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Learning Categories from Few Examples with
Multi Model Knowledge Transfer

Tatiana Tommasi, Francesco Orabona and Barbara Caputo

Abstract—Learning a visual object category from few samples is a compelling and challenging problem. In several real-world

applications collecting many annotated data is costly and not always possible. However a small training set does not allow to cover the

high intraclass variability typical of visual objects. In this condition, machine learning methods provide very few guarantees. This paper

presents a discriminative model adaptation algorithm able to proficiently learn a target object with few examples by relying on other

previously learned source categories. The proposed method autonomously chooses from where and how much to transfer information

by solving a convex optimization problem which ensures to have the minimal leave-one-out error on the available training set. We

analyze several properties of the described approach and perform an extensive experimental comparison with other existing transfer

solutions, consistently showing the value of our algorithm.

Index Terms—Knowledge Transfer, image categorization, discriminative learning

✦

1 INTRODUCTION

A S human beings, our learning ability develops progres-

sively in time. At the age of six, we recognize around

104 object categories [1] and we go on learning more while

we grow up. All the information acquired through our five

senses are encoded and stored in memory, with concepts and

categories organized on the basis of their common properties.

This intrinsically means that any new concept is not learned

in isolation, but considering connections to what is already

known, which makes the skill of building analogies one of

the cores of human intelligence [2]. Even focusing only on

visual tasks, we can give several examples of this cognitive

ability. Have you ever seen a guava or an okapi? The guava is

a fruit that externally looks like a lime, while its inner part is

similar to an apple. An okapi is an animal that can be roughly

described as a horse, with the legs of a zebra and the head of

a giraffe (see Figure 1). Once we have seen a single image for

each of the two target objects, we can easily memorize and

recognize them by referring to the source objects mentioned in

the provided description. In psychology this process is known

as knowledge transfer: it encompasses phenomena ranging

from simple (e.g. generalization of conditioned response be-

tween familiar and novel stimuli) to extremely complex (e.g.

carrying over a solution from a problem in arithmetic to a

novel class of problems) behaviors [3], and it makes learning

further concepts extremely efficient. This capacity allows us

to evaluate many kinds of recurrent patterns and regularities,

giving the possibility to make inductive inferences on a new

task even with only a small amount of data.

• T. Tommasi and B. Caputo are with the Idiap Research Institute, Centre

du Parc, Rue Marconi 19, PO Box 592, CH - 1920 Martigny, Switzerland.

E-mail: {ttommasi, bcaputo} @idiap.ch

• Francesco Orabona is with the Toyota Technological Institute at
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Fig. 1. The knowledge of the appearance of several

objects can be used when learning something new. For

example, using the source knowledge on fruits and ani-

mals while learning guava and okapi.

A large part of recent literature on visual object cate-

gorization focuses on reaching impressive results on large

and difficult datasets [4], [5]. However, these works rarely

refer to the effort done in collecting the data. In many real

applications gathering fully annotated images can be extremely

time consuming and might have a significant impact on the

overall cost of the final system.

Standard learning techniques do not handle well the case of

very small training sets. Differently from the described human

cognition mechanism, all the learning approaches consider

each task separately with respect to other possible source

of relative information. Reproducing the knowledge transfer

process in this scenario might consistently boost the learning

performance. The basic intuition is that, if a system has already

learned j categories, learning the (j + 1)-th should be easier

even from one or few training samples [6].

A first practical implementation of the knowledge transfer
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idea was presented in [7] following a Bayesian approach. A

generic object model is estimated from some source categories

and it is then used as prior to estimate the target object

parameter distribution with a maximum-a-posteriori technique.

This work left some open questions discussed in its conclusive

section: (i) All the different known source categories are used

together to define a single prior; would a more sophisticated

multi-modal prior be beneficial in learning? (ii) Is there any

other productive point of view beside the generative Bayesian

one that allows to incorporate prior knowledge? (iii) Is it easier

to learn new target categories which are similar to some of

the source categories? Several other works in the computer

vision literature followed this first attempt [8], [9], [10], [11],

introducing different methods to increase the categorization

performance with respect to learning from scratch in case of

few available samples. However, due to the small differences

in the chosen settings, the proposed solutions were never

compared among each other.

In this work we focus on knowledge transfer across visual

object categories and our main contribution is a learning

algorithm that directly addresses the open problems in [7]. We

consider (i) the availability of several separate source models

and we introduce (ii) a discriminative approach based on

Least Square Support Vector Machines (LS-SVM, [12]). Any

new target class is learned through adaptation by imposing

closeness between the target classifier and a linear combination

of the source classifiers already learned on the j object sources.

The weight assigned to each source knowledge is defined

by solving a convex optimization problem which minimizes

an upper bound of the leave-one-out error on the training

set providing a principled solution for choosing from where

to transfer and how much to rely on each known source.

In practice, the proposed method (iii) autonomously tunes

the transfer process depending on the similarity between the

sources and the target tasks. We analyze in detail several

properties of the described approach and perform an extensive

experimental comparison with other existing transfer solutions,

consistently showing the value of our algorithm.

The rest of the paper is organized as follows. Section 2

provides a short introduction to the goals, challenges and

possible scenarios of knowledge transfer. Section 3 briefly

reviews the literature. A detailed description of the notation

and of the mathematical framework for our method follows

in Section 4. Section 5 contains the formal definition of

our knowledge transfer algorithm. Section 6 introduces an

extension to the case of heterogeneous sources. Finally in

Section 7 we present a thorough experimental evaluation of

our approach with a benchmark against several other state

of the art approaches. Section 8 concludes the paper with an

overall discussion and pointing out possible avenues for future

research.

2 KNOWLEDGE TRANSFER: ISSUES AND

SCENARIOS

The main assumption in theoretical models of learning, such

as the standard PAC (Probably Approximately Correct [13])

model, is that training instances are drawn according to the

Fig. 2. Three ways in which transfer might improve the

learning performance when the number of target training

samples increases. Forcing the target learning process to

rely on unrelated sources produces the negative transfer

effect. (Figure reproduced and adapted from [16]).

same probability distribution as the unseen test examples.

This hypothesis permits the estimation of the generalization

error and the uniform convergence theory [14] provides basic

guarantees on the correctness of future decisions.

This ideal assumption is not always true in practical prob-

lems. It can happen that we have a lot of labeled data on

a source problem and the need to solve a different target

problem with few labeled samples, where source and target

present a distribution mismatch. In this case knowledge trans-

fer (a.k.a transfer learning [15]) may decrease the effort of

collecting new samples, while at the same time it may reduce

the lack of robustness issue (risk of overfitting) by leveraging

over the existing source knowledge to solve a target task. It is

possible to define three measures by which transfer improves

the effectiveness of learning; we list them below, referring to

Figure 2.

(1) Higher start: the initial performance achievable on the

target task is much better compared to that of an ignorant

agent [16]. This is true even using only the source transferred

knowledge, before any further learning on the target problem.

(2) Higher slope: this indicates a shorter amount of time

needed to fully learn the target task, given the transferred

knowledge, in comparison with learning from scratch [16].

