −β logM − ζ (j�)

n ,

where ζ
(j�)
n = ζ�

n ej� is the j�th component of ζn. Set j� = arg min1≤j≤M A(ej ).
Then, using the fact that Wβ(ζ0) = Wβ(0) = 0 we obtain

En[Wβ(ζn) − Wβ(ζ0)]
n

≥ −β logM

n
− En[ζ�

n ej�]
n

(4.5)

= −β logM

n
− min

1≤j≤M
A(ej ).

Combining (4.3), (4.4) and (4.5) gives the lemma. �

In view of Lemma 4.1, to prove Theorems 4.1 and 4.2 it remains to give appro-
priate upper bounds for S1.

PROOF OF THEOREM 4.1. Since Q1 = Q2 + Q3, with −Q3(z, θ, θ ′) ≤ R(z)

for all z ∈ Z, θ, θ ′ ∈ �, the quantity S1 can be bounded from above as follows:

S1 ≤ βEn log
(

E exp
[
−Q2(Zn,ω,E[ω])

β

])
+ En[R(Zn)].
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Now since −Q2(z, ·)/β is exponentially concave on � for all z ∈ Z, the Jensen
inequality yields

E exp
[
−Q2(Zn,ω,E[ω])

β

]
≤ exp

[
−Q2(Zn,E[ω],E[ω])

β

]
= 1.

Therefore S1 ≤ En[R(Zn)]. This and Lemma 4.1 imply the result of the theorem.
�

PROOF OF THEOREM 4.2. Using the Jensen inequality twice, with the con-
cave functions log(·) and 	β(·,E[ω]), we get

S1 ≤ βEn−1 log
(
EE exp

[
−Q1(Z,ω,E[ω])

β

])

= βEn−1 log
(

EE exp
[
−Q1(Z,ω,E[ω])

β

])
(4.6)

≤ βEn−1 log(E	β(ω,E[ω]))
≤ βEn−1 log(	β(E[ω],E[ω])) = 0,

where the first equality is due to the Fubini theorem. Theorem 4.2 follows now
from (4.6) and Lemma 4.1. �

REMARK. A particular case of Theorem 4.1 where Q3 ≡ 0 and the loss Q

is uniformly bounded in z, θ can be derived from the theory of prediction of de-
terministic sequences discussed in Section 3 above. We sketch here the argument
that can be used. If written in our notation, some results of that theory (see, e.g.,
[13, 23] or Section 3.3 of [10]) are as follows: under exponential concavity of
θ �→ −ηQ(z, θ) for some η > 0 and boundedness of supz,θ |Q(z, θ)|, for any fixed
sequence Zi we have

1

n

n∑
i=1

Q(Zi, θi−1) ≤ min
j=1,...,M

1

n

n∑
i=1

Q(Zi, ej ) + C logM

n
(4.7)

where C is a constant depending only on β and on the value supz,θ |Q(z, θ)|.
Assuming now that Zi are random and i.i.d., taking expectations in (4.7) and in-
terchanging the expectation and the minimum on the right-hand side we obtain

En

(
1

n

n∑
i=1

Q(Zi, θi−1)

)
≤ min

j=1,...,M
A(ej ) + C logM

n
.(4.8)

Now, exponential concavity of θ �→ −ηQ(z, θ) implies convexity of θ �→ Q(z, θ)

and thus convexity of A(·). Therefore, since θi−1 is measurable with respect to
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Z1, . . . ,Zi−1 using Jensen’s inequality and the definition of θ̂n we get

En

(
1

n

n∑
i=1

Q(Zi, θi−1)

)
= 1

n

n∑
i=1

Ei−1A(θi−1)

(4.9)

= En−1

(
1

n

n∑
i=1

A(θi−1)

)
≥ En−1A(θ̂n).

Combining (4.8) and (4.9) we get inequality of the form (1.1)–(1.2). We note that
such an argument can be used as an alternate proof of Corollary 5.3 in the next
section. However, it does not apply to other examples that we treat below using
Theorems 4.1 and 4.2 since in those examples either the loss is not bounded or
the exponential concavity condition is not satisfied. We need only some approxi-
mate exponential concavity (when using Theorem 4.1) or a kind of “exponential
concavity in the mean” (when using Theorem 4.2).

5. Examples. In this section we apply Theorems 4.1 and 4.2 to three common
statistical problems (regression, classification and density estimation) in order to
establish some new oracle inequalities. In particular, we cover the two examples
for which our algorithm has been already studied in the literature: regression model
with squared loss and density estimation with KL loss. For the latter case we ob-
serve that our general argument easily implies the earlier results [7, 9, 29], while
for regression with squared loss we significantly improve what was known before
[5, 8, 9].

All the loss functions considered below are twice differentiable. The following
proposition gives a simple sufficient condition for exponential concavity.

PROPOSITION 5.1. Let g be a twice differentiable function on � with gradient
∇g(θ) and Hessian matrix ∇2g(θ), θ ∈ �. If there exists β > 0 such that for any
θ ∈ �, the matrix

β∇2g(θ) − ∇g(θ)(∇g(θ))�,

is positive semidefinite, then −g(·)/β is exponentially concave on the simplex �.

PROOF. Since g is twice differentiable exp(−g(·)/β) is also twice differen-
tiable with Hessian matrix

H(θ) = 1

β
exp

(
−g(θ)

β

)[∇g(θ)(∇g(θ))�

β
− ∇2g(θ)

]
.(5.1)

For any λ ∈ R
M , θ ∈ �, we have

λ�H(θ)λ = 1

β
exp

(
−g(θ)

β

)[
(λ�∇g(θ))2

β
− λ�[∇2g(θ)]λ

]
≤ 0.

