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Abstract. This paper examines learning problems in which the target function is allowed to change. The learner
sees a sequence of random examples, labelled according to a sequence of functions, and must provide an accurate
estimate of the target function sequence. We consider a variety of restrictions on how the target function is allowed
to change, including infrequent but arbitrary changes, sequences that correspond to slow walks on a graph whose
nodes are functions, and changes that are small on average, as measured by the probability of disagreements
between consecutive functions. We first study estimation, in which the learner sees a batch of examples and is
then required to give an accurate estimate of the function sequence. Our results provide bounds on the sample
complexity and allowable drift rate for these problems. We also study prediction, in which the learner must produce
online a hypothesis after each labelled example and the average misclassification probability over this hypothesis
sequence should be small. Using a deterministic analysis in a general metric space setting, we provide a technique
for constructing a successful prediction algorithm, given a successful estimation algorithm. This leads to sample
complexity and drift rate bounds for the prediction of changing concepts.
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1. Introduction

We consider the problem of learning to track a changing subset of a domain from random
examples. In many learning problems for which the environment is changing, there is some
structure to the change. For example, the daily weather at a given location may be viewed as
a changing concept having some basic underlying structure to its change. On a short-term
scale changes are of bounded variation, on a larger annual scale changes are roughly cyclic,
and there are probably some further subtle rules governing the structure of daily weather
changes. Another rather practical example arises in a steel rolling mill, where the efficiency
of the mill’s operation depends on how accurately the behavior of the rolling surfaces can

*An earlier version of this paper was presented at the Ninth Annual Conference on Computational Learning
Theory.
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be predicted (Connolly, Chicharo, & Wilbers, 1992). As in many industrial processes, there
is an accurate physical model of the target function (relating the measured variables to the
desired quantity), but there are several unknown parameters, and these may change over
time. The change may be slow (as the rollers wear), or occasionally fast (when something
fails). Again, there is a definite structure to the change. Yet another scenario that can be
viewed similarly arises in computer vision when one wishes to identify an object from a
sequence of photographs taken while the object or the camera are in motion. In this paper
we address the question, when can we exploit the structure of change to learn a changing
concept?

More formally, we assume that the learner sees, atttjmeandom exampbg from some
domain X, together with the value of an unknown target functifhn X — {0, 1} at the
pointx;. The function is an element of a known cldssThe distribution that generates the
examples is assumed to remain fixed, but the function can change between examples, with
some structure to the change. We formalize the structure by defining a set of legal function
sequences. For instance, cyclic or seasonal changes correspond to a walk on a directed
cyclic graph. In the rolling mill example, the legal sequences might be those corresponding
to smooth paths in parameter space.

We consider the following two problems of learning in a changing environment.

Estimation When can one estimate a sequence of conagptsf,, ..., f,) on the basis
of a set of random samplé€g;, f1(X1)), ..., (X, fn(Xy))? This may be thought of as
‘understanding the past on the basis of gathered experience.

Prediction When can one predict the next concept in a sequence of condepts, .. .,
fn), on the basis of random samples of previous concepts? This may be thought of as
‘predicting the future on the basis of past experience.

Note that in the usual PAC model these two issues coincide. In that model, there is only one
target concept per learning session (it remains fixed throughout the learning process).

The problem of predicting labels for a changing concept has been considered elsewhere.
Helmbold and Long (1994) consider prediction when the concept is allowed to drift slowly
between trials. That is, any two consecutive functidénand f;  ; must have Rrf; # fi 1)
small. This is a natural measure of concept drift, since it can be thought of as the weakest
assumption that implies the labels of random examples will not vary much. Their work
is in a slightly different setting—they consider prediction strategies that aim to minimize
the probability over a long sequence of misclassifying the last example—nbut the results
can be easily converted between settings. The bound on allowable drift that they obtained,
Q(€?/(dlog(1/¢€))) (Wheree is the allowable prediction error amtiis the VC-dimension
of the class), was subsequently improved by Bartlett and Helmbold (199B)etty (d +
log(1/€))). This result is also a special case of a later result due to Barve and Long (1997).
It has recently been improved by Long (1998)1¢e2/d). These papers impose a uniform
bound onthe probability of disagreement between consecutive functions. One ofthe function
sequence classes considered here contains sequences that satisfy a weaker (time-averaged)
version of this bound. The final result of this paper, when converted to a setting analogous
to that of the earlier work described above, shows that with this weaker constraint and the
correspondingly weaker accuracy criterion, the allowable drift rate decreases by no more
than log factorse?/d versuse?/(d log?(d/e)).
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Several authors (Bartlett, 1992; Bartlett & Helmbold, 1996; Barve & Long, 1997; Long,
1998) have considered learning problems in which a changing environment is modelled by a
slowly changing distribution on the product space {0, 1}. The allowable driftis restricted
by ensuring that consecutive probability distributions are close in total variation distance.
Clearly, allowing a changing concept with a bound on the probability of disagreement
between consecutive functions is a special case of this model. More recently, Freund and
Mansour (1997) have investigated learning when the distribution changes as a linear function
of time. They present algorithms that estimate the error of functions, using knowledge of
this linear drift.

