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ABSTRACT 

This research investigates a new technique for unsupervised learning of nonlinear 
control problems. The approach is applied both to Michie and Chambers BOXES 
algorithm and to Barto, Sutton and Anderson's extension, the ASE/ACE system, and 
has significantly improved the convergence rate of stochastically based learning 
automata. 

Recurrence learning is a new nonlinear reward-penalty algorithm. It exploits 
information found during learning trials to reinforce decisions resulting in the 
recurrence of nonfailing states. Recurrence learning applies positive reinforcement 
during the exploration of the search space, whereas in the BOXES or ASE algorithms, 
only negative weight reinforcement is applied, and then only on failure. Simulation 
results show that the added information from recurrence learning increases the learning 
rate. 

Our empirical results show that recurrence learning is faster than both basic failure 
driven learning and failure prediction methods. Although recurrence learning has only 
been tested in failure driven experiments, there are goal directed learning applications 
where detection of recurring oscillations may provide useful information that reduces 
the learning time by applying negative, instead of positive reinforcement. 

Detection of cycles provides a heuristic to improve the balance between evidence 
gathering and goal directed search. 

INTRODUCflON 

This research investigates a new technique for unsupervised learning of nonlinear 
con trol problems with delayed feedback. Our approach is compared to both Michie and 

Chambers BOXES algorithml, to the extension by Barto, et aI., the ASE (Adaptive 

Search Element) and to their ASE/ACE (Adaptive Critic Element) system2, and shows 
an improved learning time for stochastically based learning automata in failure driven 
tasks. 

We consider adaptively controlling the behavior of a system which passes 
through a sequence of states due to its internal dynamics (which are not assumed to be 
known a priori) and due to choices of actions made in visited states. Such an adaptive 
controller is often referred to as a learning automaton. The decisions can be 
deterministic or can be made according to a stochastic rule. A learning automaton has 
to discover which action is best in each circumstance by producing actions and 
observing the resulting information. 

This paper was motivated by the previous work of Barto, et al. to investigate 
neuronlike adaptive elements that affect and learn from their environment. We were 
inspired by their current work and the recent attention to neural networks and 

connectionist systems, and have chosen to use the cart-pole control problem2, to enable 
a comparison of our results with theirs . 
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THE CART ·POLE PROBLEM 

In their work on the cart-pole problem, Barto, Sutton and Anderson considered a 
learning system composed of an automaton interacting with an environment. The 
problem requires the automaton to balance a pole acting as an inverted pendulum hinged 
on a moveable cart. The cart travels left or right along a bounded one dimensional track; 
the pole may swing to the left or right about a pivot attached to the cart. The automaton 
must learn to keep the pole balanced on the cart, and to keep the cart within the bounds 
of the track. The parameters of the cart/pole system are the cart po~ition and velocity, 
and the pole angle and angular velocity. The only actions available to the automaton are 
the applications of a fixed impulsive force to the cart in either right or left direction; one 
of these actions must be taken. 

This balancing is an extremely difficult problem if there is no a priori knowledge 
of the system dynamics, if these dynamics change with time, or if there is no 

preexisting controller that can be imitated (e.g. Widrow and Smith's3 ADALINE 
controller). We assumed no a priori knowledge of the dynamics nor any preexisting 
controller and anticipate that the system will be able to deal with any changing 
dynamics. 

Numerical simulations of the cart-pole solution via recurrence learning show 
substantial improvement over the results of Barto et aI., and of Michie and Chambers, 
as is shown in figure 1. The algorithms used, and the results shown in figure 1, will 
be discussed in detail below. 
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Figure 1: Perfonnance of the ASE, ASE/ACE, Constant Recurrence (HI) and 
Shon Recurrence (H2) Algorithms. 

THE GENERAL PROBLEM: ASSIGNMENT OF CREDIT 

The cart-pole problem is one of a class of problems known as "credit 

assignment"4, and in particular temporal credit assignment. The recurrence learning 
algorithm is an approach to the general temporal credit assignment problem. It is 
characterized by seeking to improve learning by making decisions about early actions. 
The goal is to find actions responsible for improved or degraded perfonnance at a much 
later time. 

