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Abstract

Groups of agents following fixed behavioral rules can
be limited in performance and etficiency. Adaptability
and flexibility are key components of intelligent behav-
ior which allow agent groups to improve performance
in a given domain using prior problem solving experi-
ence. We motivate the usefulness of individual learn-
ing by group members in the context of overall group
behavior. We propose a framework in which individ-
ual group members learn cases to improve their model
of other group members. We utilize a testbed prob-
lem from the distributed AI literature to show that
simultaneous learning by group members can lead to
significant improvement in group performance and ef-
ficiency over groups following static behavioral rules.

Introduction

We are actively engaged in research on multiagent in-
teractions (Haynes et al. 1995a; 1995b; Sen, Sekaran,
& Hale 1994), and in particular, conflict resolution be-
tween agents for critical resources. This research has
shown that agents need to interact on-line in order to
learn effective cooperation; fixed behavioral rules do
not usually encompass all possible interactions. By
examining why a conflict occurred, an agent is able to
modify its behavioral rules such that that conflict does
not occur again in the future.

We utilize the predator-prey domain (Haynes et al.
1995a; Korf 1992; Stephens & Merx 1990) to demon-
strate a typical conflict resolution scenario. The goal
of the four predator agents is to try to capture a prey
agent. Agents can only make orthogonal moves on a
grid world. We have reported the varying degrees of
success of predator agents in capturing a prey against
a variety of prey movement algorithms (Haynes et al.
1995a). Of particular interest were the algorithms
which caused the prey to pick a direction and always
move along it (Linear) and the one in which it did
not move at all (Still). All the predator strategies 
investigated failed against at least one of these prey
strategies. In this paper we investigate how case-based

learning will allow the predators to capture preys em-
ploying these algorithms.

The behavioral strategies of the predators use one of
two distance metrics: Manhattan distance (MD) and
max norm (MN). The MD metric is the sum of the dif-
ferences of the x and y coordinates between two agents.
The MN metric is the maximum of the differences of
the x and y coordinates between two agents. The al-
gorithms examine the metrics from the set of possible
moves, {N,E,S, W,H), and select a move corresponding
to the minimal distance. All ties are randomly broken.

The original MN algorithm, as described by
Koff (Korf 1992), does not allow the predators to move
to the cell occupied by the prey. (In his research, the
prey moves first, followed by the predators in order.
Thus conflicts are resolved between predators and prey
by serialization.) Figure 1 illustrates a problem with
this restriction. The cells to the North and South of
predator 4 axe as equally distant from the prey P as
the cell currently occupied by predator 4. Since all
ties are non-deterministically broken, with each move-
ment of the agents, there is a 66% probability that
predator 4 will allow the prey P to escape.

Assuming a Linear prey moving East, Figure 1 also
illustrates the failure of the MN metric algorithms to
capture a Linear prey. It is possible that a predator can
manage to block the prey, but it is not very likely that
it can keep the prey blocked long enough for a capture
to take place. It is also possible that once captured, the
prey may escape the MN metric algorithms. The MD
metric algorithms do not suffer from this inability to
make stable captures. They do however have a draw-
back which both the Linear and Still prey algorithms
expose. We found that MD metric algorithms stop a
Linear prey from advancing. Our original hypothesis
was that the Linear prey moved in such a manner so
as to always keep the predators "behind" it. Thus, the
inability to capture it was due to not stopping its for-
ward motion. We started keeping track of blocks, i.e., a
situation in which a predator blocks the motion of the
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prey, and discovered that the MD metric algorithms
were very good at blocking the Linear prey.