Hence exp(−g(·)/β) has a negative semidefinite Hessian and is therefore concave.
�
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5.1. Application of Theorem 4.1. We begin with the models that satisfy as-
sumptions of Theorem 4.1.

1. Regression with squared loss. Let Z = X × R where X is a complete sep-
arable metric space equipped with its Borel σ -algebra. Consider a random vari-
able Z = (X,Y ) with X ∈ X and Y ∈ R. Assume that the conditional expectation
f (X) = E(Y |X) exists and define ξ = Y − E(Y |X), so that

Y = f (X) + ξ,(5.2)

where X ∈ X is a random variable with probability distribution PX , Y ∈ R,
f :X → R is the regression function and ξ is a real-valued random variable
satisfying E(ξ |X) = 0. Assume that E(Y 2) < ∞ and ‖f ‖∞ ≤ L for some fi-
nite constant L > 0 where ‖ · ‖∞ denotes the L∞(PX)-norm. We have M

functions f1, . . . , fM such that ‖fj‖∞ ≤ L,j = 1, . . . ,M . Define ‖f ‖2
2,PX

=∫
X f 2(x)PX(dx). Our goal is to construct an aggregate that mimics the or-

acle min1≤j≤M ‖fj − f ‖2
2,PX

. The aggregate is based on the i.i.d. sample
(X1, Y1), . . . , (Xn,Yn) where (Xi, Yi) have the same distribution as (X,Y ). For
this model, with z = (x, y) ∈ X × R, define the loss function

Q(z, θ) = (
y − θ�H(x)

)2 ∀θ ∈ �,

with H(x) = (f1(x), . . . , fM(x))�. It yields for all z ∈ Z, θ, θ ′ ∈ �,

Q1(z, θ, θ ′) = Q(z, θ)−Q(z, θ ′) = 2y(θ ′−θ)�H(x)+[θ�H(x)]2 −[θ ′�H(x)]2.

Consider positive constants b and B and assume that β > (b/B)2. We now decom-
pose Q1 into the sum Q1 = Q2 + Q3, where

Q2(z, θ, θ ′) = 2y1{|y|<Bβ}(θ ′ − θ)�H(x) + [θ�H(x)]2 − [θ ′�H(x)]2

+ y2

Bβ
[(θ ′ − θ)�H(x)]21{b√

β<|y|<Bβ}

and

Q3(z, θ, θ ′) = 2y1{|y|≥Bβ}(θ ′ − θ)�H(x) − y2

Bβ
[(θ ′ − θ)�H(x)]21{b√

β<|y|<Bβ}.

We have

−Q3(z, θ, θ ′) ≤ 4L|y|1{|y|≥Bβ} + 4L2y2

Bβ
1{b√

β<|y|<Bβ} � Rβ(y).(5.3)

On the other hand, Q2(z, θ, θ) = 0,∀θ ∈ �,z ∈ Z and we can prove that the map-
ping θ �→ −Q2(z, θ, θ ′)/β is exponentially concave for any z ∈ Z, θ ′ ∈ � when b
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and B are properly chosen. For all θ ∈ � and z = (x, y) the gradient and Hessian
of Q2 are respectively given by

∇θQ2 = ∇θQ2(z, θ, θ ′)
= −2

(
y1{|y|<Bβ} − θ�H(x)

)
H(x)

− 2
y2

Bβ
1{b√

β<|y|<Bβ}[(θ ′ − θ)�H(x)]H(x)

and

∇2
θθQ2 = ∇2

θθQ2(z, θ, θ ′) = 2H(x)H(x)� + 2
y2

Bβ
1{b√

β<|y|<Bβ}H(x)H(x)�.

We now prove that Proposition 5.1 applies for g(θ) = Q2(z, θ, θ ′), for all z =
(x, y) ∈ Z and θ ′ ∈ �. For any λ ∈ R

M , any θ, θ ′ ∈ � and any z ∈ Z,

(λ�∇θQ2)
2 ≤

(
2|y|1{|y|<Bβ} + 2L + 4Ly2

Bβ
1{b√

β<|y|<Bβ}
)2

[λ�H(x)]2.

Note now that |y| ≤ Bβ implies that y2/Bβ ≤ |y|. Hence

(λ�∇θQ2)
2 ≤ (

2|y|1{|y|≤b
√

β} + 2L + (4L + 2)|y|1{b√
β<|y|<Bβ}

)2[λ�H(x)]2

≤ (
8b2β + 8L2 + 2(4L + 2)2|y|21{b√

β<|y|<Bβ}
)[λ�H(x)]2.

Therefore

(λ�∇θQ2)
2

β
− λ�(∇2

θθQ2)λ

≤
(

8b2 + 8L2

β
− 2 +

[
2(4L + 2)2 − 2

B

] |y|2
β

1{b√
β<|y|<Bβ}

)
[λ�H(x)]2.

If we choose B ≤ (4L + 2)−2 and LB < b < 1/4, the above quadratic form is
smaller than or equal to 0 and Proposition 5.1 applies for any β > (b/B)2. Now,
since A(θ) = EQ(Z, θ) = E(Y − θ�H(X))2 = ‖f − θ�H‖2

2,PX
+ E(ξ2) for all

θ ∈ �, we obtain the following corollary of Theorem 4.1.