(3) Higher asymptote: in the long run, the final performance

level achievable over the target task can be higher compared

to the final level without transfer [16].

How to get these advantages and up to which extent the

transfer process can be useful depends on the specific sce-

nario at hand (object categorization, recognition, segmentation,

reinforcement learning, etc.) and on the relation between

source and target tasks. Apart from the different levels of

semantic similarity, source and target might be represented

with the same or with different descriptors which give rise

respectively to a homogeneous or a heterogeneous transfer

process. Moreover, a transfer learning problem can scale with

respect to the number of annotated target samples and of

possible source sets (see Figure 3). Indeed, to fully define

any knowledge transfer method it is necessary to answer to

three main questions.

(1) What to transfer? It refers to which knowledge can be

transferred and to the form in which it is coded. In general

terms, some knowledge might be specific for a task while some

other knowledge might be common and sharable.

(2) How to transfer? This question is about the definition of
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Fig. 3. A scheme of the possible transfer learning con-

ditions in visual object categorization. The number of

source sets can increase with different possible levels

of relatedness with respect to the target category. The

tasks are heterogeneous (homogeneous) if the samples

are represented with different (the same) descriptors.

The target task can be supervised with an increasing

number of training samples or unsupervised when the

target samples are not annotated.

a learning algorithm that can properly incorporate the source

knowledge while building on the target samples.

(3) When to transfer? Finally, it is always necessary to

evaluate the differences among the source and the target task

and question whether the transfer is worthwhile or not.

In the following section we review the knowledge transfer

literature, referring to how each of the proposed method

addresses these challenging questions.

3 RELATED WORK

The fundamental motivation for knowledge transfer in the field

of artificial learning was discussed in a NIPS-95 workshop

on learning to learn [17] which focused on the need for

open ended learning systems that retain and reuse previ-

ously acquired knowledge. Since then, research on this topic

has attracted more and more attention and several transfer

approaches has been proposed in machine learning, natural

language processing and computer vision.

3.1 What to Transfer

Depending on which is the problem to solve, the transferred

knowledge can be in the form of instances, feature represen-

tation, or model parameters [15].

The main idea at the basis of instance transfer approaches

is that, although the source data cannot be reused directly,

there are certain parts of them that can still be sampled

and considered together with the few available target labeled

data. In [18] Dai et al. proposed a boosting algorithm that

uses both the source and the target samples to solve visual

object classification problems. Lim et al. [19] have shown

that it is possible to borrow and transform examples across

different visual object classes, demonstrating a performance

improvement in detection problems.

Any feature transfer approach consists in learning a good

representation for the target domain encoding in it some useful

knowledge extracted from the source. Bart and Ullman [20]

proposed to perform feature adaptation using a single example

of a novel class and showed a significant gain in classification

performance. An alternative solution is to consider directly a

metric learning approach [21] or more in general to exploit

suitable kernels for the target data in SVM-based methods

[22]. Moreover, the feature transfer approach has proven to

be extremely useful in the deep learning framework for unsu-

pervised classification tasks [23]. In this setting some recent

work proposed also to represent object categories indirectly

by their attributes [24]. An attribute is a high level semantic

information (e.g. striped, furry) that is shared by multiple

object categories and can be easily transferred as a descriptor.

Finally, a parameter or model transfer approach assumes

that the source tasks and the target tasks share some parameters

or prior distributions of the models. As already mentioned, Fei-

Fei et al. [7] proposed to transfer information via a Bayesian

prior on object class models, using knowledge from known

classes as a generic reference for newly learned models. Stark

et al. [10] defined a technique to transfer a shape model across

object classes.

3.2 How to Transfer

A large variety of methods have been studied to integrate

in different ways the source and target information: boosting

approaches [18], [9], KNN [25], Markov logic [26], graphical

models [27]. Most of the work has however been done in

the generative probabilistic setting. Given the data, the target

model makes predictions by combining them with the prior

source distribution to produce a posterior distribution. A

strong prior significantly affects these results serving as a

natural way for Bayesian learning methods to transfer source

knowledge. Some discriminative (maximum margin) methods

are presented in [21] by learning a distance metric, and in

[11], [28] where a template learned previously for some object

categories is used to regularize the training of a new target

category for detection.

3.3 When to Transfer

Several knowledge transfer solutions have been proposed in

the setting of useful source knowledge [10], [18]. However, in

real learning scenarios, the information acquired in the past is

not always relevant for a new target problem. Rosenstain et al.

[29] empirically showed that if two tasks are dissimilar, brute

force transfer hurts the performance producing the so called

negative transfer (see Figure 2).

Ideally, a transfer method should be beneficial between

appropriately related tasks while avoiding negative transfer

when the tasks are not a good match. In practice, these

goals are difficult to achieve simultaneously. Approaches that

have safeguards to avoid negative transfer often produce a

smaller effect from positive transfer due to their caution.

Conversely, approaches that transfer aggressively and produce

large positive-transfer effects often have no protection against

negative transfer.

It is possible to identify two main strategies to decide when

to transfer. One consists in rejecting bad information or at
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least making sure that its impact is minimized so that the

transfer performance is at least not worse than what obtained

by learning only on the target task. This means that it is

always necessary to choose how much to transfer, possibly

disregarding the transferred knowledge completely. A different

strategy can be applied when there are more than one source

task: in this condition the problem becomes choosing the

best source. Transfer methods without much protection against

negative transfer may still be effective in this scenario, as long

as the best source task is at least a decent match. Taylor et

al. [29] proposed a transfer hierarchy, sorting the tasks by

difficulty. Given a task ordering, it may be possible to locate

the position of the target task in the hierarchy and select the

most useful source set. In [30] the authors used conditional

Kolmogorov complexity to measure relatedness between tasks

and transfer the right amount of information.

Our work fits in this context. We propose a discriminative

knowledge transfer method that relies on a set of models

learned on the source categories (what to transfer) which

are then used to regularize the target object model (how to

transfer). The relatedness among the tasks is automatically

evaluated (when to transfer) through a principled optimization

problem without any need of hand tuned parameters, extra

validation samples or a pre-defined ontology.

4 MATHEMATICAL FRAMEWORK

We introduce here the formal notation that will be used in the

paper and we present all the mathematical tools necessary to

define our knowledge transfer approach. In the following we

denote with small and capital bold letters respectively column

vectors and matrices, e.g. a = [a1, a2, . . . , aN ]T ∈ R
N and

A ∈ R
M×N with Aji corresponding to the (j, i) element.

When only one subscripted index is present, it represents the

column index, e.g., Ai is the i-th column of the matrix A.

Moreover we indicate with ‖a‖p :=
(

∑N
i=1 |ai|

p
)1/p

the p-

norm of a vector a ∈ R
N .

Let us assume xi ∈ X to be an input vector to a learning

system and yi ∈ Y its associated output. Given a set of

data D = {xi, yi}
N
i=1 drawn from an unknown probability

distribution P , we want to find a function f : X → Y such that

it determines the best corresponding y for any future sample

x. We consider X ⊆ R
d and Y = {−1, 1}.