Why then can they not capture it? The answer lies
in the fact that the MD metric algorithms are very sus-
ceptible to deadlock situations. If, as in Figure 2(a),
a predator manages to block a Linear prey, it is typ-
ical for the other predators to be strung out behind
the prey. The basic nature of the algorithm ensures
that positions orthogonal to the prey are closer than
positions off the axis. Thus, as shown in Figures 2(b)
and (c), the remaining predators manage to close 
on the prey, with the exception being any agents who
are blocked from further advancement by other agents.
The greedy nature of these algorithms ensures that in
situations similar to Figure 2(c), neither will predator
2 yield to predator 3 nor will predator 3 go around
predator 2. While the MN metric algorithms can per-
form either of these two actions, they are not able to
keep the Linear prey from advancing. It is also evident
that once the Linear prey has been blocked by a MD
metric algorithm, the prey algorithm degenerates into
the Still algorithm. This explains the surprising lack
of captures for a prey which does not move.

The question that arises from these findings is how
do the agents manage conflict resolution? An answer
can be found in the ways we as humans manage conflict
resolution: with cases (Kolodner 1993). In the simplest
sense, if predator I senses that if predator 2 is in its
Northeast cell, and it has determined to move North,
then if the other agent moves West there will be a
conflict with predator 2. predator 1 should then
learn that in the above situation, it should not move
North, but rather to its next most preferable direction.

In this research we examine case based learning
(CBL) of potential conflicts, which will allow agents
to avoid those conflicts. The default rule employed by
predators is to move closer to the prey, unless an over-
riding case is present. If a case fires, the next best
move is considered. If the suggested move, either by
the default rule or a case firing, does not succeed, then
a new case is learned.

Motivation for Learning Cases
For the majority of moves in the predator-prey do-
main, either the max norm or MD metric algorithms
suffice in at least keeping the predator agents the same
distance away from the prey. As discussed later, the
prey effectively moves 10% slower than the predators,
the grid world is toroidal and the prey must occa-
sionally move towards some predators to move away
from others. Therefore the predators will eventually
catch up with it. Contention for desirable cells begins
when the predators either get close to the prey or are
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Figure 3: Conflicts in firing lanes for fighter planes
strafing a bomber. (a) fighter 1 is blocked from firing
by fighter 2, and (b) Not only is fighter 1 blocked,
but so is fighter 3 by fighter 4.

bunched up on one of the orthogonal axes. What the
predators need to learn is table manners. Under cer-
tain conditions, i.e. when two or more predator agents
vie for a cell, the greedy nature of the above algorithms
must be overridden. We could simply order the move-
ments of the predators, allowing predator 1 to always
go first. But it might not always be the fastest way to
capture the prey. No ordering is likely to be more eco-
nomical than others under all circumstances.

Also, if we consider real world predator-prey situa-
tions, the artificial ordering cannot always be adhered
to. Consider for example a combat engagement be-
tween fighter aircraft and a bomber. If there are only
two fighters, the ordering rule suggests that fighter
1 always moves before fighter 2. If they are in the
situation depicted in Figure 3(a), then fighter 1 can-
not fire on the bomber B, because doing so will hit
fighter 2. Clearly, fighter 2 should first move North
or South, allowing both it and the other fighter to have
clear fire lanes. But under the proposed ordering of the
movements, it cannot move in such a manner. So, the
default rules is that fighter 1 moves before fighter 2,
with an exception if fighter 2 is in front of fighter 1.
The rule can be modified such that the agent in front
gets to move first. However, if we add more fighters,
then the situation in Figure 3(b) does not get handled
very well. How do fighter 2 and fighter 4 decide who
shall go first? What if they both move to the same cell
North of fighter 2? These are the very problems we
have been discussing with the MD metric algorithm.

What is needed is a dynamic learning mechanism to
model the actions of other agents. Until the potential
for conflicts exist, agents need not be concerned with
the specific model of other agents. It is only when a
conflict occurs that an agent learns that another agent
will "act" a certain way in a specific situation Si. Thus
first agent learns not to employ its default rule in sit-
uation Si; instead it considers its next best action. As
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Figure 1: A possible sequence of movements in which a MN metric based predator tries to block the prey P. (a)
predator 4 manages to block P. Note that 4 is just as likely to stay still as move North or South. (b) predators
1 and 3 have moved into a capture position, and predator 2 is about to do so. Note that 4 is just as likely to
stay still as move North or South. (c) predator 4 opts to move to the North, allowing the prey P to escape. Note
that 4 is just as likely to stay still as move East or West.
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Figure 2: A possible scenario in which a MD metric based predator tries to block the prey P. (a) predator 
manages to block P. predators 1, 2, and 3 move in for the capture. (b) predator 2 has moved into a capture
position. (c) predator 1 has moved into a capture position, predator 2 will not yield to predator 3. They are
in deadlock, and the prey P will never be captured.