COROLLARY 5.1. Consider the regression model (5.2) where X ∈ X, Y ∈
R, f :X → R and ξ = Y − f (X) is a real-valued random variable satisfying
E(ξ |X) = 0. Assume also that E(Y 2) < ∞ and ‖fj‖∞ ≤ L,j = 1, . . . ,M , for
some finite constant L > 0. Then for any positive constants B ≥ (4L+2)−2,LB <

b < 1/4 and any β ≥ (b/B)2, the aggregate estimator f̃n(x) = θ̂�
n H(x), x ∈ X,

where θ̂n is obtained by the mirror averaging algorithm, satisfies

En−1‖f̃n − f ‖2
2,PX

≤ min
1≤j≤M

‖fj − f ‖2
2,PX

+ β logM

n
+ E[Rβ(Y )],(5.4)
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where

Rβ(y) = 4L|y|1{|y|≥Bβ} + 4L2y2

Bβ
1{b√

β<|y|<Bβ}.

This result improves an inequality obtained by [5]: it yields better rate under
the same moment conditions. We note that the aggregate f̃n as in Corollary 5.1 is
of the form suggested by Catoni [8, 9]. If there exists a constant L0 > 0 such that
|Y | ≤ L0 a.s., the last summand disappears for β > 16L2

0, and in this case (5.4) can
be also deduced from [8, 9], though in a coarser form and under a more restrictive
assumption on β .

An advantage of Corollary 5.1 is that no heavy assumption on the moments
of ξ is needed to get reasonable bounds. Thus, the second moment assump-
tion on Y is enough for a bound with the n−1/2 rate. Indeed, choosing β ∼
(n/ logM)2/(2+s), s > 0, in Corollary 5.1, we immediately get the following re-
sult.

COROLLARY 5.2. Consider the regression model (5.2) where X ∈ X, Y ∈
R, f :X → R and ξ = Y − f (X) is a real-valued random variable satisfy-
ing E(ξ |X) = 0. Assume also that E(|Y |s) ≤ ms < ∞ for some s ≥ 2 and
‖fj‖∞ ≤ L,j = 1, . . . ,M , for some finite constant L > 0. Then there exist con-
stants C1 > 0 and C2 = C2(ms,L,C1) > 0 such that the aggregate estimator
f̃n(x) = θ̂�

n H(x), x ∈ X, where θ̂n is obtained by the mirror averaging algorithm
with β = C1(n/ logM)2/(2+s), satisfies

En−1‖f̃n − f ‖2
2,PX

≤ min
1≤j≤M

‖fj − f ‖2
2,PX

+ C2

(
logM

n

)s/(2+s)

.(5.5)

2. Classification. Consider the problem of binary classification. Let (X,F ) be
a measurable space, and set Z = X × {−1,1}. Consider Z = (X,Y ) where X

is a random variable with values in X and Y is a random label with values in
{−1,1}. For a fixed convex twice differentiable function ϕ : R → R+, define the
ϕ-risk of a real-valued classifier h :X → [−1,1] as Eϕ(−Yh(X)). In our frame-
work, we have M such classifiers h1, . . . , hM and the goal is to mimic the oracle
min1≤j≤M Eϕ(−Yhj (X)) based on the i.i.d. sample (X1, Y1), . . . , (Xn,Yn) where
(Xi, Yi) have the same distribution as (X,Y ). For any z = (x, y) ∈ X × {−1,1},
we define the loss function

Q(z, θ) = ϕ(−yθ�H(x)) ≥ 0 ∀θ ∈ �,

where H(x) = (h1(x), . . . , hM(x))�. For such a function and for all θ ∈ �, z =
(x, y) ∈ X × {−1,1} we have

∇θQ1(z, θ, θ ′) = −yϕ′(−yθ�H(x))H(x),

∇2
θθQ1(z, θ, θ ′) = ϕ′′(−yθ�H(x))H(x)H(x)�.
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Thus, from Proposition 5.1 the mapping θ �→ −Q1(z, θ, θ ′)/β is exponen-
tially concave for all z and θ ′ if β ≥ βϕ where βϕ is such that [ϕ′(x)]2 ≤
βϕϕ′′(x), ∀|x| ≤ 1. Now, since

A(θ) = EQ(Z, θ) and Q(Z, θ) = ϕ(−Yθ�H(X)), ∀θ ∈ �,Z = (X,Y ),

we obtain the following corollary of Theorem 4.1 applied with Q2 = Q1 and
Q3 ≡ 0.

COROLLARY 5.3. Consider the binary classification problem as described
above. Assume that the convex function ϕ is such that

[ϕ′(x)]2 ≤ βϕϕ′′(x) ∀|x| ≤ 1.

Then the aggregate classifier h̃n(x) = θ̂�
n H(x), x ∈ X, where θ̂n is obtained by

the mirror averaging algorithm with β ≥ βϕ , satisfies

Enϕ(−Ynh̃n(Xn)) ≤ min
1≤j≤M

Eϕ(−Y h̃j (X)) + β logM

n
.(5.6)

For example, inequality (5.6) holds with the exponential Boosting loss ϕ1(x) =
ex , for which βϕ1 = e and for the Logit-Boosting loss ϕ2(x) = log2(1 + ex) (in
that case βϕ2 = e log 2). For the squared loss ϕ3(x) = (1 − x)2 and the 2-norm soft
margin loss ϕ4(x) = max{0,1 − x}2 inequality (5.6) is satisfied with β ≥ 2.

3. Nonparametric density estimation with Kullback–Leibler (KL) loss. Let X

be a random variable with values in a measurable space (X,F ). Assume that
the distribution of X admits a density p with respect to a σ -finite measure μ on
(X,F ). Assume also that we have M probability densities pj with respect to μ on
(X,F ) (estimators of p) and of an i.i.d. sample X1, . . . ,Xn where Xi take values
in X, and have the same distribution as X. Define the KL divergence between two
probability densities p and q with respect to μ as

K(p, q) �
∫
X

log
(

p(x)

q(x)

)
p(x)μ(dx),

if the probability distribution corresponding to p is absolutely continuous with
respect to the one corresponding to q , and K(p, q) = ∞ otherwise. We assume
that the entropy integral

∫
p(x) logp(x)μ(dx) is finite.