The described learning process can be formalized as an op-

timization problem which aims at finding f in the hypothesis

space of functions H, which minimizes the structural risk [14]

Ω(f) + C
N
∑

i=1

ℓ(f(xi), yi) . (1)

Here Ω(f) is a regularizer, which encodes some notion of

smoothness for f , and guarantees good generalization per-

formance avoiding overfitting. In the second term, ℓ is some

convex non-negative loss function which assesses the quality

of the function f on the instance and label pair {xi, yi}. In

practice it expresses the price we pay by predicting f(xi)
in place of yi. The predictivity is a trade-off between the

information provided by the training data and the complexity

of the solution we are looking for, controlled by the parameter

C > 0.

4.1 Adaptive Regularization

We set H equal to space of all the linear models of the form

f(x) = w⊤φ(x) + b . (2)

Here φ(x) is a feature mapping that maps the samples into

a high, possible infinite dimensional space, where the dot

product is expressed with a functional form K(x, x′) =
φ(x)⊤φ(x′) named kernel [31]. We also set the regularizer

to be Ω(f) = 1
2‖w‖

2, so that, regardless of the specific form

of the loss function, the learning problem (1) becomes

min
w

1

2
‖w‖2 + C

N
∑

i=1

ℓ(w⊤φ(xi) + b, yi) . (3)

In this classical scheme for inductive learning, the knowledge

eventually gained on the data D̂ = {x̂i, ŷi}
N̂
i=1 extracted from

a distribution P̂ , different with respect to the target one P ,

is not taken into consideration. However, if N̂ ≫ N with

a small number of available samples N (∼ 10) and if the

two distributions P , P̂ are somehow related, the auxiliary

knowledge can be helpful in guiding the learning process.

Let us suppose that the optimal ŵ has been already found

by minimizing (3) for some source problem. When facing a

new target task, we can always ask w to be close to the known

ŵ by simply changing the regularization term [32] such that

the learning problem results

min
w

1

2
‖w − ŵ‖2 + C

N
∑

i=1

ℓ(w⊤φ(xi) + b, yi) . (4)

Thus, apart from minimizing the original term ‖w‖2, the

optimization problem aims now at obtaining a vector w close

to the source model ŵ by maximizing the projection of

the first on the second. To properly scale the importance of

this projection in the optimization problem, it is possible to

add a weighting factor β such that the regularizer becomes

‖w − βŵ‖2.

5 MULTI MODEL KNOWLEDGE TRANSFER

Consider the following situation. We want to learn the target

object class okapi from few examples, having already a model

for the source categories horse, zebra, melon and apple. On

the basis of the visual similarity, we can guess that the

final model for okapi will be close to that of horse and

zebra. Thus in the learning process we would like to transfer

information from these two categories. We would expect the

model obtained in this way to produce better recognition

results with respect to (i) just considering horse or zebra as

reference, and (ii) relying over all the source knowledge in a

flat way, as melon and apple might induce negative transfer.

This kind of reasoning motivates us to design a knowledge

transfer algorithm able to find autonomously the best subset of

known models from where to transfer, and to weight properly

the relevant information.
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Any transfer method, based on the adaptive regularization

described in the previous section, answers the question what to

transfer in terms of model parameters, by passing the known

ŵ to the new target problem. However, previous work did not

pay too much attention on when and how much to transfer.

The discussed weight factor β in the regularizer is usually

set equal to 1 with the hypothesis that the known models are

useful and related to the target problem [33]. In other cases

β is treated as a learning parameter, and is chosen by cross

validation assuming the availability of extra target training

samples [11]. Both these choices present some issues: the

first case does not consider the danger of negative transfer

when only unrelated prior information is available, while in

the second, the existence of extra data for cross validation is

incoherent with the small sample scenario of transfer learning.

Here we study instead the case of multiple (J) available

sources. We propose a learning method which relies over all

of them and assigns to each a weight βj for j = 1, . . . , J .

These values are automatically tuned on the basis of the few

available target training data. We name our algorithm Multi

Model Knowledge Transfer (Multi-KT) and we present its

basic components in the following subsections.

5.1 Adaptive Least-Square Support Vector Machine

The first step to define our transfer learning algorithm consists

in combining linearly the source models to have
∑J

j=1 βjŵj

and using this as reference instead of the single source in (4).

Moreover, we choose the weighted square loss ℓ(f(xi), yi) =
ζi(f(xi) − yi)

2 [34], where the parameter ζi can be used

to balance the contribution of positive and negative samples,

taking into account that their proportion in the training set may

be not representative of the operational class frequency.

The obtained optimization problem is:

min
w,b

1

2

∥

∥

∥

∥

∥

∥

w −
J
∑

j=1

βjŵj

∥

∥

∥

∥

∥

∥

2

+
C

2

N
∑

i=1

ζiξ
2
i

subject to yi = w⊤φ(xi) + b+ ξi ,

for i = 1, . . . , N . (5)

where we have introduced the slack variables ξi which mea-

sure the degree of misclassification on the data xi. Thus

we obtain the soft version of Least Square Support Vector

Machine (LS-SVM [12]), that use the adaptive regularizer

introduced before. The corresponding Lagrangian L is

1

2
‖w−

J
∑

j=1

βjŵj‖
2+

C

2

N
∑

i=1

ζiξ
2
i−

N
∑

i=1

ai{w
⊤φ(xi)+b+ξi−yi} .

(6)

Here a ∈ R
N is the vector of Lagrange multipliers and the

optimality condition with respect to w is

∂L

∂w
= 0 =⇒ w =

J
∑

j=1

βjŵj +

N
∑

i=1

aiφ(xi) . (7)

Thus, the adapted model is given by the weighted sum of the

pre-trained source models ŵj and a linear combination of the

target samples. Note that when all the βj are 0 we recover

the original LS-SVM formulation without any adaptation to

previous knowledge. Considering also the derivative of L with

respect to ξi and ai, we have respectively ai = Cζiξi and

w⊤φ(xi) + b+ ξi − yi = 0. By combining them with (7) we

find

N
∑

k=1

ak φ(xk)
⊤φ(xi)+b+

ai
Cζi

= yi−
J
∑

j=1

βjŵ
⊤
j φ(xi) . (8)

Denoting with K the kernel matrix, i.e. Kji = K(xj ,xi) =
φ(xj)

⊤φ(xi), the obtained system of linear equations can be

written more concisely in matrix form as

[

K+ 1
CZ 1

1⊤ 0

] [

a

b

]

=

[

y −
∑J

j=1 βj ŷj

0

]

, (9)

where y and ŷj are the vectors containing respectively

the label of each training sample and the prediction

of the previous model j, i.e. y = [y1, . . . , yN ]⊤ ,

ŷj = [ŵ⊤
j φ(x1), . . . , ŵ

⊤
j φ(xN )]⊤. Moreover, Z =

diag{ζ−1
1 , ζ−1

2 , . . . , ζ−1
N } and to balance the contribution of

differently labeled samples to the misfit term we set

ζi =

{

N
2N+ if yi = +1
N

2N−
if yi = −1 .

(10)

Here N+ and N− represent the number of positive and

negative examples respectively.

