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Abstract. This paper examines learning problems in which the target function is allowed to change. The learner
sees a sequence of random examples, labelled according to a sequence of functions, and must provide an accurate
estimate of the target function sequence. We consider a variety of restrictions on how the target function is allowed
to change, including infrequent but arbitrary changes, sequences that correspond to slow walks on a graph whose
nodes are functions, and changes that are small on average, as measured by the probability of disagreements
between consecutive functions. We first study estimation, in which the learner sees a batch of examples and is
then required to give an accurate estimate of the function sequence. Our results provide bounds on the sample
complexity and allowable drift rate for these problems. We also study prediction, in which the learner must produce
online a hypothesis after each labelled example and the average misclassification probability over this hypothesis
sequence should be small. Using a deterministic analysis in a general metric space setting, we provide a technique
for constructing a successful prediction algorithm, given a successful estimation algorithm. This leads to sample
complexity and drift rate bounds for the prediction of changing concepts.
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1. Introduction

We consider the problem of learning to track a changing subset of a domain from random
examples. In many learning problems for which the environment is changing, there is some
structure to the change. For example, the daily weather at a given location may be viewed as
a changing concept having some basic underlying structure to its change. On a short-term
scale changes are of bounded variation, on a larger annual scale changes are roughly cyclic,
and there are probably some further subtle rules governing the structure of daily weather
changes. Another rather practical example arises in a steel rolling mill, where the efficiency
of the mill’s operation depends on how accurately the behavior of the rolling surfaces can

∗An earlier version of this paper was presented at the Ninth Annual Conference on Computational Learning
Theory.



154 P.L. BARTLETT, S. BEN-DAVID AND S.R. KULKARNI

be predicted (Connolly, Chicharo, & Wilbers, 1992). As in many industrial processes, there
is an accurate physical model of the target function (relating the measured variables to the
desired quantity), but there are several unknown parameters, and these may change over
time. The change may be slow (as the rollers wear), or occasionally fast (when something
fails). Again, there is a definite structure to the change. Yet another scenario that can be
viewed similarly arises in computer vision when one wishes to identify an object from a
sequence of photographs taken while the object or the camera are in motion. In this paper
we address the question, when can we exploit the structure of change to learn a changing
concept?

More formally, we assume that the learner sees, at timet , a random examplext from some
domain X, together with the value of an unknown target functionft : X→{0, 1} at the
point xt . The function is an element of a known classF . The distribution that generates the
examples is assumed to remain fixed, but the function can change between examples, with
some structure to the change. We formalize the structure by defining a set of legal function
sequences. For instance, cyclic or seasonal changes correspond to a walk on a directed
cyclic graph. In the rolling mill example, the legal sequences might be those corresponding
to smooth paths in parameter space.

We consider the following two problems of learning in a changing environment.

Estimation When can one estimate a sequence of concepts( f1, f2, . . . , fn) on the basis
of a set of random samples(x1, f1(x1)), . . . , (xn, fn(xn))? This may be thought of as
‘understanding the past on the basis of gathered experience.’

Prediction When can one predict the next concept in a sequence of concepts( f1, f2, . . . ,

fn), on the basis of random samples of previous concepts? This may be thought of as
‘predicting the future on the basis of past experience.’

Note that in the usual PAC model these two issues coincide. In that model, there is only one
target concept per learning session (it remains fixed throughout the learning process).