Blum and Chalasani (1992) consider learning switching concepts. The target concept
is allowed to switch between concepts in the class, but with some constraint on the total
number of concepts visited, or on the frequency of switches. Their most closely related
results concentrate on the computational complexity of predicting switching concepts from
particular concept classes. In contrast, we give a general condition on switching frequency
for which the estimation and prediction of switching concepts from any class with finite
VC-dimension is possible, ignoring computational constraints.

The next section introduces the notation. Section 3 considers the problem of sequence
estimation (from a batch of labelled samples). Our main result here is the derivation of
a sufficient condition that guarantees estimability of a family of sequences of functions.
This result may be viewed as an extension of the basic (Blumer et al., 1989) sufficiency
theorem for PAC learnability of classes of (single) functions. We go on and apply this result
to provide sample size upper bounds for the estimation of several naturally arising families
of function sequences. In Section 4 we discuss the function prediction problem. We show
the success of certakth-order Markovian prediction strategies in the setting of function
prediction. We deviate from previous work on prediction via Markovian strategies in that,
rather than assuming access to the completekiaseps information (and then looking for
the best Markovian strategy, or the best one in some computationally restricted family of
strategies, asinthe work of Merhav and Feder (1993)), we assume that our predictor can only
approximatehe past sequencef;_y, ..., fi_1). We conclude the paper by gluing together
our estimation and prediction results to obtain sample size upper bounds for prediction of
changing concepts under several types of change constraints.

2. Basic notation

Throughout, we leX be a set, and we consider clasgesf {0, 1}-valued functions defined

on X. We fix someo -algebra of subsets of and consider probability distributions over

X that are defined over this algebra. Furthermore, we shall assume that all functions we
consider are measurable with respect to this algebra of sets. This is ¥ls dountable;

for uncountableX, Blumer et al. (1989) give mild conditions dnthat suffice. The growth
function of F, ITg : N — N, is defined agl¢ (n) = maxX{|F,|:x € X"}, where

F.={(f(xp), ..., f(xp): f € FL.
The Vapnik-Chervonenkis dimension Bfis defined as

VCdim(F) = max{n:I1g(n) = 2"}.
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For a sequence of functions,= (fy, ..., f,) and a sequence of points= (X1, ..., Xn) €
X", let f (x) denote the sequencé; (x1), ..., fa(X,)). For a set of sequences of functions,
Fn € F", we denotd f (x) : f € Fp} by Fn,,.

For a probability distributionP on X, define theP-induced pseudometridp over
a class of functiond by dp(f,g) =P {x: f(x) #9(x)} (for f,ge F). For sequences
f =(fy,..., fy)andg = (g1, ..., g in F", extenddp to the pseudometridp on F" by

o 18
dp(f’g) = ﬁzdp(fl’gl)v

i=1
and for a sequencein X" define

PO 1 .
dy(f,9) = ﬁl{l i) # g (i

We shall consider a variety of constraints on the function sequences, that restrict how
much the functions can fluctuate over time. Given a (pseudo)nttoiver a clas$ of
functions, a natural measure of these fluctuations is the average distance, in thelmetric
between subsequent functions,

Ifi-1

Z d(fi, fii1). 1)
i=1

- def 1
Vy(f) = —
a(f) o1

(where| f | stands for the length of the sequenice
Note that, for the discrete metri@ over F (for which D(f, g) takes value 0 iff = g
and 1 otherwise), one gets

~gef 1 ) _
Vo(f) = =L =i <171 # froa) @

We shall refer tovy, (f) asVp () and toVp () asD( f). Note also that, for every sequence
f and for any probability distributio® over X, Vp(f) < D(f).

In the definition ofVy, it is not essential that be a metric. In particular, it need not be
a symmetric function. Consider a directed graph whose nodes are members of the function
classF. Such a graph may be used to model a scenario in which, if a system is in some state
f € F at one moment, it may switch at the next moment to a state in a restricted subset
of F. In such a case we shall define a digraph by having the edges reflect this ‘possible
next state’ relation. Given a directed graploverF, letdg be the ‘shortest path’ function,
so thatdg (f, g) is the length of the shortest path frofnto g in G. We shall refer tovy,
as\Vg.

Let log denote logarithm to base 2 and In denote the natural logarithm.
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3. Sequence estimation

Definition 1 Forn € N and any distributior® on X, let F,(P) € F" be a set of function
sequences of lengtih We call thesdegal sequences

e Anestimation algorithm As a function that maps sequences fr¥m {0, 1} to sequences
of functions fromF.

e ForO< e¢,8 < 1, we say thaf (¢, §)-estimates fFonn examples if, for all distributions
P on X, forall f € F,(P), the probability ovex € X" thatdp(A(x, f(x)), f) > € is
less thars.

We remark that this definition could be extendedandomizecdestimation algorithms,
which return a probability distribution over function sequences.

For brevity, we often writd=, in place ofF,(P). We first consider consistent algorithms,
that is, algorithms that choose a function sequence fignthat agrees with the target
sequence on all of the examples. The following theorem gives a uniform convergence result
for classes of function sequences. It implies a sufficient condition for a consistent algorithm
to be able to estimatE,. The proof is in Appendix A.