Finally, the model parameters can be calculated simply by

matrix inversion:
[

a

b

]

= P

[

y −
∑J

j=1 βj ŷj

0

]

, (11)

where P = M−1 and M is the first matrix on the left in (9).

We underline that the pre-trained models ŵj can be obtained

by any training algorithm, as long as it can be expressed as a

weighted sum of kernel functions; the framework is therefore

very general.

5.2 When and How Much to Transfer

Finding the optimal value for the elements of the weight vector

β corresponds to ranking the prior knowledge sources and

decide from where and how much to transfer. We propose

to choose β in order to minimize the leave-one-out error,

which is an almost unbiased estimator of the generalization

error [34]. While in general computing the leave-one-out error

is a very expensive procedure, we show that for (5) it can

be computed with a closed-formula, using quantities that are

already computed for the training.

Let us denote by ỹi, i = 1, . . . , N , the prediction on

sample i when it is removed from the training set. LS-SVM

in its original formulation makes it possible to write these

leave-one-out predictions in closed form and with a negligible

additional computational cost [34]. We show below that the

same property extends to the modified problem in (5).

Proposition 1: Let [a′⊤, b′]⊤ = P [y⊤, 0]⊤ and

[a′′⊤
j , b′′j ]

⊤ = P [ŷ⊤
j , 0]

⊤ with a = a′ −
∑J

j=1 βja
′′
j . If

we indicate with A′′ the matrix containing the vector a′′⊤
j in
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the j-th row, the prediction ỹi, obtained on sample i when it

is removed from the training set, is equal to

yi −
a′i
Pii

+
β⊤A′′

i

Pii
, (12)

where β ∈ R
J is a vector containing all the values βj .

Proof of Proposition 1: We start from

M

[

a

b

]

=

[

y −
∑J

j=1 βj ŷj

0

]

, (13)

and we decompose M into block representation isolating the

first row and column as follows:

M =

[

K+ 1
CZ 1

1⊤ 0

]

=

[

m11 m⊤
1

m1 M(−1)

]

.

Let a(−i) and b(−i) represent the model parameters

during the i-th iteration of the leave-one-out cross validation

procedure. In the first iteration, where the first training sample

is excluded we have

[

a(−1)

b(−1)

]

= P(−1)(y(−1) −

J
∑

j=1

βj ŷj(−1)),

where P(−1) = M−1
(−1) , y(−1) = [y2, . . . , yN , 0]⊤ and

ŷj(−1) = [ŵ⊤
j φ(x2), . . . , ŵ

⊤
j φ(xN ), 0]⊤ . The leave-one-out

prediction for the first training sample is then given by

ỹ1 = m⊤
1

[

a(−1)

b(−1)

]

+
J
∑

j=1

βjŵ
⊤
j φ(x1)

= m⊤
1 P(−1)



y(−1) −

J
∑

j=1

βj ŷj(−1)



+

J
∑

j=1

βjŵ
⊤
j φ(x1) .

Considering the last N equations in the system in (13), it is

clear that [m1 M(−1)][a
⊤, b]⊤ = (y(−1) −

∑J
j=1 βj ŷj(−1)) ,

and so

ỹ1 = m
⊤

1 P(−1)[m1M(−1)][a1, . . . , aN , b]⊤ +
J
∑

j=1

βjŵ
⊤

j φ(x1)

= m
⊤

1 P(−1)m1a1 +m
⊤

1 [a2, . . . , aN , b]⊤ +

J
∑

j=1

βjŵ
⊤

j φ(x1) .

In (13) the first equation of the system is y1 −
∑J

j=1 βjŵ
⊤
j φ(x1) = m11a1 +m⊤

1 [a2, . . . , aN , b]⊤ , and we

have ỹ1 = y1 − a1(m11 −m⊤
1 P(−1)m1) . Finally, by using

P = M−1 and applying the block matrix inversion lemma

we get

P =

[

µ−1 −µ−1m1P(−1)

P(−1) + µ−1P(−1)m
⊤
1 m1P(−1) −µ−1P(−1)m

⊤
1

]

,

where µ = m11 −m⊤
1 P(−1)m1 . By noting that the system

of linear equations (13) is insensitive to permutations of the

ordering of the equations and of the unknowns, we have

ỹi = yi −
ai
Pii

.

By defining [a′⊤, b′]⊤ = P [y⊤, 0]⊤ , [a′′⊤
j , b′′j ]

⊤ =

P [ŷ⊤
j , 0]

⊤ , and a = a′ −
∑J

j=1 βja
′′
j , from the equation

above we get

ỹi = yi −
a′i
Pii

+
J
∑

j=1

βj

A′′
ji

Pii
= yi −

a′i
Pii

+
β⊤A′′

i

Pii
,

where β ∈ R
J is a vector containing all the values βj and A′′

is the matrix containing the vector a′′⊤
j in the j-th row.

Notice that in (12) a depends linearly on β, thus it is

straightforward to obtain the learning model once all the βj

have been chosen. By multiplying the correct label yi to (12)

we get

yiỹi = 1− yi

(

a′i
Pii
−

β⊤A′′
i

Pii

)

, (14)

thus the best values for βj are those producing positive values

for yiỹi, for each i. However, focusing only on the sign of

those quantities would result in a non-convex formulation with

many local minima. We propose instead the following loss

function:

ℓ(ỹi, yi) = ζi max{0, 1− yiỹi}

= ζi max

{

0, yi

(

a′i
Pii
−

β⊤A′′
i

Pii

)}

. (15)

This loss function is similar to the hinge loss. It is a convex

upper bound to the leave-one-out misclassification loss and it

favors solutions in which ỹi has an absolute value equal or

bigger than 1, and the same sign of yi. The weight ζi is set

again according to (10). Finally, the objective function is

min
β

N
∑

i=1

ℓ(yi, ỹi) subject to ‖β‖p ≤ 1 , βj ≥ 0 , (16)

where we added some constraint on the β vector as a form

of regularization. They may be helpful to avoid overfitting

problems when the number of known models J is large

compared to the number of training samples N . Depending

on the value of p, how the target learning model leverages

over the source models changes:

p = 2, L2 norm constraint. This is the well known

Euclidean norm indicated by ‖ · ‖2 or simply ‖ · ‖. A reg-

ularization based on it generally induces numerical stability.

The optimization process can be implemented by using a

simple projected sub-gradient descent algorithm, where at each

iteration β is projected onto the L2-sphere ‖β‖ ≤ 1, and then

on the positive semi-plane. The pseudo-code is in Algorithm

1.

p = 1, L1 norm constraint. This is simply the sum of the

absolute values of the vector elements. This constraint induces

a sparse solution, i.e. only some vector elements remain dif-

ferent from zero. Applied on prior knowledge regularization,

the condition ‖β‖1 ≤ 1 can be easily implemented, e.g., on

the basis of the algorithm proposed in [35], and it gives rise

to an automatic source selection technique.

p =∞, L∞ norm constraint. This norm is defined as

‖x‖∞ := max{|x1|, . . . , |xd|}. (17)
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In practice, by using ‖β‖∞ ≤ 1 as regularizer we are imposing

that all the vector elements assume separately an absolute

value not bigger than one. In this case the projection consists

of a simple truncation.