these specific situations are encountered by an agent,
it forms a case base library of conflicts to avoid. The
agents learning the cases, or situations, is beginning
to model the actions of others. The growing case-base
library allows an agent to better coordinate its actions
with that of other agents in the group.

Enhanced Behavioral Rules
In order to facilitate efficient capture, i.e., provide the
agents with the best set of default rules, we enhanced
the basic MD algorithm. This will also provide a bet-
ter challenge for the learning algorithm to improve on.
If we consider human agents playing a predator-prey
game, we would see more sophisticated reasoning than
simple greedy behavioral rules. When faced with two
or more equally attractive actions, a human will spend
extra computational effort to break the tie. Let us in-
troduce some human agents: Alex, Bob, Cathy, and
Debbie. Bob and Debbie have had a fight, and Bob
wants to make up with her. He asks Alex what should
he do. Alex replies that in similar situations he takes
Cathy out to dinner. Bob decides that either Burger

King or Denny’s will do the trick (He is a college stu-
dent, and hence broke most of the time). In trying to
decide which of his two choices is better, he predicts
how Debbie will react to both restaurants. Denny’s
is a step up from Burger King, and she will probably
appreciate the more congenial atmosphere.

In the predator-prey domain, such a situation is
shown in Figure 4(a). Predator 1 has a dilemma:
both of the cells denoted by x and y axe 2 cells away
from Prey P, using the MD metric. The sum of the
distances between all the possible moves from x and
Prey P is 8 and the sum from y to the Prey P is 10.
Therefore using this algorithm, which we call the look
ahead tie-breaker, predator 1 should chose x over ~/.

A second refinement comes from what happens if
the look ahead tie-breaker yields equal distances for x
and ~/? Such a scenario is shown in Figure 4(b). Then
predator 1 should determine which of the two cells
is less likely to be in contention with another agent.
Predators do not mind contending for cells with the
prey, but they do not want to waste a move bounc-
ing off of another predator. By the least conflict tie-
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Figure 4: In both (a) and (b), the cells marked x 
y are equal distant via the MD metric from the Prey
P for predator 1. (a) x is chosen because the sum 
the possible moves from it to Prey P is less than the
y’s sum of moves, and in (b) y is chosen because while
the look ahead is equal, there is a potential for conflict
with predator 2 at x.

breaking algorithm, predator 1 should pick y over x
(y has 0 contentions, while x has 1).

Suppose that Bob and Debbie have had another
fight, but this time Alex and Cathy also have fought.
Furthermore, a new restaurant, the Kettle, has opened
up in town. Since the Kettle is on par with Denny’s,
Bob is again faced with a need to break a tie. As he
knows that Alex and Cathy have fought, he believes
that Alex will be taking her out to make up with her.
Bob does not want to end up at the same restaurant,
as he and Debbie will have to join the other couple,
which is hardly conducive to a romantic atmosphere.
He decides to model Alex’s behavior. Like Bob, Alex
is a student and has never eaten at the Kettle. Since
Cathy is placated by being taken to Denny’s and Alex
does not like changing his routine, then Alex will most
likely take her there. Thus Bob decides to take Debbie
to the Kettle. Notice that if Bob had not accounted
for a change in the environment, then his case would
have caused a conflict with his goal.