Our goal is to construct an aggregate that mimics the KL oracle defined by
min1≤j≤M K(p,pj ). For x ∈ X, θ ∈ �, we introduce the corresponding loss func-
tion

Q(x, θ) = − log(θ�H(x)),(5.7)

where H(x) = (p1(x), . . . , pM(x))�. We set Z = X. Then

A(θ) = EQ(X,θ) = −
∫

log(θ�H(x))p(x)μ(dx)
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where the integral is finite if all the divergences K(p,pj ) are finite. In particular,
A(ej ) = K(p,pj ) − ∫

p(x) logp(x)μ(dx). Since, for all x ∈ X, we have

exp(−Q1(x, θ, θ ′)/β) = (θ�H(x))1/β(θ ′�H(x))−1/β,

the mapping θ �→ −Q1(x, θ, θ ′)/β is exponentially concave on � for any β ≥ 1.
Hence, we can apply Theorem 4.1, again with Q2 = Q1 and Q3 ≡ 0 and we obtain
the following corollary.

COROLLARY 5.4. Consider the density estimation problem with the KL loss
as described above, such that

∫
p(x)| logp(x)|μ(dx) < ∞. Then the aggregate

estimator p̃n(x) = θ̂�
n H(x), x ∈ X, where θ̂n is obtained by the mirror averaging

algorithm with β = 1, satisfies

En−1K(p, p̃n) ≤ min
1≤j≤M

K(p,pj ) + logM

n
.

We note that the KL aggregate p̃n as in Corollary 5.4 coincides with the “pro-
gressive mixture rule” considered by Catoni [7–9] and Yang [29] and the oracle
inequality of Corollary 5.4 is the one obtained in those papers. We also note that
this is the most trivial example of application of our results. In fact, when Q is
of the particular form (5.7), the convexity argument that we developed in Theo-
rems 4.1 and 4.2 is not needed since S1 = 0, so that Corollary 5.4 follows directly
from Lemma 4.1. Writing the proof of Lemma 4.1 for this particular Q we es-
sentially recover the proof of Theorem 3.1.1 in [9]. Extension of Corollary 5.4 to
β ≥ 1 is straightforward but the oracle inequality for the corresponding aggregate
(“Gibbs estimator”; cf. [9]) is less interesting because it has obviously a larger
remainder term.

5.2. Applications of Theorem 4.2. We now apply Theorem 4.2 to obtain
bounds for the regression setup that are sharper than the existing ones. We also
use this result to handle the problems of density estimation with squared loss and
some examples of parametric estimation that cannot be treated using Theorem 4.1.

4. Regression with squared loss and finite exponential moment. We consider
here the regression model described in Corollary 5.1 under the additional assump-
tion that, conditionally on X, the regression residual ξ admits an exponential mo-
ment, that is, there exist positive constants b and D such that, PX-a.s.,

E(exp(b|ξ |)|X) ≤ D.

Since E(ξ |X) = 0, this assumption is equivalent to the existence of positive con-
stants b0 and σ 2 such that, PX-a.s.,

E(exp(tξ)|X) ≤ exp(σ 2t2/2) ∀ |t | ≤ b0;(5.8)
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cf. [21], page 56.
In this case, application of Corollary 5.1 leads to suboptimal rates because of

the term E[Rβ(Y )] in (5.4). We show now that, using Theorem 4.2, we can obtain
an oracle inequality with optimal rate (logM)/n.

To apply Theorem 4.2, we analyze the mapping θ �→ E exp(−Q1(Z, θ, θ ′)/β).
For the regression model with squared loss as described above, we have Z =
(X,Y ), Q(Z, θ) = (Y − θ�H(X))2, and

E exp(−Q1(Z, θ, θ ′)/β)

= E exp
(
− 1

β

[(
Y − H(X)�θ

)2 − (
Y − H(X)�θ ′)2])

= E exp
(
− 1

β

[−2ξ
(
U(X, θ) − U(X, θ ′)

) + U2(X, θ) − U2(X, θ ′)
])

,

where U(X, θ) � f (X) − H(X)�θ . Since∣∣2(
U(X, θ) − U(X, θ ′)

)∣∣ = 2|(θ − θ ′)�H(X)| ≤ 4L,

conditioning on X and using (5.8) we get that, for any β ≥ 4L/b0,

E exp(−Q1(Z, θ, θ ′)/β) ≤ 	β(θ, θ ′),
where

	β(θ, θ ′) � E exp
(

2σ 2

β2 [(θ − θ ′)�H(X)]2 − 1

β
[U2(X, θ) − U2(X, θ ′)]

)
.

Clearly, 	β(θ, θ) = 1. Thus, to apply Theorem 4.2 it suffices now to specify β0 > 0
such that the mapping

θ �→ Q̄(x, θ, θ ′) �
(
− 1

β
+ 2σ 2

β2

)
(θ�H(x))2

− 4σ 2

β2 (H(x)�θ)(H(x)�θ ′) + 2

β
f (x)(H(x)�θ)

is exponentially concave for all β ≥ β0, θ ′ ∈ � and almost all x ∈ X. Note that

∇θ Q̄(x, θ, θ ′) =
(

2γ
(
f (x) − H(x)�θ

) + 4σ 2

β2

(
f (x) − H(x)�θ ′))H(x),

∇2
θθ Q̄(x, θ, θ ′) = −2γH(x)H(x)�,

where γ = 1
β

− 2σ 2

β2 . Proposition 5.1 implies that Q̄ is exponentially concave

in θ if ∇2
θθ Q̄(x, θ, θ ′) + ∇θ Q̄(x, θ, θ ′)(∇θ Q̄(x, θ, θ ′))� ≤ 0. If we assume that