The second condition in (16) limits the weights of the source

knowledge models to be positive. In fact, in the object category

detection problem, all the considered source and target sets

have the background category as common negative class, thus

it is reasonable to expect that the angle between w and any

ŵj is always acute.

Algorithm 1 Projected Sub-gradient Descent Algorithm

Input: calculate a′, a′′
j and set A′′ according to Proposi-

tion 1

Initialize: β ← 0 and t← 1
repeat

ỹi ← yi −
a′

i

Pii
+
∑J

j=1 βj
A′′

ji

Pii
∀ i = 1, . . . , N

di ← 1{yiỹi > 0} , ∀ i = 1, . . . , N

βj ← βj −
1√
t

∑N
i=1 diyi

a′′

ji

Pii
, ∀ j = 1, . . . , J

if ‖β‖2 > 1 then

β ← β/‖β‖2
end if

βj ← max(βj , 0), ∀ j = 1, . . . , J
t← t+ 1

until convergence

Output: β

5.3 Computational Complexity

From a computational point of view the runtime of the Multi-

KT algorithm is O(N3+JN2), with N the number of training

samples, and J the number of source models. The first term

is related to the evaluation of the matrix P , which must

anyway occur while training, while the second term is the

computational complexity of (12), which results negligible,

if compared to the complexity of training. Thus, we match

the complexity of a plain SVM, which in the worst case is

known to be O(N3) [36]. The computational complexity of

each step of the projected sub-gradient descent to optimize

(15) is O(JN), and it results extremely fast (our MATLAB

implementation takes just half a second with N = 12 and

J = 3 on current hardware).

6 HETEROGOENOUS KNOWLEDGE TRANSFER

The proposed Multi-KT transfer method is based on the idea

of pushing the target model w close to a linear combination

of prior known sources
∑J

j=1 βjŵj . However, to impose this

closeness, all the vectors should live in a single space. This

means that the kernel used in learning over all the sources

and on the new target must be the same. This is quite a strict

condition because it does not give the freedom to build the

source knowledge over heterogeneous feature descriptors, and

imposes a unique metric to evaluate the sample similarity.

We show here that this limit may be easily overcome

by enlarging the space in which we seek the final learning

function on the target task, by a multi-kernel approach. We

call this variant MultiK-KT.

Let us assume to have j = 1, . . . , J mappings, each to a

different space, where the image of a vector x is φj(x). We

can always compose all of them orthogonally (see Figure 4)

obtaining the mapping to the final space by concatenation:

φ′(x) = [φ1(x), φ2(x), . . . , φJ(x)]
⊤. The dot product in this

new space is expressed by the kernel K ′

φ′(x)⊤φ′(z) =
J
∑

j=1

φj(x)
⊤φj(z)

=

J
∑

j=1

Kj(x, z) = K ′(x, z), (18)

where Kj(x, z) is the kernel function in the j-th space.

Now let us consider the transfer learning problem with

j = 1, . . . , J source object classes and suppose to solve the

binary classification object-vs-background for each of them

in a specific space, i.e. choosing different feature descriptors,

different kernel functions, and/or different kernel parameters.

The obtained model vectors are

ŵj =

N̂j
∑

i=1

αj
iφj(xi) .

These solutions can always be mapped in the composed

new space using zero padding. In fact, φj(x) → φ′
j(x) =

[0, . . . , φj(x), . . . , 0]
⊤, we have

ŵj → ŵ′
j = [0, . . . , ŵj , . . . , 0]

⊤

= [0, . . . ,

N̂j
∑

i=1

αj
iφj(xi), . . . , 0]

⊤ .

Hence, in the new space, a vector obtained as linear com-

bination of all the known models results:
J
∑

j=1

βjŵ
′
j = [β1ŵ1, . . . , βJŵJ ]

⊤

= [β1

N̂1
∑

i=1

α1
iφ1(xi), . . . , βJ

N̂J
∑

i=1

αJ
i φJ(xi)]

⊤ .

By supposing that the target problem lives in the new com-

posed space, we can apply our Multi-KT algorithm there.

Hence the original optimization problem in (5) becomes

min
w′,b

1

2

∥

∥

∥

∥

∥

∥

w′ −
J
∑

j=1

βjŵ
′
j

∥

∥

∥

∥

∥

∥

2

+
C

2

N
∑

i=1

ζi(yi−w′⊤φ′(xi)− b)2 .

(19)

The solving procedure is the same described in Section 5.1

and the optimal solution is:

w′ =

J
∑

j=1

βjŵ
′
j +

N
∑

i=1

aiφ
′(xi) .

When we use it for classification we get

w
′⊤
φ
′(z) =

J
∑

j=1

βjŵ
′⊤

j φ
′(z) +

N
∑

i=1

aiφ
′(xi)

⊤
φ
′(z)

=
J
∑

j=1

βjŵ
⊤

j φj(z) +
N
∑

i=1

ai

(

J
∑

j=1

φj(xi)
⊤
φj(z)

)

,

that is exactly the same that would be obtained from (7) using
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Fig. 4. For Multi-KT the first the source and target models

must live in the same space identified by the kernel K. For

MultiK-KT all the sources can be defined independently

in their own space and the target solution lives in the

space obtained by orthogonal combination. We show also

a geometrical interpretation of the kernel combination.

K ′(x, z) as kernel. Even the original procedure to choose the

best β can be easily enlarged to the case of linearly combined

orthogonal spaces. The vector ŷ
′
j containing the predictions

of the j−th known model is:

ŷ
′
j = [ŵ′⊤

j φ′(x1), . . . , ŵ
′⊤
j φ′(xN ))]

= [ŵ⊤
j φj(x1), . . . , ŵ

⊤
j φj(xN ))] = ŷj .

This indicates that there is no real changing: MultiK-KT

is formally equivalent to the original Multi-KT with the

kernel chosen as in (18). As a consequence the computational

complexity of MultiK-KT is again O(N3+JN2) (see Section

5.3).

7 EXPERIMENTS

In this section we show empirically the effectiveness of

our transfer algorithm1 on three datasets: Caltech-256 [37],

Animals with Attributes (AwA) [24] and IRMA [38].

The Caltech-256 contains images of 256 object classes plus

a clutter category that can be used as negative class in object-

vs-background problems. Moreover, the objects are also orga-

nized in a hierarchical ontology that makes it easy to identify

the related and unrelated categories. We downloaded2 the pre-

computed features of [39] and we selected four different image

descriptors: PHOG Shape Descriptors [40], SIFT Appearance

Descriptors [41], Region Covariance [42], and Local Binary

Patterns [43]. They were all computed in a spatial pyramid

[44] and we considered just the first level (i.e. information

extracted from the whole image).

The AwA dataset contains 50 animal classes and it has been

released with several pre-extracted feature representations for

1. We implemented it in MATLAB, the code is available online http://www.
idiap.ch/∼ttommasi/source code CVPR10.html

2. http://www.vision.ee.ethz.ch/∼pgehler/projects/iccv09/

each image3. From the full set of categories we extracted

the six sea mammals (killer whale, blue whale, humpback

whale, seal, walrus and dolphin) and used them to define

the background class. We used three of the precomputed

descriptors for our experiments: color histogram, PHOG and

SIFT.