Case Representation and Indexing

The ideal case representation for the predator-prey do-
main is to store the entire board and to have each case
inform all predators where to move. There are two
problems with this setup: the number of cases is too
large, and the agents do not act independently. Each
agent could store this case library independently, but
the problem size explodes. An effective "case window"
for each predator is to represent all cells that could di-
rectly cause conflicts with any move taken by the agent,
as shown in Figure 5. A drawback to this approach is
that agents can be present in the case window, but not
actually be part of the case. For example, predator
2’s location does not impact the desired move of East
for predator 4 in Figure 5. Another problem with

Figure 5: Representation of a simple case window for
predator 4.
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Figure 6: Representation of cases for predator 1 in
the example: (a) Moving (note predator 2 is outside
the case window), and (b) Staying still. The X denotes
which of the three areas the prey is occupying.

this window is that predator 2 could be just North
of predator 1, and cause either predator 1 or prey
P to move differently than in the scenario presented.
Finally, the search space is still too large.

Unless the full board is used as a case, any narrowing
of the case window is going to suffer from the first two
points of the effective case window presented above.
This is symptomatic of an "open" and "noisy" domain:
the same case can represent several actual configura-
tions of the domain being modeled. The price to pay
to have a clean case base is in the size of the search
space. If we accept that the case windows are going to
map to more than one physical situation, then clearly
the issue is how to make the search space manageable.
The case window in Figure 5 encompasses the poten-
tial conflicts when the agent moves in any of the allow-
able directions. If we limit the case window to simply
represent the potential conflicts that can occur "after"
the agent selects a move based on the default rules
or learned case, then we can utilize the case windows
shown in Figure 6. The case window in Figure 6(a) 
rotationally symmetric for the directions the agent can
choose, and the case window in Figure 6(b) is applied
for when the agent remains stationary.

Our cases are negative in the sense they tell the
agents what not to do. A positive case would tell
the agent what to do in a certain situation (Golding
& Rosenbloom 1991). Each case contains information
describing the contents of the four ceils which have ac-



1 Preferentially order actions by behavioral rules.
2 Choose the first action which does not cause a
negative case to fire, i.e., one containing a conflict.
3 If the state corresponding to the selected action is
not reached, then the agent must learn a case.

Figure 7: Algorithm for selecting actions based on neg-
ative eases.

cess to the cell which the agent wants to occupy in
the next time step. The other crucial piece of knowl-
edge needed is where does the agent believe the other
agents are going to move? This is modeled by storing
the orientation of the prey’s position with respect to
the desired direction of movement of the agent. Specif-
ically, we store whether the prey lies on the agent’s line
of advance or if it is to the left or right of the line.

An agent has to combine its behavioral rules and
learned cases to choose its actions. The algorithm for
doing so is shown in Figure 7. In the predator-prey
domain, to index a case, the agent determines whether
the possible action is for movement or staying still.
As discussed above, this decision determines the case
library to accessed. Then it examines the contents of
each of the four cells which can cause conflicts. The
contents can be summed to form an unique integer
index in a base number system reflecting the range of
contents. The first possible action which does not have
a negative case is chosen as the move for that turn.

We used case windows as shown in Figure 6 while
learning to capture the Still prey. The results were
promising, but we found that the predators would
falsely learn cases, which hindered the efficient capture
of the prey. Such an erroneous scenario is shown in Fig-
ure 8. The problem lies in predator l’s interpretation
of the scenario. It tried to move to the location of prey
P and failed. It does not learn in situations involving
prey P. Now predator 2 pushes predator 1, and
predator 1 should learn to yield to predator 2 if it
is again faced with the situation shown in Figure 8(a).
The ease it learns is the stationary case window shown
in Figure 6(b). This case informs predator 1 that 
its current best action is to stay still, then it should
consider the next best action. However, this case will
never fire because predator l’s best action is to move
into prey P’s cell, and since the predators do not learn
eases against the prey, there is no case that will cause
it to consider its remaining actions. Thus the exact
same conflict will occur, and predator 1 will re-learn
the same case without ever applying it.