maxj ‖f − fj‖∞ ≤ L̃, we obtain that the latter property holds for β ≥ β0 �
2σ 2 + 2L̃2. Thus, Theorem 4.2 applies for β ≥ max(2σ 2 + 2L̃2,4L/b0) and we
have proved the following result.
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COROLLARY 5.5. Consider the regression model (5.2) where X ∈ X, Y ∈ R,
f :X → R and the random variable ξ = Y −f (X) is such that there exist positive
constants b0 and σ 2 for which (5.8) holds PX-a.s. Assume also that ‖f − fj‖∞ ≤
L̃ and ‖fj‖∞ ≤ L,j = 1, . . . ,M , for some finite positive constants L, L̃. Then for
any β ≥ max(2σ 2 + 2L̃2,4L/b0) the aggregate estimator f̃n(x) = θ̂�

n H(x), x ∈
X, where θ̂n is obtained by the mirror averaging algorithm, satisfies

En−1‖f̃n − f ‖2
2,PX

≤ min
1≤j≤M

‖fj − f ‖2
2,PX

+ β logM

n
.(5.9)

To see how good the constants are, we may compare this corollary with the
results obtained in other papers for the particular case where ξ is conditionally
Gaussian given X. In this case we have b0 = ∞ and Corollary 5.5 yields the fol-
lowing result.

COROLLARY 5.6. Consider the regression model (5.2) where X ∈ X, Y ∈
R, f :X → R and, conditionally on X, the random variable ξ = Y − f (X)

is Gaussian with zero mean and variance bounded by σ 2. Assume that ‖f −
fj‖∞ ≤ L̃, for some finite constant L̃ > 0. Then for any β ≥ 2σ 2 + 2L̃2 the ag-
gregate estimator f̃n(x) = θ̂�

n H(x), x ∈ X, where θ̂n is obtained by the mirror
averaging algorithm, satisfies (5.9).

This result for Gaussian regression model is more general than that of [9],
page 89, because we do not assume that f and all fj , j = 1, . . . ,M, are uniformly
bounded. Even if we assume in addition that f and all fj , j = 1, . . . ,M, are uni-
formly bounded by L, Corollary 5.6 improves the result of [9], page 89. Indeed,
in this case we have L̃ ≤ 2L and a sufficient condition on β in Corollary 5.6 is
β ≥ 2σ 2 + 8L2. In [9], page 89, we find the result of Corollary 5.6, though under
much more restrictive condition β ≥ 18.01σ 2 + 70.4L2.

5. Nonparametric density estimation with the L2 loss. Let μ be a σ -finite mea-
sure on the measurable space (X,F ). In this whole example, densities are un-
derstood with respect to μ and ‖ · ‖∞ denotes the L∞(μ)-norm. Assume that we
have M probability densities pj ,‖pj‖∞ ≤ L,j = 1, . . . ,M , and of an i.i.d. sam-
ple X1, . . . ,Xn where Xi take values in X, and are distributed as a random variable
X with unknown probability density p such that ‖p‖∞ ≤ L for some positive con-
stant L. Our goal is to mimic the oracle defined by min1≤j≤M ‖pj − p‖2

2, where
‖p‖2

2 = ∫
p2(x)μ(dx).

The corresponding loss function is defined, for any x ∈ X, θ ∈ �, by

Q(x, θ) = θ�Gθ − 2θ�H(x),(5.10)

where H(x) = (p1(x), . . . , pM(x))� and G is an M × M positive semidefi-
nite matrix with elements Gjk = ∫

pjpk dμ ≤ L. We set Z = X. Then A(θ) =
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EQ(X,θ) = ‖p − θ�H‖2
2 − ‖p‖2

2. We now want to check conditions of The-
orem 4.2, that is, to show that for the loss function (5.10), the mapping θ �→
E exp(−Q1(X, θ, θ ′)/β) is concave on �, for any θ ′ ∈ � and for β ≥ β0 with
some β0 > 0 that will be specified below. Note first that

Q1(x, θ, θ ′) = Q(x, θ) − Q(x, θ ′)
(5.11)

= (θ − θ ′)�G(θ + θ ′) − 2(θ − θ ′)�H(x).

Fix θ ′ ∈ �. Concavity of the above mapping can be checked by considering its
Hessian H̃ which, in view of (5.1), satisfies for any λ ∈ R

M, θ ∈ �,

λ�H̃(θ)λ = 1

β2 E

{
exp

(
−Q1(X, θ, θ ′)

β

)
[(λ�∇θQ1(X, θ, θ ′))2

− βλ�∇2
θθQ1(X, θ, θ ′)λ]

}
.

Note that for any x ∈ X, θ ∈ � we have

∇θQ1(x, θ, θ ′) = 2Gθ − 2H(x) and ∇2
θθQ1(x, θ, θ ′) = 2G.

By (5.11) this yields, for any λ ∈ R
M , θ, θ ′ ∈ �,

λ�H̃(θ)λ = − 2

β2 E

{
exp

(
−(θ − θ ′)�G(θ + θ ′) − 2(θ − θ ′)�H(X)

β

)

× [
βλ�Gλ − 2

(
λ�(

Gθ − H(X)
))2]}

(5.12)

≤ − 2

β2 exp
(
−(θ − θ ′)�G(θ + θ ′)

β

)
F(λ, θ, θ ′),

where

F(λ, θ, θ ′) = E

{
exp

(
2(θ − θ ′)�H(X)

β

)
(5.13)

× [βλ�Gλ − 4(λ�Gθ)2 − 4(λ�H(X))2]
}
.