The IRMA database is a collection of x-ray images pre-

senting a large number of rich classes defined according to a

four-axis hierarchical code [45]. We decided to work on the

2008 IRMA database version [38], just considering the third

axis of the code: it describes the anatomy, namely which part

of the body is depicted, independently to the used acquisition

technique or direction. A total of 23 classes with more than

100 images were selected from various sub-levels of the third

axis, 3 of them were used to define the background class. As

features we used the global pixel-based and local SIFT-based

descriptors following the experimental setup in [46].

We performed all the experiments in a leave-one-class-out

approach, that is considering in turn each class as target and all

the others as sources. The number of negative training samples

is kept fixed while the number of positive training samples

increases in subsequent steps till reaching the same amount

of the negative set. The samples are extracted randomly 10

times for an equal number of experimental runs. Each prior

knowledge model is built with classical LS-SVM. We use

the Gaussian kernel both on the source and on the target

for all the experiments K(x,x′) = exp(−γ‖x − x′‖2)
(exceptions for the heterogeneous case are explicitly indi-

cated). To integrate multiple (F) features we calculate one

kernel for each of them and we use the average kernel

K(x,x′) = 1/F
∑F

f=1 Kf (x,x
′). All the transfer results

are benchmarked against no transfer: this corresponds to

learning from scratch with weighted-LS-SVM, i.e. solving the

optimization problem in (5) with β = 0.

Regarding the parameters, a unique common value for γ was

chosen for all the kernels by cross validation on the source

sets. In particular, we trained a model for each class in the

source set and we used it to classify on the remaining J − 1
source classes. Finally, we selected the γ value producing on

average the best recognition rate. The value of C is instead

determined as the one producing the best result when learning

from scratch. There is no guarantee that the obtained C value

is the best for the transfer approach; still in this way we

compare against the best performance that can be obtained

by learning only on the available training samples, without

exploiting the source knowledge. We used this setup for all

the experiments; specific differences are otherwise mentioned.

7.1 Setting the Constraints

To fully define the Multi-KT algorithm it is necessary to

choose the p value in the constraint of (16). We evaluate

empirically three cases with p = 1, 2,∞ and we compare

the obtained results over three groups of data that differ

in the level of relatedness among source and target knowl-

edge. Specifically, we extracted 6 unrelated classes (harp,

microwave, fire-truck, cowboy-hat, snake, bonsai), 6 related

3. http://attributes.kyb.tuebingen.mpg.de/
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classes (all vehicles: bulldozer, fire-truck, motorbikes, school-

bus, snowmobile, car-side) and 10 mixed classes (motorbikes,

dog, cactus, helicopter, fighter, car-side, dolphin, zebra, horse,

goose) from Caltech-256. We refer to a class as the com-

bination of 80 object and 80 background images. For each

class used as target, we extracted 20 training and 100 testing

samples with half positive and half negative data.

The results in Figure 5 (top line) show the clear gain

obtained by using Multi-KT with respect to no transfer.

The advantage is maximum in case of related classes (the

difference between Multi-KT L2 and no transfer is 39% in

recognition rate for 1 positive sample), it is just a little bit

smaller for mixed classes (34%) and drops more in case of

sources unrelated to the target task (29%). However, regardless

of the relatedness level, the choice of the constraint on prior

knowledge weight β does not produce significantly different

results4, apart for a slightly lower performance of the L1 case

with respect to the others. Hence, in the following we will

always use the L2 norm constraint.

7.2 Transfer Weights and Semantic Similarity

The Multi-KT algorithm defines automatically the relevance of

each source model to the current target task. We analyze here

the β vector obtained as a byproduct of the transfer process,

to verify if its elements have a correspondence with the real

visual and semantic relation among the tasks.

We start from the results obtained in the previous section

with the L2 norm constraint and we consider the intermediate

training step with 5 positive samples. We average the β vectors

obtained over the 10 runs defining a matrix of weights with

one row for each class used as target. By simple algebra

we can transform it to a fully symmetric matrix containing

measures of class dissimilarities evaluated as (1 − βj) and

apply multidimensional scaling on it [48]. To have an imme-

diate visualization we considered only two dimensions and

we obtain plots where each point represents a class, and the

distance among the points is directly proportional to the input

dissimilarities.

Figure 5 (bottom line) shows the obtained results. It can be

seen that in the case of unrelated classes the corresponding

points tend to be far from each other. On the other hand,

among the related classes extracted from the general cate-

gory motorized-ground-vehicles, the four wheels vehicles (fire-

truck, school-bus and car-side) form a cluster, leaving aside

motorbikes (two wheels), snowmobile (skis) and bulldozer

(tracks). Finally, among the mixed classes, helicopter and

fighter-jet appear close to each other and to dolphin. Probably

this is due to the shape appearance of these object classes and

to the common uniformity of the sky and water background.

Moreover, all the four legged animals (zebra, horse and dog)

appear on the right side of the plot, while the vehicles (car-side

and motorbikes) are in the left bottom corner.

Globally all the results indicate that the β vectors actually

contain meaningful values in terms of semantic relation be-

tween the object classes.

4. We used the sign test [47] to evaluate the statistical significance of the
results for all the experiments.

7.3 Comparison and Evaluation

Here we evaluate our Multi-KT algorithm in comparison with

several state of the art transfer learning approaches. We briefly

review them before discussing the experimental results.

Single Source. Most of the existing knowledge transfer

methods suppose the availability of a single source knowledge.

Among the approaches listed below, the first two are based on

transferring model parameters as our Multi-KT, while the last

one is an instance transfer approach and exploits directly the

source samples.

Adaptive SVM (A-SVM). This method has been originally

presented in [33] and is based on substituting the usual

regularizer of the SVM formulation with the adaptive version

min
w
‖w − βŵ‖2 + C

N
∑

i=1

ℓH(w⊤φ(xi), yi) . (20)

Projective Model Transfer SVM (PMT-SVM). Maximizing

the projection of w onto ŵ corresponds also to minimizing

the projection of w onto the prior knowledge separating

hyperplane (orthogonal to ŵ). Following this idea the objective

function of PMT-SVM is

min
w
‖w‖2 + β‖Rw‖2 + C

N
∑

i=1

ℓH(w⊤φ(xi), yi)

subject to w⊤ŵ ≥ 0, (21)

here R is the projection matrix and ‖Rw‖2 = ‖w‖2 sin2 θ,

where θ is the angle between w and ŵ.

TrAdaBoost: boosting for Transfer Learning. A simple

instance transfer approach can be defined by extending the

AdaBoost learning framework. Specifically TrAdaBoost [18]

considers a mix of source and target data in training and is

based on a mechanism which decreases the weights of the

source samples in order to weaken their impact. Finally, the

source instances with large training weights help the learning

algorithm to train better classifiers.

Experiments. We benchmark here our Multi-KT algorithm

against the described A-SVM, PMT-SVM and TrAdaBoost.