The case that should be learned is that when preda-
tor 1 is in the situation depicted in Figure 8(a), then
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Figure 8: predator 1 learns the wrong case. (a)
predator l’s best action is to move towards prey P.
(b) predator 1 bounces back from the prey P. It has
now stored the incorrect fact that it has stayed still and
not moved East. (c) predator 2 pushes out predator
1, and predator I learns the incorrect case that if its
best action is to stay still in the configuration shown
in (a), then it should select its next best action.
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Figure 9: New case window. Note it also shows preda-
tor l’s learned case from the example.

it should consider its next best action. However, as
can be seen in Figure 6(a), such a situation can not
be learned with the current case windows. In order
to capture the necessary information, we decided to
merge the two case windows of Figure 6 into one, which
is shown in Figure 9. Now agents can store cases in
which there is a potential for conflict for both the re-
source it desires and the resource it currently possess.
The learned case is shown in Figure 9. If the same sit-
uation, as in Figure 8(a), is encountered, the case will
fire and predator 1 will consider its next best action.

With the enhanced rules, this will be to move North.

Experimental Setup and Results

The initial configuration consists of the prey in the
center of a 30 by 30 grid and the predators placed in
random non-overlapping positions. All agents choose
their actions simultaneously. The environment is ac-
cordingly updated and the agents choose their next
action based on the updated environment state. If
two agents try to move into the same location simul-
taneously, they are "bumped back" to their prior posi-
tions. One predator, however, can push another preda-
tor (but not the prey) if the latter decided not to move.
The prey does not move 10% of the time; effectively
making the predators travel faster than the prey. The
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grid is toroidal in nature, and only orthogonal moves
are allowed. All agents can sense the positions of all
other agents. Furthermore, the predators do not pos-
ses any explicit communication skills; two predators
cannot communicate to resolve conflicts or negotiate a
capture strategy. The case window employed is that
depicted in Figure 9.

Initially we were interested in the ability of predator
behavioral rules to effectively capture the Still prey.
We tested three behavioral strategies: MD - the basic
MD algorithm, MD-EDR - the MD modified with the
enhancements discussed earlier, and MD-CBL - which
is MD-EDR utilizing a case base learned from training
on 100 random simulations. The results of applying
these strategies on 100 test cases are shown in Table 1.
While the enhancement of the behavioral rules does
increase capture, the addition of negative cases leads
to capture in almost every simulation.

Algorithm Captures Ave. Number of Steps

MD 3 19.00
MD-EDR 46 21.02
MD-CBL 97 23.23

Table 1: Number of captures (out of a 100 test cases)
and average number of steps to capture for the Still
prey.

We also conducted a set of experiments in which the
prey used the Linear algorithm as its behavioral rule.
Again we tested the three predator behavioral strate-
gies of MD, MD-EDR, and MD-CBL. The MD-CBL
algorithm was trained on the Still prey. We trained on
a Still prey because the Linear prey typically degrades
to a Still prey. We have also presented the results of
training the MD-CBL on the Linear prey (MD-CBL*).
The results for the Linear prey are presented in Table 2.

Algorithm Captures Ave. Number of Steps

MD 2 26.00
MD-EDR 20 24.10
MD-CBL 54 27.89
MD-CBL* 36 31.31

Table 2: Number of captures (out of a 100 test cases)
and average number of steps to capture for the Linear
prey. MD-CBL* denotes a test of the MD-CBL when
trained on a Linear prey.

With both prey algorithms, the order of increas-
ing effectiveness was MD, MD-EDR, and MD-CBL.
Clearly the addition of CBL to this multiagent system

is instrumental in increasing the effectiveness of the be-
havioral rules. There is some room for improvement, as
the results from the Linear prey indicate. We believe
that the decrease in capture rate for the MD-CBL*
run was a result of the agents not being exposed to a
sufficient number of distinct conflict situations. A ma-
jority of the time spent in capturing the Linear prey is
spent chasing it. Only after it is blocked do interesting
conflict situations occur.

Conclusions
We have introduced an algorithm which enables agents
to learn how to enhance group performance. Default
behavioral rules used to model the group interactions
are extended by cases to account for conflicting inter-
ests within the group. We also showed the utility of
such a learning system in the predator-prey domain.
We are hoping to further extend the system to allow
the agents to forget cases which no longer apply due to
the dynamical nature of the acquisition of knowledge.
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