Theorem 2. Forall0<e <1, n> 6/¢, and f € Fy, and for all distributions P on X

P"{x e X":3g € Fys.t. g(x) = fi(x) foralli,
anddp(f,§) > €} < 27"/2HLE|R, |2,

where the expectation is over x if' X

In fact, the proof of Theorem 2 does not make use of the fact that the target sequease
in the setF, of legal sequences. This observation by itself is not useful for learning, since
we cannot be sure that there will be a function sequence in the Elatbst is consistent
with an arbitrary target sequence. However, we can use a similar argument (together with
techniques of Haussler (1992)) to prove the following more general uniform convergence
result, which is useful for learning when the target sequeniearbitrary. The proof is in
Appendix B.

Theorem 3. For a, b > 0, define

|a—b]

@b =T,

Forall 0 < o,y < 1, n > 5/(a?y), all sequences of measurable functionsand all

distributions P on X
2
P'{x:3§ € Fns.t. d,(di(f, §), dp(f, §) > &} < 4E|Fy,, 2exp<_”VT"‘>,

where the expectation is over x if'X
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A slightly weaker version of Theorem 2 follows easily from this result. Choosing appro-

priate values forr andy gives the following corollary.

Corollary 4. Suppos® < ¢ < 1, f is a sequence of measurable functions defined on X
and P is a distribution on X.
1. If n > 20/¢ then

P“{x:ag € Fns.t.dy(f,g) < %d'p(f', g) — e ordy(f, g > 3dp(f, g) +e}
2 exp( — D€
P\m12)
Ne

2
P'x:3§ € Fys.t.|dy(f,§) —dp(f,§)| > €} < 4E|an|2exp<— ?>

<4E|Fy,

2. Ifn > 45/€? then

In both inequalitiesthe expectation is over x in™

Proof:  The first part follows from Theorem 3 witla = 1/2 andy = e. For the second
part, usex = ¢/3 andy = 1, and notice thadp(f, §) < 1 anddy(f, g) < 1. O

It is not hard to see that for sets of sequenEgsnvhose definition does not depend
on the underlying distributior?, the slow growth ofE|F, | for all distributions is also
necessary for uniform convergence. More precisely, if for samel, E|F, | = Q(@"),
then there exist distributior3 relative to which the empirical weighted differences between
sequences i, do not converge uniformly tdp. However the following example shows
that there are distributionB and distribution-dependent families of sequenEgsvhich
exhibit uniform convergence as above, despite the exponential growth ratéQf|. Let
Fn, be any family of sequences such that for all sequeticesF,, P(fi (x) # fi11(x)) =0
for all i. Clearly, if the VC-dimension of is finite, the components of any sequence in
F, are all equal except on a set of measure zero, and so uniform convergence follows from
standard results. But if, for instanc€,= [0, 1], P is the uniform distribution orX, andF
is the set of indicator functions of singletopg, thenE|F, | = 2". (A similar comment
was made by Bertoni et al. (1992) in the context of the uniform convergence of relative
frequencies of sets to their probabilities.)

Clearly, Theorem 2 implies that if the cardinality of the $gtis uniformly bounded
for all n, thenF, can be estimated. As another example, consider a function Elassl
suppose thab is a directed graph with nodes i Forn € N, let F, be the set of walks of
lengthn on G. If F has finite VC-dimension and for all nodésn F the number of walks
of lengthn on G starting atf grows polynomially im, thenF, can be(e, §)-estimated for
sufficiently largen. By restricting the set of legal sequences to sequences defined by slow
walks on the graph, the restriction on the underlying graph may be relaxed.

Theorem 5. Let G= (F, E) be a directed graphwhere F is a function class. Fora N
and 0< A <1/2, let F(G, A) be the set_of sequenc_e‘s:(fl,..., fn) whose ¢
variation is bounded by, i.e., F (G, A) = {f € F":Vg(f) < A}
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1. Let p denote the number of paths in G of length no more than k. Supposédhsbtme
n>0, p« <2kforallk > 1. Thenforany < § < 1, if

8A|ln+lo 2
€ > —
n g A

and

n> Iogg,

it follows that any consistent algorithm wil, §)-estimate F(G, A) (on n examples

2. Let O be the outdegree of,@nd let d be the VC-dimension of F. Then@ot ¢, § < 1,
if

6 2
€

2e0
€ > 8Alog—,
A

and
8 16 2
n>—-(2dlog—— +log- |,
e ( g eln2 +10g 8)
then any consistent algorithm wilt, §)-estimate (G, A) from n examples.

Proof: We assumethatA(n — 1)] > 1; otherwise the result follows trivially from results
for learning (constant) functions frofa (see, for example, (Blumer et al., 1989; Vapnik,
1982)).

1. Because of the constraint on the number of patlis,in

IFal < < n-1 )2’“““1)J < <7e(n ) )LA(n_manA(nm
LA(n—1)] lA(n—1)]

eZ,H_l A(n-1)
< .
- A

It follows from Theorem 2 thaf,(G, A) can be(e, §)-estimated by any consistent
algorithm whenever

ne 2e 2
7—2An<|og <Z>+n) > log %, ®3)

providedn > 6/¢. The condition or in the theorem statement implies that the second
term on the left hand side is less thamy4. The condition om then implies (3).