Since these baseline methods were defined in the hypothesis

of a single available source set, we considered two cases: a

pair of unrelated and a pair of related classes. Both the pairs

were extracted from Caltech-256 and each of the classes is

considered in turn as target while the other represents the

source task.

We used the MATLAB code of PMT-SVM provided by

its authors, together with their implementation of A-SVM 5

slightly modifying them to introduce the weights ζi for i =
1, . . . , N in the corresponding loss function, so to have a fair

comparison with our Multi-KT. The original formulation con-

sidered the linear kernel, thus we chose K(x, z) = x⊤z for

all the experiments together with the SIFT feature descriptors.

In [11] the β value is defined by cross validation on extra

validation target samples. Here we decided to simply tune it on

the test set, showing the best result that could be obtained. The

same approach was adopted to choose the number of boosting

iterations for TrAdaBoost.

5. http://www.robots.ox.ac.uk/∼vgg/software/tabularasa/
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Fig. 5. Top line: Performance of the proposed Multi-KT method with various settings for the constraint on the source

knowledge weights. The results correspond to average recognition rate over the categories, considering each class

out experiment repeated ten times. Bottom line: output of the bidimensional scaling applied on the β vector values.

The results are shown in Figure 6 (top line). In the related

(left plot) case all the transfer learning methods show better

performance than learning from scratch with different extent.

The results of our Multi-KT are significantly better than those

of no transfer and PMT-SVM (p ≤ 0.01). Only for 10

positive training samples PMT-SVM and Multi-KT produce

comparable results. Multi-KT also outperforms TrAdaBoost

for all the training steps (p ≤ 0.01) except the first one, where

they are statistically equivalent. Finally, the difference between

Multi-KT and A-SVM is not significant: since the β parameter

for A-SVM is tuned on the test set, this indicates that Multi-

KT is autonomously able to identify the optimal weight to

assign to prior knowledge. The bias of A-SVM towards the

best possible recognition rate is evident in the case of unrelated

classes (middle plot) where it is the only method to outperform

no transfer along all the steps. The other knowledge transfer

approaches show better results than no transfer only for less

than three positive training samples (p ≤ 0.05), becoming then

statistically equivalent to learning from scratch.

The histogram bars on the right in Figure 6 (top right)

show the recall produced by each source model when used

directly to classify on the target task. This indicates the prior

knowledge capability in recognizing the new object without

adaptation and it is clearly lower for unrelated than for related

classes.

Multiple Sources. When more than one source set is

available, there are three main strategies that a transfer learning

method can consider. Two extreme solutions consist in either

selecting only one source, evaluated as the best for the target

problem, or averaging over all of them supposing that they are

all equally useful. The third strategy considers the intermediate

case where only some of the source sets are helpful for the

target task and consists in selecting them by assigning to each

a proper weight. To our knowledge, only our Multi-KT method

is based on the third selective technique.

MultiSourceTrAdaBoost: boosting by transferring samples.

An extension to the TrAdaBoost approach in the case of

multiple available sources has been presented in [9]. The

method MultiSourceTrAdaBoost considers one source set at the

time, combining it with the target set and defining a candidate

weak classifier. The final classifier is then chosen as the one

producing the smallest training target classification error by

automatically selecting the corresponding best source.

TaskTrAdaBoost: boosting by transferring models. This is a

parameter transfer approach consisting of two steps. Phase I

deploys traditional AdaBoost separately on each source task

to get a collection of candidate weak classifiers. Only the most

discriminative are stored by asking that the weight assigned

by the boosting process to each classifier is greater than a

certain threshold τ : this guarantees to avoid overfitting. Phase

II is again an AdaBoost loop over the target training data

where at each iteration the weak classifier is extracted from

the set produced in the previous phase. The choice is done on

the basis of the minimal classification error produced on the

target training set.

Single KT. Our Multi-KT algorithm chooses the best set of

weights for all the prior knowledge models at once on the basis

of the loss function defined in (15). An alternative approach

can be defined adopting a logistic loss function [49]:

ℓ(ỹi, yi) = ζi
1

1 + exp{−10(ỹi − yi)}
. (22)

If we consider one single source knowledge j at the time,

the corresponding loss ℓj(ỹi, yi) will depend on the difference
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Fig. 6. Left and middle columns: recognition rate as a function of the number of positive training samples. In each

experiment we consider in turn one of the classes as target and the others as source, on ten random training sets. The

final results are obtained as average over all the runs. Top Right: the histogram bars represent the recall produced by

the model of the source class (indicated on the x-axis) when used to classify on the other class, considered as target.

Bottom Right: average norm of the difference between two β vectors obtained for a pair of subsequent training steps.

(ỹi − yi) =
(

a′

i

Pii
− βj

A′′

ji

Pii

)

for all i = 1, . . . , N . Although

this formulation results in a non convex objective function

with respect to βj , it is always possible to evaluate (22) for

a finite set S of weights6. We can store for each source the

value minS{
∑

i ℓj(ỹi, yi)}, and then compare all the results

to identify the best prior knowledge model and the best weight

value to assign. We call this variant of our method Single-KT.

Average Prior Knowledge. As already mentioned in the

introduction, the first knowledge transfer approach able to

perform one-shot learning on computer vision problems was

presented in [7]. This approach does not make any assumption

on the reliability of the prior knowledge, which is always con-

sidered as an average over all the known classes. The algorithm

structure is strictly related to the part-based model descriptors

and neither the code nor the feature used for the experiments

in [7] have ever been publicly released. However, following

the proposed main idea, any transfer learning method that

originally considers the existence of a single source task can

be extended to the case of multiple sources by relying on the

average of all the prior known models.

Experiments. Here we show a benchmark evaluation of

our Multi-KT algorithm against its Single-KT version, Multi-

SourceTrAdaBoost and TaskTrAdaBoost. Following the basic

idea of [7] we also use A-SVM as baseline supposing to con-

sider the average of all the prior models as source knowledge,

thus ŵ = 1
J

∑J
j=1 ŵj and β = 1.

We used the same experimental setting of the previous

section considering the linear kernel, SIFT features and two

6. We considered a fine tuning varying β in {0.01, 1} with step of 0.01.

randomly extracted sets of 10 and 20 classes from Caltech-

256. In particular, the second set is obtained by adding an extra

random group of 10 classes to the first one. For the boosting

approaches all the parameters (number of boosting iterations

and the threshold in Phase I of TaskTrAdaBoost) where tuned

on the test set and only the best results are presented. From

Figure 6 it is clear that in both the experiments our Multi-KT

approach clearly outperforms Single-KT and the two boosting

methods (p ≤ 0.01), besides producing better results than

learning from scratch (p ≤ 0.01). Moreover, for very few

samples, properly weighting each prior knowledge source with

Multi-KT is better (p ≤ 0.05) than averaging over all the

known models as done by A-SVM: the two approaches are

equivalent only after five positive training samples with 10

classes and respectively three positive training samples for 20

classes.