An example is the bucket brigade algorithmS. This is designed to assign credit to 
rules in the system according to their overall usefulness in attaining their goals. This is 
done by adjusting the strength value (weight) of each rule. The problem is of 
modifying these strengths is to permit rules activated early in the sequence to result in 
successful actions later. 
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Samuels considered the credit assignment problem for his checkers playing 

program6. He noted that it is easy enough to credit the rules that combine to produce a 
triple jump at some point in the game; it is much harder to decide which rules active 
earlier were responsible for changes that made the later jump possible. 

State recurrence learning assigns a strength to an individual rule or action and 
modifies that action's strength (while the system accumulates experience) on the basis 
of the action's overall usefulness in the situations in which it has been invoked. In this 
it follows the bucket brigade paradigm of Holland. 

PREVIOUS WORK 

The problems of learning to control dynamical systems have been studied in the 

past by Widrow and Smith3, Michie and Chambers!, Barto, Sutton, and Anderson2, 

and Conne1l7. Although different approaches have been taken and have achieved 
varying degrees of success, each investigator used the cart/pole problem as the basis for 
empirically measuring how well their algorithms work. 

Michie and Chambers l built BOXES, a program that learned to balance a pole on 
a cart. The BOXES algorithm choose an action that had the highest average time until 
failure. After 600 trials (a trial is a run ending in eventual failure or by some time limit 
expiration), the program was able to balance the pole for 72,000 time steps. Figure 2a 
describes the BOXES learning algorithm. States are penalized (after a system failure) 
according to recency. Active states immediately preceding a system failure are 
punished most. 

Barto, Sutton and Anderson2 used two neuronlike adaptive elements to solve the 
control problem. Their ASE/ACE algorithm chose the action with the highest 
probability of keeping the pole balanced in the region, and was able to balance the pole 
for over 60,000 time steps before completion of the lOOth trial. 

Figure 2a and 2b: The BOXES and ASE/ACE (Associative Search Elelement -
Adpative Critic Element) algorithms 

Figure 2a shows the BOXES (and ASE) learning algorithm paradigm When the 
automaton enters a failure state (C), all states that it has traversed (shaded rectangles) 
are punished, although state B is punished more than state A. (Failure states are those 
at the edges of the diagram.) Figure 2b describes the ASE/ACE learning algorithm. If 
a system failure occurs before a state's expected failure time, the state is penalized. If a 
system failure occurs after its expected failure time, the state is rewarded. State A is 
penalized because a failure occurred at B sooner than expected. State A's expected 
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failure time is the time for the automaton to traverse from state A to failure point C. 
When leaving state A, the weights are updated if the new state's expected failure time 
differs from that of state A. 

Anderson8 used a connectionist system to learn to balance the pole. Unlike the 
previous experiments, the system did provide well-chosen states a priori. On the 
average, 10,000 trials were necessary to learn to balance the pole for 7000 time steps. 

Connell and Utgoff'7 developed an approach that did not depend on partitioning 

the state space into discrete regions. They used Shepard's function9,l0 to interpolate 
the degree of desirability of a cart-pole state. The system learned the control task after 
16 trials. However, their system used a knowledge representation that had a priori 
information about the system. 

O'n-lER RELATED WORK 

Klopfll proposed a more neurological class of differential learning mechanisms 
that correlates earlier changes of inputs with later changes of outputs. The adaptation 
formula used multiplies the change in outputs by the weighted sum of the absolute 

value of the t previous inputs weights (~Wj)' the t previous differences in inputs (~Xj)' 

and the t previous time coefficients (c/ 

Sutton's temporal differences (TD)12 approach is one of a class of adaptive 
prediction methods. Elements of this class use the sum of previously predicted output 
values multiplied by the gradient and an exponentially decaying coefficient to modify 

the weights. Barto and Sutton 13 used temporal differences as the underlying learning 
procedure for classical conditioning. 

THERECURRENCELE~G~HOD 

DEFINITIONS 

A state is the set of values (or ranges) of parameters sufficient to specify the 
instantaneous condition of the system. 

The input decoder groups the environmental states into equivalence classes: 
elements of one class have identical system responses. Every environmental input is 
mapped into one of n input states. (All further references to "states" assumes that the 
input values fall into the discrete ranges determined by the decoder, unless otherwise 
specified. ) 

States returned to after visiting one or more alternate states recur. 
An action causes the modification of system parameters, which may change the 

system state. However, no change of state need occur, since the altered parameter 
values may be decoded within the same ranges. 