Observe that by the Cauchy inequality

(λ�Gθ)2 ≤ λ�Gλθ�Gθ ≤ Lλ�Gλ ∀θ ∈ �.(5.14)

Further,

E(λ�H(X))2 =
∫

(λ�H(x))2p(x)μ(dx)

(5.15)
≤ L

∫
(λ�H(x))2μ(dx) = Lλ�Gλ.
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Using (5.14) and (5.15) and the fact that ‖θ − θ ′‖1 ≤ 2 where ‖ · ‖1 stands for the
�1(R

M)-norm, we obtain

F(λ, θ, θ ′) ≥ (β − 4L)λ�GλE exp
(

2(θ − θ ′)�H(X)

β

)

− 4E

{
exp

(
2(θ − θ ′)�H(X)

β

)
(λ�H(X))2

}

≥ (β − 4L)λ�Gλ exp
(
−4L

β

)
− 4Lλ�Gλ exp

(
4L

β

)
≥ 0

provided that

β − 4L

4L
exp

(
−8L

β

)
≥ 1.

Note that the last inequality is guaranteed for β ≥ β0 = 12L. We conclude that
for β ≥ 12L the Hessian H̃ in (5.12) is negative semidefinite and therefore the
mapping θ �→ E exp(−Q1(X, θ, θ ′)/β) is concave on � for any fixed θ ′ ∈ �. Thus
we have proved the following corollary of Theorem 4.2.

COROLLARY 5.7. Consider the density estimation problem with the L2 loss
as described above. Then, for any β ≥ 12L, the aggregate estimator p̃n(x) =
θ̂�
n H(x), x ∈ X, where θ̂n is obtained by the mirror averaging algorithm, satis-

fies

En−1‖p̃n − p‖2
2 ≤ min

1≤j≤M
‖pj − p‖2

2 + β logM

n
.

6. Parametric estimation with Kullback–Leibler (KL) loss. Let P = {Pa, a ∈ A}
be a family of probability measures on a measurable space (X,F ) dominated by
a σ -finite measure μ on (X,F ). Here A ⊂ R

m is a bounded set of parameters.
The densities relative to μ are denoted by p(x, a) = (dPa/dμ)(x), x ∈ X. Let X

be a random variable with values in X distributed according to Pa∗ where a∗ ∈ A
is the unknown true value of the parameter.

In the aggregation framework, we have M values a1, . . . , aM ∈ A (preliminary
estimators of a) and of an i.i.d. sample X1, . . . ,Xn where Xi take values in X,
and have the same distribution as X. Our goal is to construct an aggregate ãn that
mimics the parametric KL oracle defined by min1≤j≤M K(a∗, aj ), where

K(a, b) � K(p(·, a),p(·, b)) ∀a, b ∈ A.

For x ∈ X, θ ∈ �, we introduce the corresponding loss function

Q(x, θ) = − logp(x, θ�H),
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where H = (a1, . . . , aM)�. We set Z = X. Then

A(θ) = EQ(X,θ) = −
∫

log(p(x, θ�H))p(x, a∗)μ(dx),

A(ej ) = K(a∗, aj ) −
∫

p(x, a∗) log(p(x, a∗))μ(dx).

Since, for all x ∈ X, exp(−Q(x, θ)/β) = (p(x, θ�H))1/β , to apply Theorem 4.2
we need the following assumption.

ASSUMPTION 5.1. For some β > 0 and for any a ∈ A there exists a Borel
function 	β :� × � → R+ such that θ �→ 	β(θ, θ ′) is concave on the simplex �

for all θ ′ ∈ �, 	β(θ, θ) = 1 and∫ (
p(x,H�θ)

p(x,H�θ ′)

)1/β

p(x, a)μ(dx) ≤ 	β(θ, θ ′)

for all θ, θ ′ ∈ �.

COROLLARY 5.8. Consider the parametric estimation problem with the KL
loss as described above and let

∫
p(x, a∗)| logp(x, a∗)|μ(dx) < ∞. Suppose that

Assumption 5.1 is fulfilled for some β > 0. Then the aggregate estimator ãn =
θ̂�
n H of the parameter a∗, where θ̂n is obtained by the mirror averaging algorithm,

satisfies

En−1K(a∗, ãn) ≤ min
1≤j≤M

K(a∗, aj ) + β logM

n
.(5.16)

Aggregation procedures can be used to construct pointwise adaptive locally
parametric estimators in nonparametric regression [2]. In this case inequality
(5.16) can be applied to prove the corresponding adaptive risk bounds. We now
check that Assumption 5.1 is satisfied for several standard parametric families.

• Univariate Gaussian distribution. Let μ be the Lebesgue measure on R and let
p(x, a) = (σ

√
2π)−1 exp(−(x − a)2/(2σ 2)) be the univariate Gaussian density

with mean a ∈ A = [−L,L] and known variance σ 2 > 0. Replacing f (x) by
a∗ and H(x) by H in the proof of Corollary 5.6, and following exactly the
same argument as there we find that Assumption 5.1 is satisfied for any β ≥
β0 = 2σ 2 + 8L2. Hence, (5.16) also holds for such β . Note that in this case
K(a∗, a) = (a∗ − a)2/(2σ 2).

• Bernoulli distribution. Let μ be the discrete measure on {0,1} such that μ(0) =
μ(1) = 1 and let p(x, a) = a1{x=0} + (1−a)1{x=1} be the density of a Bernoulli
random variable with parameter a ∈ A = (0,1). Then∫ (

p(x,H�θ)

p(x,H�θ ′)

)1/β

p(x, a)μ(dx)

=
(

H�θ

H�θ ′
)1/β

a +
(

1 − H�θ

1 − H�θ ′
)1/β

(1 − a) � 	β(θ, θ ′).
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This function is concave in θ for any θ ′ ∈ � if β ≥ 1 and obviously 	β(θ,

θ) = 1. Therefore Assumption 5.1 is satisfied and Corollary 5.8 applies with
β = 1.