2. Since the outdegree &f is bounded byO, the number of function sequences of length
k starting from a given function is no more th@¥2. It follows that, for anyx in X"
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we have

LA(N—1)] d An d
n—1 en 2e0 en

= LA(M-1) )
| n|x’ = ; < i )O d = A d

Theorem 2 implies thalE, (G, A) can be(e, §)-estimated by any consistent algorithm
whenever

Ne 2e0 en 2

Soif

2e0
€ > 8Alog—,
A

it suffices thah > (4/¢)(2d log(en/d) +log(2/4)). Using the fact that Ian) + 1 < an
for all a > 0, we have that8d/¢)logn < n/2 + (8d/e¢) log(16d/(eeln 2)). Thus, it
suffices that

8 16 2
n>g(2dlogm+logg>. 0

The first part of the next theorem gives a similar result that applies when the functions
can change arbitrarily over some cldssbut only occasionally. The lower bound eifthe
guaranteed proximity of the estimation to the target sequence) now depends on the VC-
dimension ofF, whereas when graph constraints apply the out-degree of the graph imposed
a fixed bound for all (finite VC-dimension) clasgesThe second part of the theorem shows
that, if there is a slowly changing function sequence that is close to the favgét respect
to dp, an algorithm that chooses any slowly changing sequence with minimal error on the
examples will find a good approximation to the target.

Theorem 6. For a set F of{0, 1}-valued functions defined on X ard > 0, define the
sets ofA-frequently switching function sequences of F as

Fa(D,A) = {f e F":D(f) < A},
where DX f) is the average variation of a sequenéeas defined by Equatio(®) above.
Suppose tha'Cdim(F) = d > 2.

1. There are constants @nd ¢ such that, fol0 < €,8, A < 1, if

1
€ > cAdlog X



LEARNING CHANGING CONCEPTS 161

(for whichA < cje/(dlog(d/e)) suffice and
n> %(dlog} +Iog}>,
€ € )

then any consistent algorithm wik, §)-estimate (D, A) (on n examples )
2. There are constants;and ¢ such that for O<e¢, 8, A <1 and any sequencé of
measurablg0, 1}-valued functionsif

1
€ > G Ad IogX
(forwhich A < cie/(dlog(d/e¢)) suffices and
n> %<dlog}+log}>,
€ € 1)
then
P" { x:3§ € Fa(D, A) s.t.dy(f,§) < e/6anddp(f,§) > € or
dy(f, §) > 4e anddp(f,§) <€} < 3.

Proof: In order to apply Theorem 2 and Corollary 4, we begin by establishing a bound
onE|Fy |. Fixx € X". Notice that it does not suffice to argue that

i=0

[A(h—1)] _ )
|Fnlx| = Z <ni 1)(HF(n))(I+1),

since this grows too quickly with.
Letk = |A(n—1)| and assume th&t> 1. (Otherwise, the result follows from standard
results; see, for example, (Blumer et al., 1989; Vapnik, 1982).) Clearly,

k
IENED O @)
j=0

where the sum is over all £ i; < n satisfying
k
Z I =n.
j=0

Sauer’s lemma (see, for example, [15]) impliés(i) < 2i9. For each term in the sum (4),
taking logs gives

k k
|og<]‘[(2i?)) = (k+1) +d) logi
j=0

i=0 j
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Ko/ i
< k+1+d(k+1)log(z<k:‘rl))

j=0

n

d\ k+1
=log|2 _n
k+1 ’

where the inequality follows from Jensen’s inequality. It follows that

T )

Theorem 2 implies that any consistent algorithm ¢ar)-estimate provided that > 6/¢

and
N da1\ 2k+D)
27n5/2+1 26 - 5.
kt1 =

So it suffices if

ne n 2
- 2(k +1)log(2e) — 2(k + 1)(d + 1) log (m) > log 3

which is implied by

Ne 2en 2
> —2(k+1)(d+1)log(k+1) > Iogg.

Recalling thak = |[A(n— 1), if
€ > 16A(d + 1)log <3Ze>,
then the second term in the left hand side is no more thd4d, so

n—4lo 2
T e 9 é

examples will suffice.
For the second part of the theorempif> 20/¢, Corollary 4 implies that the desired
probability is less than

ol 2o n di1 2(k+1)e ne
K+1 (=77 )
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which is no more thaé when
M 2k +1)In@e) — 2k+ 1@+ in{ ——) > In2
72 k+1)~ &

This is implied by

Ne 2en 4
7 —2k+Dd+1DlIn (k+1> >1In (g)

Reasoning as above, it suffices if

€ 3e
— >4Ad+DIn| —
1442 ( -I-)n(A)

and

144 4
n>—In-. O
€ )

Notice that if the clasd=, of legal sequences depends on the distributyrthen it
is not clear how to construct a consistent algorithm or an algorithm that minimizes error
over F,, since the algorithm does not have accesP tdn the following result, we avoid

this problem by relating such a sequence class to one that does not depend on the distri-
bution.

Theorem 7. Suppose F isaset @, 1}-valued functions defined on X whiC dim(F) =
d, P is a probability measure on and A > 0. Define the set ofP, A)-slowly changing
sequences in Fas

Fa(P, A) = {f e F":Vp(f) < A}.