A weight, wet), is associated with each action for each state, with the probability 
of an allowed action dependent on the current value of its weight. 

A rule determines which of the allowable actions is taken. The rule is not 
deterministic. It chooses an action stochastically, based on the weights. 

Weight changes, ~w(t), are made to reduce the likelihood of choosing an action 

which will cause an eventual failure. These changes are made based on the idea that the 
previous action of an element, when presented with input x(t), had some influence in 
causing a similar pattern to occur again. Thus, weight changes are made to increase the 
likelihood that an element produces the same action f(t) when patterns similar to x(t) 
occur in the future. 
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For example, consider the classic problem of balancing a pole on a moving cart. 
The state is specified by the positions and velocities of both the cart and the pole. The 
allowable actions are fixed velocity increments to the right or to the left, and the rule 
determines which action to take, based on the current weights. 

THE ALGORITHM 

The recurrence learning algorithm presented here is a nonlinear reward-penalty 

method 14. Empirical results show that it is successful for stationary environments. In 
contrast to other methods, it also may be applicable to nonstationary environments'. 
Our efforts have been to develop algorithms that reward decision choices that lead the 
controller/environment to quasi-stable cycles that avoid failure (such as limit cycles, 
converging oscillations and absorbing points). 

Our technique exploits recurrence information obtained during learning trials. 
The system is rewarded upon return to a previous state, however weight changes are 
only permitted when a state transition occurs. If the system returns to a state, it has 
avoided failure. A recurring state is rewarded. A sequence of recurring states can be 
viewed as evidence for a (possibly unstable) cycle. The algorithm forms temporal 
"cause and effect" associations. 

To optimize performance, dynamic search techniques must balance between 
choosing a search path with known solution costs, and exploring new areas of the 
search space to find better or cheaper solutions. This is known as the two armed bandit 

problem l5 , i.e. given a two handed slot machine with one arm's observed reward 
probabilities higher than the other, one should not exclude playing with the arm with 
the lesser payoff. Like the ASE/ACE system, recurrence learning learns while 
searching, in contrast to the BOXES and ASE algorithms which learn only upon 
failure. 

RANGE DECODING 

In our work, as in Barto and others, the real valued input parameters are analyzed 
as members of ranges. This reduces computing resource demands. Only a limited 
number of ranges are allowed for each parameter. It is possible for these ranges to 
overlap, although this aspect of range decoding is not discussed in this paper, and the 
ranges were considered nonoverlapping. When the parameter value falls into one of the 
ranges that range is active. The specification of a state consists of one of the active 
ranges for each of the parameters. If the ranges do not overlap, then the set of 
parameter values specify one unique state; otherwise the set of parameter values may 
specify several states. Thus, the parameter values at any time determine one or several 
active states Si from the set of n possible states. 

The value of each environmental parameter falls into one of a number of ranges, 
which may be different for different parameters. A state is specified by the active range 
for each parameter. 

The set of input parameter values are decoded into one (or more) of n ranges Si' 

0<= i <= n. For this problem, boolean values are used to describe the activity level of 
a state Si. The activity value of a state is 1 if the state is active, or 0 if it is inactive. 

ACfION DECISIONS 

Our model is the same as that of the BOXES and ASE/ACE systems, where only 
one input (and state) is active at any given time. All states were nonoverlapping and 
mutually exclusive, although there was no reason to preclude them from overlapping 
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other than for consistency with the two previous models. In the ASE/ACE system and 
in ours as well, the output decision rule for the controller is based on the weighted sum 
of its inputs plus some stochastic noise. The action (output) decision of the controller 
is either + 1 or -1, as given by: 

( 1) 

where 

f( ) = [+ 1 .i f z ~ 0 ] 
z -llfz<O (2) 

and noise is a real randomly (Gaussian) distributed value with some mean 11 and 

variance 0'2. An output, fez), for the car/pole controller is interpreted as a push to the 
left if fez) = -lor to the right if fez) = + 1. 

RECURRENCELE~G 

The goal of the recurrence learning algorithm is to avoid failure by moving toward 
states that are part of cycles if such states exist, or quasi-stable oscillations if they 
don't. This concept can be compared to juggling. As long as all the balls are in the air, 
the juggler is judged a success and rewarded. No consideration is given to whether the 
balls are thrown high or low, left or right; the controller, like the juggler, tries for the 
most stable cycles. Optimum performance is not demanded from recurrence learning. 