• Poisson distribution. Let μ be the counting measure on the set of the non-
negative integers N: μ(k) = 1,∀k ∈ N, and let p(x, a) = ∑∞

k=0
ak

k! e
−a1{x=k} be

the density of a Poisson random variable with parameter a ∈ A = [�,L] where
0 < � < L < ∞. Then∫ (

p(x,H�θ)

p(x,H�θ ′)

)1/β

p(x, a)μ(dx)

(5.17)

= exp
[
a

(
H�θ

H�θ ′
)1/β

− a − H�(θ − θ ′)
β

]
� 	β(θ, θ ′).

Clearly, 	β(θ, θ) = 1 and it is not hard to show that 	β in (5.17) is concave as
a function of θ for any θ ′ ∈ �, provided that β ≥ 1 +L(1 +L/�)(L/�)1/(2L+1).
Therefore Assumption 5.1 is satisfied and Corollary 5.8 applies with β ≥ β0 =
1 + L(1 + L/�)(L/�)1/(2L+1).

6. Proof of Proposition 2.1. In view of (2.2), for any selector Tn constructed
from the observations Z1, . . . ,Zn we have

Ak(Tn) − min
1≤j≤M

Ak(ej ) ≥
[
Ak(Tn) − min

1≤j≤M
Ak(ej )

]
1{Tn �=ek}

= σ

√
logM

n
1{Tn �=ek}.

Taking expectation on both sides of the previous inequality yields

Ek
n[Ak(Tn)] − min

1≤j≤M
Ak(ej ) ≥ σ

√
logM

n
P k

n (Tn �= ek).

Thus a sufficient condition for (2.3) to hold is

inf
Tn

sup
k=1,...,M

P k
n (Tn �= ek) ≥ c > 0.(6.1)

Since P k
n is the product of n multivariate Gaussian measures with means

ek(σ/2)
√

log(M)/n and the covariance matrices σ 2I , the Kullback–Leibler di-
vergence between pk

n and p1
n is given explicitly by K(pk

n,p
1
n) = (logM)/4, for

any k = 2, . . . ,M , where pk
n denotes the density of P k

n . We can therefore apply
Proposition 2.3 in [25] with α∗ = (logM)/4. Taking in that proposition τ = 1/M

we get (6.1) with some c > 0 which finishes the proof.

Acknowledgments. We would like to thank Jean-Yves Audibert, Arnak
Dalalyan and Gilles Stoltz for the remarks that helped to improve the text.



LEARNING BY MIRROR AVERAGING 2205

REFERENCES

[1] BARTLETT, P. L., BOUCHERON, S. and LUGOSI, G. (2002). Model selection and error esti-
mation. Machine Learning 48 85–113.

[2] BELOMESTNY, D. and SPOKOINY, V. (2007). Spatial aggregation of local likelihood estimates
with applications to classification. Ann. Statist. 35 2287–2311. MR2363972

[3] BEN-TAL, A. and NEMIROVSKI, A. S. (1999). The conjugate barrier mirror descent method
for non-smooth convex optimization. MINERVA Optimization Center Report, Faculty of
Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa.
Available at http://iew3.technion.ac.il/Labs/Opt/opt/Pap/CP_MD.pdf.

[4] BOUCHERON, S., BOUSQUET, O. and LUGOSI, G. (2005). Theory of classification: Some
recent advances. ESAIM Probab. Statist. 9 323–375. MR2182250

[5] BUNEA, F. and NOBEL, A. (2005). Sequential procedures for aggregating arbitrary estimators
of a conditional mean. Manuscript. Available at http://www.stat.fsu.edu/~flori.

[6] BUNEA, F., TSYBAKOV, A. B. and WEGKAMP, M. H. (2007). Aggregation for Gaussian re-
gression. Ann. Statist. 35 1674–1697. MR2351101

[7] CATONI, O. (1997). A mixture approach to universal model selection. Preprint LMENS-97-30,
Ecole Normale Supérieure, Paris.

[8] CATONI, O. (1999). “Universal” aggregation rules with exact bias bounds. Preprint 510, Lab-
oratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at
http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999.

[9] CATONI, O. (2004). Statistical Learning Theory and Stochastic Optimization. Ecole d’Eté de
Probabilités de Saint-Flour XXXI—2001. Lecture Notes in Math. 1851. Springer, New
York. MR2163920

[10] CESA-BIANCHI, N. and LUGOSI, G. (2006) Prediction, Learning, and Games. Cambridge
Univ. Press.

[11] HAUSSLER, D., KIVINEN, J. and WARMUTH, M. K. (1998). Sequential prediction if individ-
ual sequences under general loss functions. IEEE Trans. Inform. Theory 44 1906–1925.
MR1664051

[12] JUDITSKY, A., NAZIN, A., TSYBAKOV, A. and VAYATIS, N. (2005). Recursive aggregation
of estimators via the mirror descent algorithm with averaging. Problems Inform. Trans-
mission 41 368–384. MR2198228

[13] KIVINEN, J. and WARMUTH, M. K. (1999). Averaging expert predictions. In Proc. Fourth.
European Conf. on Computational Learning Theory (H. U. Simon and P. Fischer, eds.)
153–167. Springer, Berlin. MR1724987

[14] LEE, W. S., BARTLETT, P. L. and WILLIAMSON, R.C. (1996). Efficient agnostic learning
with bounded fan-in. IEEE Trans. Inform. Theory 42 2118–2132. MR1447518

[15] LEUNG, G. and BARRON, A. R. (2006). Information theory and mixing least-squares regres-
sions. IEEE Trans. Inform. Theory 52 3396–3410. MR2242356

[16] LUGOSI, G. and WEGKAMP, M. (2004). Complexity regularization via localized random
penalties. Ann. Statist. 32 1679–1697. MR2089138

[17] MASSART, P. (2007). Concentration Inequalities and Model Selection. Ecole d’Eté de Proba-
bilités de Saint-Flour XXXIII—2003. Lecture Notes in Math. 1896. Springer, New York.