There are constantg @nd ¢ such that for any0 < ¢, < 1, any

s<ucf(on(2).

and any
1 1
n> %<dlog— +Iog—>,
€ € s

there exists an algorithm that, §)-estimates any sequence iR(P, A).
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Proof: We consider an estimation algorithm that works with the ckag®, A’) of slowly
switching function sequences froRt, for some appropriate value @f’. The algorithm
chooses a sequence from that class with minimal error on the training examples. We show
that this class (with\’ = 24A /¢) approximated-,(P, A), and that this implies the algo-
rithm is successful.

Consider a target sequendec F,(P, A). We shall construct a piecewise constant
sequence that approximates with respect talp, and does not have too many switches.
Let g1= f;, and leti; >1 denote the first index such thak(f1, fi,) >€/24. Set
g =0 for 1<i<i;—1. Let g, = fi;, and leti, >i; be the smallest index such that
dp(fi,, fi,) >€/24. Thenset; = f;, fori; <i <ipy — 1. Continue in this manner to form the
piecewise constant sequericd&ote that by the construction gfand the triangle inequality,
if D(§) =« thenVp(f)>ae/24. Therefore, iff € Fy(P, A) then D(§) < 24A /e. Also
note that by constructiodp ( f, §) < €/24.

Thus, for any target sequendee F,(P, A), there is a sequendagin the classF,(D,
24A /e) with dp (g, ) < €/24. LetA’ = 24A /e. Theorem 6 implies that, if

, 1
€ > clAdIogE
and
C 1 1
n> —2<dlog—+log—),
€ € )

then with probability 1— § we have bottd, (g, f) < ¢/6 and, for anyh € Fn(D, A") with
de(h, f) > €, dy(f,h) > €/6. That is, with probability 1- §, the algorithm returns a
function sequench that satisfieslp (f, h) < .

For some positive constantg andc,, the conditiore > c;A’d log(1/A’) is implied by
the conditiorne? > csAdlog(e/A), which is implied byA < c4e2/(d log(d/e)). O

Note that in contrast with Theorem 6, one cannot in general estimate a sequence in
Fn(P, A) using just any consistent algorithm. There are examples for which for every
n there are consistent sequentewith Vp(h) = 0 butdp(h, f) = 1. For example, let
X = [0, 1] andP be the uniform distribution on [A]. Let F contain the indicator functions
of the concept [01] and all singletong$x} for x € [0, 1]. Note that VCdingF) = 2. Now,
for anyn consider the sequende= (fy, ..., f,) with f; = [0,1]fori = 1,...,n. For

everyxa, . .., X, the sequencé labels eaclx; as 1. The sequende= (ha, . .., hD) defined
by hi = {xi} also labels eack; as 1. Thus, if the true sequence of conceptk,ithen for
everyxy, ..., X, the corresponding is consistent and ya&tp (h) = 0 whiledp(h, f) = 1.

Clearly, Theorem 2 implies th& ] Fn(P, A), ] grows exponentially witim in this case. In
fact, it is easy to see directly thgf, (P, A), | = 2" for everyx.
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4. Prediction

In this section, we consider the problem of online prediction of function sequences from
labelled examples.

Definition 8 SupposeM is a positive integerP is a distribution onX, andFy is a set
of legal function sequences of leng from a setF of functions. (In some casefy
depends orP.) A prediction problem forF,, proceeds as follows. There is an unknown
target sequencé = (fy,..., fu) € Fu. At each time 1< t < M, a prediction strategy
receives an exampléx, fi(x)), wherex; is chosen according t®. The strategy then
hypothesizes a functiom ;.

For0< ¢,8 < 1, we say that a strategy cén §)-predictFy online fromM examples
if, for all probability distributionsP on X and all legal sequencesin Fy, the probability
overx in XM thatdp (h, f) > € is less thars, whereh = (hy, ..., hy).

Clearly, if there is a strategy that cén §)-predict a clas$y from M examples, then it
can be used to construct an algorithm that@a®)-estimatda-y, in the sense of Definition 1.

We shall construct prediction strategies that are based on the estimation results of the
previous section. Theorem 10 below shows that these strategies predict well whenever the
underlying estimation strategy works well. In fact, this result applies more generally to
the problem of online prediction of elements of an arbitrary pseudometric space.

Definition 9 Let (F, d) be a pseudometric space. A prediction problem on this space is
defined as follows. FoM e N, there is a sequencein FM. Attimet — 1, a prediction
strategy receives partial informati@_; ( f;_1) about f;_;. The strategy then predicls.

At time t, it receives partial information about, and so on. The strategy aims to ensure
that

oo et 1
dh, H[ == d(fi.hp)
Iv'i:l

is small.
A k-th order Markovian prediction stratedy is one that, at timé¢ — 1, considers only
the partial information that it has received about the sequéfice, ..., fi_1) in forming

its predictionh;.

The pseudometric space that will be of interest to us is that of binary valued functions over
some domain seX, with the pseudometridp, induced by some probability measuke,
overX. The prediction strategy receives partial informatigyg f;) about the target function
fi in the form of the labelf;(x;) of f; for a P-randomly drawn examplg. However, for
the statement and proof of Theorem 10 below, we shall remain in the more abstract setting
of Definition 9.