Two heuristics have been devised. The fundamental basis of each of them is to 
reward a state for being repeatedly visited (or repeatedly activated). The first heuristic 
is to reward a state when it is revisited, as part of a cycle in which no failure had 
occurred. The second heuristic augments the first by giving more reward to states 
which panicipate in shorter cycles. These heuristics are discussed below in detail. 

HEURISTIC HI: If a state has been visited more than once during one trial, 
reward it by reinforcing its weight. 

RATIONALE 

This heuristic assumes that states that are visited more than once have been part of 
a cycle in which no failure had occurred. The action taken in the previous visit is 
assumed to have had some influence on the recurrence. By reinforcing a weight upon 
state revisitation, it is assumed to increase the likelihood that the cycle will occur again. 
No assumptions are made as to whether other states were responsible for the cycle. 

RESTRICfION 

An action may not immediately cause the environment to change to a different 
state. There may be some delay before a transition, since small changes of parameters 
may be decoded into the same input ranges, and hence the same state. This inertia is 
incorporated into the heuristics. When the same state appears twice in succession, its 
weight is not reinforced, since that would assume that the action, rather than inertia, 
directly caused the state's immediate recurrence. 
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THE RECURRENCE EQUATIONS 

The recurrence learning equations stem in part from the weight alteration formula 
used in the ASE system. The weight of a state is a sum of its previous weight, and the 

product of the learning rate (a), the reward (r), and the state's eligibility (e). 

ret) E {-I,O} (3) 

The eligibility index e/t) is an exponentially decaying trace function. 

(4) 

where O<=P<=I, Xi E {0,1}, and Yi E {-I,I}. The output value Yi is the last output 

decision, and P determines the decay rate. 
The reward function is: 

{ -1 
ret) = ° when the system fails at time t } 

otherwise 

REINFORCEMENT OF CYCLES 

(5) 

Equations (1) through (5) describe the basic ASE system. Our algorithm extends 
the weight updating procedure as follows: 

(6) 

The term ar(t)ei(t) is the same as in (3), providing failure reinforcement. The 

term a2r2(t)e2,i(t) provides reinforcement for success. When state i is eligible (by 

virtue of Xi > 0), there is a weight change by the amount: CXz multiplied by the reward 

value, r2(t), and the current eligibility e2,i(t). For simplicity, the reward value, r2(t), 

may be taken to be some positive constant, although it need not be; any environmental 
feedback, yielding a reinforcement value as a function of time could be used instead. 

The second eligibility function e2,i(t) yields one of three constant values for HI: -P2' 0, 

or P2 according to formula (7) below: 

if t-ti,last = 1 or ti,last = ° } 
otherwise (7) 

where ti,last is the last time that state was active. If a state has not previously been 
active (i.e. xi(t) = ° for all t) then ti,last=O. As the formula shows, e2,i(t) = ° if the state 

has not been previously visited or if no state transition occurred in the last time step; 

otherwise, e2,i(t) = P2Xj(t)y(ti,last)· 
The direction (increase or decrease) of the weight change due to the final term in 

(6) is that of the last action taken, y(ti,last). 
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Heuristic HI is called constant recurrence learning because the eligibility function 
is designed to reinforce any cycle. 

HEURISTIC H2: Reward a short cycle more than a longer one. 

Heuristic 82 is called short recurrence learning because the eligibility function is 
designed to reinforce shorter cycle more than longer cycles. 

REINFORCEMENT OF SHORTER CYCLES 

The basis of the second heuristic is the conjecture that short cycles converge more 
easily to absorbing points than long ones, and that long cycles diverge more easily than 
shorter ones, although any cycle can "grow" or diverge to a larger cycle. The 
following extension to the our basic heuristic is proposed. 

The formula for the recurrence eligibility function is: 

{
o if t-ti,last = 

e2,i(t) = P2 xi(t) y(ti,last) otherwise 
(P2+t - ti,last) 

1 or li,last = 0 } 

(8) 

The current eligibility function e2/t) is similar to the previous failure eligibility 

function in (7); however, e2 i(t) reinforces shorter cycles more, because the eligibility 

decays with time. The value'returned from e2it) is inversely proportional to the period 

of the cycle from ti,last to t. H2 reinforces converging oscillations; the term 

(X.2r2(t)e2/t) in (6) ensures weight reinforcement for returning to an already visited 

state. 