For any method that chooses only one source model in

transferring, every time there is a change in the selected source,

the behavior of the algorithm might change. This indicates low

stability. Recent work has shown that the more stable is an

algorithm, the better is its generalization ability [50]. The plot

on the right in Figure 6 (bottom right) shows the comparison

of Multi-KT with its Single-KT version in terms of stability.

The best βj value chosen by Single-KT can be considered

as an element of the full β vector where all the remaining

elements are zero. For each pair of subsequent steps in time,

corresponding to a new added positive training sample, we

calculate the difference between the obtained β both for Multi-

KT and Single-KT. From the average norm of these differences
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Fig. 8. Recognition rate as a function of the number of

positive training samples. Each source model is defined

by using a Gaussian kernel with a different γ parameter.

it is evident that choosing a combination of the prior known

models for transfer learning is more stable than relying on just

a single source (lower average variation in the vector β).

7.4 Heterogeneous Knowledge

In this section we consider an heterogeneous experimental

setting where each source knowledge lives in its own feature

space and we compare the performance of MultiK-KT with

that of Multi-KT applied on a restricted homogeneous condi-

tion. We show that the space enlarging trick at the basis of

MultiK-KT, not only allows to overcome the problem raised

by the existence of a variability in the sources, but also, by

exploiting this higher level of freedom, produces better results

than Multi-KT in the corresponding single space case.

We ran experiments on the same subset of data used in the

section 7.1. Here we considered SIFT as unique descriptor

together with the generalized Gaussian kernel: K(x, z) =
exp(−γdρ,δ(x, z)), where dρ,δ(x, z) =

∑

i |x
ρ
i − zρi |

δ . Each

source knowledge is defined by using the best set {γ, ρ, δ}
obtained by cross validation on the corresponding object

category, while we learn on the target class considering the

sum over the source kernels. We name no transfer multiK

the baseline corresponding to learning from scratch in this

combined space. Figure 7 presents the obtained results in

comparison with the case of using a single standard Gaussian

kernel, with fixed γ for sources and target tasks (no transfer

and Multi-KT curves in the plot): MultiK-KT always performs

significantly better than Multi-KT (p ≤ 0.002).

Among the baseline methods that we considered in the

homogeneous experiments, the only one that allows also the

use of heterogeneous sources is TaskTrAdaBoost. We compare

it with MultiK-KT over the random set of ten classes already

used in the previous section. For each source we suppose to

have already learned an SVM model with SIFT descriptors and

Gaussian kernel where the γ parameter is set to the mean of

the pairwise distances among the samples. This means that

each source model lives in its own specific feature space.

TaskTrAdaboost in each boosting iteration simply chooses one

of the source models, while MultiK-KT learns the target task

in the composed space defined by all the sources and obtained

on the basis of the sum kernel. Figure 8 shows that multiK-

KT outperforms TaskTrAdaBoost (p ≤ 0.01) besides obtaining

better results than learning from scratch.
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Fig. 9. Multi-KT performance for high number of source

knowledge sets. Right: one shot learning performance of

Multi-KT and no transfer when varying the number of prior

known object categories.

7.5 Increasing Number of Sources

For any open-ended learning agent the number of known

object categories is expected to grow in time. An increasing

number of sources may give rise to a scalability problem in

transfer learning due to the necessity of checking each of them

and evaluate the reliability for the new task. Specifically, for

102 source sets the boosting methods described in Section 7.3

become extremely expensive in computational terms (indeed

the paper which presented them considered a maximum of 5

sources [9]).

We performed experiments with 100 and 256 object classes

from Caltech-256 dataset, reporting the result of Multi-KT, no

transfer and A-SVM with average prior knowledge in Figure 9.

In both cases, properly choosing the weights to assign to each

source pays off with respect to average over all the sources

for very few training samples: Multi-KT outperforms A-SVM

(p ≤ 0.05) for less than three positive samples. With enough

training samples and a rich prior knowledge set, the best choice

is to not neglect any source information.

We can expect that with a growing prior knowledge set,

also the probability to find a useful source for the target task

increases. To verify this behavior we focus on the Multi-

KT results obtained with a single positive image. The one-

shot performance obtained in the previous experiments for 2

unrelated classes, 2 related classes, random sets of 10, 20, 100

classes plus the final full set of 256 objects are summarized

in Figure 9 (right). Although some small oscillation due to

the specific group of classes considered, it is clear that by

increasing the number of available sources of one order of

magnitude the one-shot recognition rate obtained with Multi-

KT grows. After an evident gain obtained by passing from 100

to 101 classes, the difference becomes less evident from 101

to 102 classes.

7.6 Increasing Number of Samples

Transfer learning has its maximum effectiveness in the small

sample scenario in comparison to learning from scratch. How-

ever, it is also interesting to evaluate the performance of a

knowledge transfer approach when the number of available
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Fig. 10. Top line: recognition rate as a function of the number of positive training samples. Each experiment is defined

by considering in turn one of the classes as target and the others as sources. The final results are obtained as average

over ten runs. Bottom line: Maximum value over the elements of the β vector averaged over the classes and the splits.

training instances increases, thus checking its asymptotic be-

havior (see Figure 2).

We repeated the experiments on the full Caltech-256 dataset

considering {1, 5, 10, 30, 50} positive training samples with a

fixed set of 50 negative training samples. We also run analo-

gous experiments on the AwA and IRMA dataset, considering

respectively 60 (60) and 70 (70) positive (negative) training

samples. For all the datasets the test set contains 60 (30

positive and 30 negative) instances.

All the results are reported in Figure 10 (top line). Although

it is clear the gain of Multi-KT with respect to learning from

scratch for limited available data, in general this advantage

disappears when the number of positive training samples

reaches 50. Figure 10 (bottom line) indicates that the weights

associated to prior knowledge progressively decrease. The

absence of the asymptotic advantage was to be expected for

Multi-KT and can be justified in theoretical terms: when the

number of training samples increases, the adaptive regulariza-

tion loses its relevance and the problem reduces to learning

from scratch.

8 CONCLUSION

A learning system able to exploit prior knowledge when

learning something new should rely only on the available

target information for choosing from where and how much

to transfer. To be autonomous it should not need an external

teacher providing either information on which is the best

source to use, or extra target training samples. In this paper we

presented our Multi-KT algorithm, a LS-SVM based transfer

learning approach with a principled technique to rely on source

models and avoid negative transfer. The results of extensive

experiments demonstrated the effectiveness of Multi-KT for

object categorization problems with respect to other existing

transfer learning methods. Moreover the weight assigned to

the source knowledge set proved to be meaningful in terms of

the semantic relation among the considered classes. We also

extended our algorithm to the heterogeneous setting.

Recently the computer vision literature has seen an increas-

ing interest towards high scale (104) object problems [5]. Most

of the proposed transfer learning algorithms in this setting

has been developed for object detection [51] and segmentation

[52], while how to scale up the classification problem is still

an open issue. Introducing a structure on the source knowledge

while learning something new might be a promising strategy

to use Multi-KT in this condition. Moreover the associated

scalability problem due to the increasing number of training

examples can be overcome by casting Multi-KT in an online

learning framework [53]. All this clearly indicates possible

directions for future research.
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