Of course the error of a prediction strategy depends on the intrinsic ‘fluctuations’ of the
sequencd it comes to estimate. We measure these fluctuations by the ‘total variation’ of
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the function sequence relative to a given metrid over F, Vy(f) (defined in Eq. (1)). We
shall consider separately the case whire the discrete metric ove¥, giving rise to the
variationD( f) (defined in Eq. (2)),

Theorem 10. Let(F, d) be a pseudometric space witliidg) < 1forall f,g € F.
Considerf € FM for M e N. Let H be a k-Markovian prediction strategy foF, d)

and for each t< M, let f¥ = (fi_,..., fi_1). Suppose thatat time t H constructs
a sequencef = (fii . ..., fi_1) € F¥ that satisfiesd(f¥, f¥) < ¢, and H predicts
he = fueu.

We say that H is D-conservative for all t, Lii(f) > Luai( f¥), where L (g) for a
sequencg € F* denotes

Liail (@) = maxi € {1, ..., K} Qks1-i = Oky2—i = -~ = Ok}

the length ofy’s “constant tail’. R )
We say that H is ¥conservative iffor all t, Vg(f) < Va(f¥).

1. If H is D-conservative then
o Ifk > 1/(D(f) 4+ 1/M) then

L k _ 1 -
d(h, f) < — +2¢kD(f)log| —= Vy ().
(h, 1) < M+ ek D(T) g(D(f)>+ a(f)
e Ifk <1/(D(f)+1/M) then
L Kk _ _
dch, f) < ™M + € + 2¢kD(f)(log(k) — 1) + Vy(f).
2. If H is Vy-conservativethen
d(h, f) < k/M + min{e + 2kVy( ), ke} + Vu(f).

Furthermore the bounds arélocal' in the sense thaff H only satisfies

1

m“k—}—lftg M:d_(f;k, f_tk) > e}| <a,

then the upper bounds at(h, ) increase only by an additive term @f

Proof: 1. The proof proceeds in two stages. We start by producing an upper bound on the

instantaneous error of a prediction strategy at each time pdi¥ié then apply this bound

to derive the desired upper bound for the cumulative error over the full prediction process.
SinceLyi(ff) > Lun(fX), forallt — Ly(f¥) <i <t — 1, we haved(f;, f;;) =

d(fi_1, ﬂ,t,l). By the triangle inequality, the error of the hypothdsis= ﬂ,t,l is

dih, fr) < d(fAt,t—ls fi1) +d(fio, f).

Note that the first term depends upon the stratégywhereas the second termis an intrinsic
property of the target sequenéeand it sums up tMVq4( f). Regarding the first term, we
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have:

d( A fAtk) =

v

d(fei, fi)

i=t—Lai(ff)

= kLtan( )d(ftt 1 fioa).

Applying the assumption that the hypothesis seque‘?fde e-close to the target sequence
f¥, we conclude thaﬂgﬂ_t_l, fi_1) < ke/Lai(f¥). We now turn to the cumulative error
over the full sequencé. We have

M M
Py =3 d(fiia, fo sktke 3o +MVa(h).
t=1 t=k+1 ta"( fy )

Md(f,

Denotea; = Liai( ﬂk). Notice thaix; takes values in the range 1 (whén, # f;_;) up to
k (when fi_y = --- = f;_1). So from a point of change ifi, 1/, starts at 1 and decays as
1/i until it reaches 1k, where it remains until the next changefinAmong the sequences
f with a fixed number of function switches (i.e. fixed valueDuff)), Zt’vl:k+1 1/a; assumes
its maximal value when these switches are equally spaced along the sedquéfioesee
this, suppose that there akeswitches inf. Lets denote the index immediately after the
ith switch, and lely = 0 andsy;1 = M + 1. Then denote the length of the sequence
preceding theth switch byl = s —s_;fori =1,..., M + 1. If we havel; # i 1,
moving the switch to dcrease the larger (3gyby one and increase the smaller by one will
increase the sum by/lli+1) — 1/I; = 0.)

To upper bound the cumulative error for sequences of a fixed lévgthd a fixedD ( f),
we therefore consider sequences composetMii( f) + 1) blocks, each consisting of
1/(D(f) + 1/M) many identical functions. Let us consider two cases:

Case 1: k> 1/(D(f) +1/M). On each sequence of D (f) 4+ 1/M) identical f;'s, the
sum of the appropriate termgd, is the harmonic series,

1/(D(H)+1/M) 1 1

~ <log ————.
= | D(f)+1/M

As there areviD( f) + 1 many such subsequencesfinwe get

ke(D(f_)—i—i)Io ;JFV(F)
M) 9D ym

+2keD(f)Iog< (1f)> + Vy(f).

dp(f, H) <

ZIX ZIX
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Case 2: k< 1/(D(f)+1/M). Inthis case, on each subsequence of identical functigns
the corresponding sequence gé{'s consists of the harmonic sequencd 22, . . ., 1/k
followed by a sequence 61/(D(f)+1/M) —k) values equal to Ak. A straightforward
calculation shows that in this case we get

dp(f,H) < % + € + 2ke D(f)(log(k) — 1) + Vg (f).