Figure 3a and 3b: The Constant Recurrence algorithm and Short Recurrence 
algorithms 

Figure 3A shows the Constant Recurrence algorithm (HI). A state is rewarded 
when it is reactivated by a transition from another state. In the example below. state A 
is reward by a constant regardless of weather the cycle traversed states B or C. Figure 
3b describes the Short Recurrence algorithm (m). A state is rewarded according to the 
difference between the current time and its last activation time. Small differences are 
rewarded more than large differences In the example below, state A is rewarded more 
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when the cycle (through state C) traverses the states shown by the dark heavy line 
rather than when the cycle (through state B) traverses the lighter line, since state A 
recurs sooner when traversing the darker line. 

SIMULATION RESULTS 

We simulated four algorithms: ASE, ASE/ACE and the two recurrence 
algorithms. Each experiment consisted of ten runs of the cart-pole balancing task, each 
consisting of 100 trials. Each trial lasted for 500,000 time steps or until the cart-pole 
system failed (i.e. the pole fell or the cart went beyond the track boundaries). In an 
effort to conserve cpu time, simulations were also terminated when the system achieved 
two consecutive trials each lasting for over 500,000 time steps; all remaining trials were 
assumed to also last 500,000 time steps. This assumption was reasonable: the resulting 
weight space causes the controller to become deterministic regardless of the influence of 
stochastic noise. Because of the long time require to run simulations, no attempts were 
made to optimize parameters of the algorithm. 

As in Bart02, each trial began with the cart centered, and the pole upright. No 
assumptions were made as to the state space configuration, the desirability of the initial 
states, or the continuity of the state space. 

The first experiment consisted of failure and recurrence reward learning. The 

ASE failure learning runs averaged 1578 time steps until failure after 100 trials*. Next, 
the predictive ASE/ACE system was run as a comparative metric, and it was found that 
this method caused the controller to average 131,297 time steps until failure; the results 
are comparable to that described by Barto, Sutton and Anderson. 

In the next experiment, short recurrence learning system was added to the ASE 
system. Again, ten 100 trial learning session were executed. On the average, the short 
recurrence learning algorithm ran for over 400,736 time steps after 100th trial, bettering 
the ASE/ACE system by 205%. 

In the final experiment, constant recurrence learning with the ASE system was 
simulated. The constant recurrence learning eliminated failure after only 207,562 time 
steps. 

Figure 1 shows the ASE, ASE/ACE, Constant recurrence learning (HI) and 
Short recurrence learning (H2) failure rates averaged over 10 simulation runs. 

DISCUSSION 

Detection of cycles provides a heuristic for the "two armed bandit" problem to 
decide between evidence gathering, and goal directed search. The algorithm allows the 
automaton to search outward from the cycle states (states with high probability of 
revisitation) to the more unexplored search space. The rate of exploration is 

proportional to the recurrence learning parameter~; as ~ is decreased, the influence 

of the cycles governing the decision process also decreases and the algorithm explores 
more of the search space that is not part of any cycle or oscillation path. 

* However, there was a relatively large degree of variance in the final trials. The last 

10 trails (averaged over each of the 10 simulations) ranged from 607 to 15,459 time 

steps until failure 
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THEFUfURE 

Our future experiments will study the effects of rewarding predictions of cycle 
lengths in a manner similar to the prediction of failure used by the ASE/ACE system. 
The effort will be to minimize the differences of predicted time of cycles in order to 
predict their period. Results of this experiment will be shown in future reports. We 
hope to show that this recurrence prediction system is generally superior to either the 
ASE/ACE predictive system or the short recurrence system operating alone. 

CONCLUSION 

This paper presented an extension to the failure driven learning algorithm based 
on reinforcing decisions that cause an automaton to enter environmental states more 
than once. The controller learns to synthesize the best values by reinforcing areas of 
the search space that produce recurring state visitation. Cycle states, which under 
normal failure driven learning algorithms do not learn, achieve weight alteration from 
success. Simulations show that recurrence reward algorithms show improved overall 
learning of the cart-pole task with a substantial decrease in learning time. 
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