[18] NEMIROVSKI, A. (2000). Topics in non-parametric statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXVIII—1998. Lecture Notes in Math. 1738 85–277. Springer, New York.
MR1775640

[19] NEMIROVSKI, A. S. and YUDIN, D. B. (1983). Problem Complexity and Method Efficiency in
Optimization, Wiley, Chichester. MR0702836

[20] NESTEROV, Y. (2007). Primal–dual subgradient methods for convex problems. Mathemati-
cal Programming. Published online DOI: 10.1007/s10107-007-0149-x. Also available as
CORE Discussion Paper n. 2005/67, Center for Operation Research and Econometrics,
Louvain-la-Neuve, Belgium, 2005.

http://www.ams.org/mathscinet-getitem?mr=2363972
http://iew3.technion.ac.il/Labs/Opt/opt/Pap/CP_MD.pdf
http://www.ams.org/mathscinet-getitem?mr=2182250
http://www.stat.fsu.edu/~flori
http://www.ams.org/mathscinet-getitem?mr=2351101
http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999
http://www.ams.org/mathscinet-getitem?mr=2163920
http://www.ams.org/mathscinet-getitem?mr=1664051
http://www.ams.org/mathscinet-getitem?mr=2198228
http://www.ams.org/mathscinet-getitem?mr=1724987
http://www.ams.org/mathscinet-getitem?mr=1447518
http://www.ams.org/mathscinet-getitem?mr=2242356
http://www.ams.org/mathscinet-getitem?mr=2089138
http://www.ams.org/mathscinet-getitem?mr=1775640
http://www.ams.org/mathscinet-getitem?mr=0702836
http://dx.doi.org/10.1007/s10107-007-0149-x


2206 A. JUDITSKY, P. RIGOLLET AND A. B. TSYBAKOV

[21] PETROV, V. V. (1995) Limit Theorems of Probability Theory. Clarendon Press, Oxford.
MR1353441

[22] SAMAROV, A. and TSYBAKOV, A. (2007). Aggregation of density estimators and dimension
reduction. In Advances in Statistical Modeling and Inference. Essays in Honor of Kjell
A. Doksum (V. Nair, ed.) 233–251. World Scientific, Singapore.

[23] SINGER, A. and FEDER, M. (1999). Universal linear prediction by model order weighting.
IEEE Trans. Signal Process. 47 2685–2699.

[24] TSYBAKOV, A. (2003). Optimal rates of aggregation. In Computational Learning Theory and
Kernel Machines, COLT-2003 (B. Schölkopf and M. Warmuth, eds.) 303–313. Springer,
Heidelberg.

[25] TSYBAKOV, A. (2004). Introduction à l’estimation non paramétrique. Springer, Berlin.
MR2013911

[26] VOVK,V. (1990). Aggregating strategies. In Proc. 3rd Annual Workshop on Computational
Learning Theory 372–383. Morgan Kaufman, San Mateo.

[27] VOVK, V. (2001). Competitive on-line statistics. Internat. Statist. Rev. 69 213–248.
[28] WEGKAMP, M. (2003). Model selection in nonparametric regression. Ann. Statist. 31 252–273.

MR1962506
[29] YANG, Y. (2000). Mixing strategies for density estimation. Ann. Statist. 28 75–87. MR1762904
[30] ZHANG, T. (2006). From epsilon-entropy to KL-complexity: Analysis of minimum information

complexity density estimation. Ann. Statist. 34 2180–2210. MR2291497

A. JUDITSKY

LABORATOIRE JEAN KUNTZMANN

UNIVERSITÉ GRENOBLE 1
51 RUE DES MATHÉMATIQUES

BP 53
38041 GRENOBLE CEDEX 9
FRANCE

E-MAIL: anatoli.iouditski@imag.fr

P. RIGOLLET

SCHOOL OF MATHEMATICS

GEORGIA INSTITUTE OF TECHNOLOGY

686 CHERRY STREET

ATLANTA, GEORGIA 30332-0160
USA
E-MAIL: rigollet@math.gatech.edu

A. TSYBAKOV

LABORATOIRE DE STATISTIQUE, CREST
3 RUE PIERRE LAROUSSE

92240 MALAKOFF CEDEX

FRANCE

AND

LPMA, CNRS UMR 7599
UNIV. PARIS 6
4 PL. JUSSIEU, CASE 188
75252 PARIS CEDEX 5
FRANCE

E-MAIL: alexandre.tsybakov@ensae.fr

http://www.ams.org/mathscinet-getitem?mr=1353441
http://www.ams.org/mathscinet-getitem?mr=2013911
http://www.ams.org/mathscinet-getitem?mr=1962506
http://www.ams.org/mathscinet-getitem?mr=1762904
http://www.ams.org/mathscinet-getitem?mr=2291497
mailto:anatoli.iouditski@imag.fr
mailto:rigollet@math.gatech.edu
mailto:alexandre.tsybakov@ensae.fr

	Introduction
	Suboptimality of selectors
	The algorithm
	Main results
	Examples
	Application of Theorem 4.1
	Applications of Theorem 4.2

	Proof of Proposition 2.1
	Acknowledgments
	References
	Author's Addresses