2.Just as in the first part of the proof, at each stage
d(hy, f) = d(fu1, f) < d(feoa, fon) +d(fog, fo. (5)

The second term sums uph®Vq ( ), so our task is to upper bound the siny' ;- d( fr1_1,

fi_1).
SinceH is Vg-conservative, for everlgy + 1 < t < M, Vg(f¥) < V4(fX). This together
with the triangle inequality imply that, for evey — k) <i <t —1,

t-2 t—2
d(fii-1, fion) < d(fei, fi) + Zd(fj, fii1) + Zd(fhj» fi i1
j=i j=i
< d(fui, f) + kVa( F¥) + kVa(f¥)
< d(fyi, fi) + 2kVy (). ©6)
Since, by assumption,
t—1

1 N
E. d(ft.iafi)sea

there mustbet—k <i <t—21withd( fAt,i , i) < e. Applying inequality (6), we conclude
that
d(fei, fron) < e+ 2kVa( fY).
Averaging inequality (5) over atl, one gets,
d(h, f) <k/M + € + 2kVy(f) + Vg(f).

But the assumptionl( f¥, f¥) < e also implies thad( fi;_3, f;_1) <ke. Averaging in-
equality (5) using this last inequality amounts to

d(h, f) < k/M + ke + Vg(f). O

We can now combine this theorem with the estimation theorems derived in Section 3 to
give a result on the prediction of changing concepts.
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Definition 11 For a sef of {0, 1}-valued functions defined a{, and numberk, M € N
and O< A < 1, define the sets df-local-A-frequently-switchingunction M-sequences
of F as

FS(D,A)={feFM:ifork <t < M, D(f}) <al.

For a probability measute define the sets d&f-local( P, A)-slowly-changing M-sequences
of F as

Fa(P,A) ={f e FMifork <t < M, Vp(f¥) < A}.

Theorem 12. Suppose that F is a class with VC-dimensignadd P is a probability
distribution on X.
1. There are constants,@nd ¢ such that fol0 < ¢, 8, A < 1, if

1 1
€ > c;Adlog A log 5’

1 1
k= %<dlog— +Iog—>,
€ € de
and M > k/e, then there is a k-Markovian prediction strategy that qans)-predict

F,\‘j,(D, A) online from M examples.
2. There are constants @nd ¢ such that folQ < ¢, 8, A < 1, if

d
2 2
ciAdlog® —,
€ >C g SA

k= %<dlog}+logi),
€ € Se

and M > k/e, then there is a k-Markovian prediction strategy that qans)-predict
F,\‘j,(P, A) online from M examples.

Proof: 1.Forallt e (k+1,..., M}, f¥ € F(D, A). Attimet, our estimation algorithm
chooses a consistent sequerﬁ‘,‘e For anyt, let M; represent the set of training samples
for whichdp(f¥, f¥) > €. Theorem 6 implies that, # > c;Ad log(1/A) and

C 1 1
kz—2<dlog—+log—>, )
€ € de
then for allt we have P¢M;) < §e. It follows that

1 M
E leMt <5€,

t=k+1

where 3y, is the indicator function for the seédl;. Markov's inequality implies that, with
probability at least 1 §,

{tek+1....,M}:dp(fX ) =€} <eM —k.
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If our consistent estimation algorithm also maximizgg;( fAtk) for its estimatef}" at each
time t, it is also D-conservative. Applying Theorem 10 (taking the maximum of both
bounds), if we ensurk < 1/(2Alog(1/A)) andM > k/e, we havedp(h, f) < 5e. For
the first of these inequalities, it suffices if we &etqual to the right hand side of (7), and
ensure that

1 1
€ > czAdlog X log 3
€

<= c3Adlo 1Io 1
€ > — —_—.
32410970951

2. The algorithm of Theorem 7 can easily be modified by, instead of choosirgttie
is closest to the target and does not have too many switches, choosing one that maximizes
the length of its “constant tail” but is sufficiently close to the target and does not have too
many switches. The proof of Theorem 7 shows that, with probability at leas, there is
a function sequenagin Fn(D, 24A /€) with dy (g, f) < /6. So if the algorithm returns a
function sequendethat has the longest “constant tail” of those sequencEs(iB, 24A /¢)
satisfyingcfx(ﬁ, f) < ¢/6, itwill be D-conservative. We can then use an argument identical
to the proof above of the first part of the theorem, but witmeplaced by 24 /¢. In this
case, we get

CAd1|O €I0 !
€ > - — —
3 € gA 956
1 1
2
csAdlog | dlog — | log —
= € >0y g( g(SA) g(SA

d
2 2
caAdlog® —,
= € > Cy g SA

for some universal constaoy. O
Appendix A: Proof of Theorem 2
Proof: Define

Q={xeX":3g € Fy,d(x) = f(x),dp(f,3) > ¢}

R= {(x, y) € X:3g € Fn, ) = f(x), dp(f,0) > €,dy(f,§) >

I

NI ™

We shall first show that

n 1 2n
P Q) = mp (R). (8)



LEARNING CHANGING CONCEPTS 171

To see this, notice that
PZ"(R)=/ P”{yrﬂg € Fn, dx) = f(x),dp(f,d)
Q

> e, dy(f, 9 = g}d P (x). ©)

Fix x € X" andg € F, with d(f, §) > € andg(x) = f(x). Then

N € 1< €
P”{ye X":dy(f, @) > 5} = 1—Pr<ﬁ;Xi < 5),
whereX; € {0, 1} and PtX; = 1) = Pr(fj (%) = gi (X)), so that
18 .
ﬁ;Pr(Xi =1 =d(f,g) >e.

Chernoff bounds (see, for example, (Hagerup and Rub, 1990)) imply that

18 €
Pri=) X <-])<e“s

It follows that the probability inside the integral in (9) is at least Bxp(—en/8), which
implies (8).

Let U be the uniform distribution on the set of permutations{ibn . ., 2n} that swap
elements from the first to the second half of the sequence (that is, all permutatibas
satisfy{o (i),o(i +n)} = {i,i +n}foralli € {1, ..., n}). For such a permutatiandenote
the permuted version of a sequerigey) € X?" by (x?, y°). Then, given the assumption
onn, the probability ofQ is less than

2E(X‘y),\,p2nU {O' . Hg S Fn S.t.g(x”) = f_(XG)
anddp(f, @) > € anddy- (f, @) >§}

< 2Ex y)~p=U {o (v, w) € Fnhw) s.t. f(x9) =v°

{(h1(x1), .., ha(Xn), ha(Y1), - .., hn(yn)) th € Fq).

1, ..
andﬁ|{| i (Yoi)) # woin }| =

NI ™

whereF,  isthe set



172 P.L. BARTLETT, S. BEN-DAVID AND S.R. KULKARNI

The union bound and a simple counting argument show that this quantity is no more than

|

_ 1 ..
2E|Fy,,|  sup U{a: f(x°) =v° andﬁ|{| i (Vo)) # woin}] =

(v,w)e F”\(x.y)

NI ™

< 2E|Fy, |22
Notice thatF,, oy is contained in
{(h1(X1), ..., hn(Xn)): he Fn} x {(h1(y1), ..., hn(¥n)): he Fn},

which gives the desired result. O

Appendix B: Proof of Theorem 3
Proof: Define
Q={xe X":3g € Fy, d,(dx(f, 9, dp(f, @) = a},
R= {(x, y) € X2:3g € Fy, d, ([dy (T, ). dy(f, §)) > %}
Notice that the triangle inequality fat, (see (Haussler, 1992)) implies that
P?(R) > /Q p" {y:ag € Fn, d,(dx(f, @),dp(f, @) >, and
d, (dp(f, ). dy(f, ) < %} dP"(). (10)

Fix x € Qandg € F, with d, (dx(f, ), dp(f, @) >a. We shall show that, fon>
5/(a?y),

L N - 1

To see this, notice thaiy(f_, g) > 0 implies that

~

Pn! de(f. @) —dy(f. 9) a}
(

> —

de(f. ) +dy(f.o)+y 2

< P"{|d‘p(f', g) —dy(f, 9| > %(d'p(f', s)) +y>}

n 1 s
=P u-=>"X
ni=

o
> §(u+y)
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where the independent random variablgse {0, 1} satisfy P(X; = 1) = Pr(fj(x) #
gi (%)), andu is defined ag. = (1/n) Zi“:l Pr(X; = 1). Chernoff bounds imply that this
probability is no more than

2 2
Zexp<_W>.

Elementary calculus shows tha&?(u + y)?/(12u) is minimized whenu =1y, so the
probability is no more than 2 expna?y/3). This is no more than/2 forn > 4/(a?y),
which implies (11). It follows that, for any € Q, the probability inside the integral in (10)
is at least 12, and soP"(Q) < 2P?"(R).

Now,

P"{x:3@ € Fns.t.d, (dx(f, @), dp(f,0) > a)

S

< 2P2“{(x, y):3g € Fas.t.d, (dy(f, @), dy(f,§) > —}

= 2E . y)~p=U {a :3g € Fys.t.d, (dy (f, @), dye (F, @) > %}

whereU is the uniform distribution on the group of swapping permutations on the set
{1, ..., 2n}, as in the proof of Theorem 2. Taking the union bound as in that proof, we have
that

P"(x:3§ € Fys.t.d, (dx(f, @), dp(f, ) > a}

A~ — _ ~ —_ _ a
< 2E|Fy,, | sup U{a:dy<dvo< ,g>,dwa<f,g>>z§}.
(v,w)eXn

Now, d, (dx- (f, §), dy (f, @) > «/2 if and only if

18 afl1
‘ﬁ§ﬁi(&—bi) ZE(E;(& +bi)+)/>,

whereg; = | fi (vj) — gi (vi)], by = | fi (wi) — g (w;)|, and the independent random variables
Bi €{—1,1} satisfy P(g =1)=1/2. Then Bernstein’'s inequality (see, for example,
(Anthony and Bartlett, 1999, p. 363)) implies that this occurs with probability no more
than

@/8(A/M Y, @& +b) +y)°n )

2 _
exp( 2/ 3@ — b2+ (/3 (/M) S @ + b + )

Sincea;, by € {0, 1}, (& — b))% < & + by, so this probability is no more than

@A (S+y)n )
26X< 25+ @/3)(S+7) )
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whereS = (1/n) 3", (& + bi). Since(S+ y)%/(2S + (a/3(S+ y)) is minimized at
S=y2-a/3)/(2+ «/3), this is no more than

20%y?n a?yn
2 TV V<2 _
exp( <2+oz/3>2y)S exp( 3 )

sincea < 1. O
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