The problem of predicting labels for a changing concept has been considered elsewhere.
Helmbold and Long (1994) consider prediction when the concept is allowed to drift slowly
between trials. That is, any two consecutive functionsfi and fi+1 must have Pr( fi 6= fi+1)

small. This is a natural measure of concept drift, since it can be thought of as the weakest
assumption that implies the labels of random examples will not vary much. Their work
is in a slightly different setting—they consider prediction strategies that aim to minimize
the probability over a long sequence of misclassifying the last example—but the results
can be easily converted between settings. The bound on allowable drift that they obtained,
Ä(ε2/(d log(1/ε))) (whereε is the allowable prediction error andd is the VC-dimension
of the class), was subsequently improved by Bartlett and Helmbold (1996) toÄ(ε2/(d +
log(1/ε))). This result is also a special case of a later result due to Barve and Long (1997).
It has recently been improved by Long (1998) toÄ(ε2/d). These papers impose a uniform
bound on the probability of disagreement between consecutive functions. One of the function
sequence classes considered here contains sequences that satisfy a weaker (time-averaged)
version of this bound. The final result of this paper, when converted to a setting analogous
to that of the earlier work described above, shows that with this weaker constraint and the
correspondingly weaker accuracy criterion, the allowable drift rate decreases by no more
than log factors,ε2/d versusε2/(d log2(d/ε)).
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Several authors (Bartlett, 1992; Bartlett & Helmbold, 1996; Barve & Long, 1997; Long,
1998) have considered learning problems in which a changing environment is modelled by a
slowly changing distribution on the product spaceX×{0, 1}. The allowable drift is restricted
by ensuring that consecutive probability distributions are close in total variation distance.
Clearly, allowing a changing concept with a bound on the probability of disagreement
between consecutive functions is a special case of this model. More recently, Freund and
Mansour (1997) have investigated learning when the distribution changes as a linear function
of time. They present algorithms that estimate the error of functions, using knowledge of
this linear drift.

Blum and Chalasani (1992) consider learning switching concepts. The target concept
is allowed to switch between concepts in the class, but with some constraint on the total
number of concepts visited, or on the frequency of switches. Their most closely related
results concentrate on the computational complexity of predicting switching concepts from
particular concept classes. In contrast, we give a general condition on switching frequency
for which the estimation and prediction of switching concepts from any class with finite
VC-dimension is possible, ignoring computational constraints.

The next section introduces the notation. Section 3 considers the problem of sequence
estimation (from a batch of labelled samples). Our main result here is the derivation of
a sufficient condition that guarantees estimability of a family of sequences of functions.
This result may be viewed as an extension of the basic (Blumer et al., 1989) sufficiency
theorem for PAC learnability of classes of (single) functions. We go on and apply this result
to provide sample size upper bounds for the estimation of several naturally arising families
of function sequences. In Section 4 we discuss the function prediction problem. We show
the success of certainkth-order Markovian prediction strategies in the setting of function
prediction. We deviate from previous work on prediction via Markovian strategies in that,
rather than assuming access to the complete last-k-steps information (and then looking for
the best Markovian strategy, or the best one in some computationally restricted family of
strategies, as in the work of Merhav and Feder (1993)), we assume that our predictor can only
approximatethe past sequence,( ft−k, . . . , ft−1). We conclude the paper by gluing together
our estimation and prediction results to obtain sample size upper bounds for prediction of
changing concepts under several types of change constraints.

2. Basic notation

Throughout, we letX be a set, and we consider classesF of {0, 1}-valued functions defined
on X. We fix someσ -algebra of subsets ofX and consider probability distributions over
X that are defined over this algebra. Furthermore, we shall assume that all functions we
consider are measurable with respect to this algebra of sets. This is true ifX is countable;
for uncountableX, Blumer et al. (1989) give mild conditions onF that suffice. The growth
function of F ,5F :N→ N, is defined as5F (n) = max{|F|x | : x ∈ Xn}, where

F|x = {( f (x1), . . . , f (xn)) : f ∈ F}.
The Vapnik-Chervonenkis dimension ofF is defined as

VCdim(F) = max{n :5F (n) = 2n}.
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For a sequence of functions,f̄ = ( f1, . . . , fn) and a sequence of pointsx = (x1, . . . , xn) ∈
Xn, let f̄ (x) denote the sequence( f1(x1), . . . , fn(xn)). For a set of sequences of functions,
Fn ⊆ Fn, we denote{ f̄ (x) : f̄ ∈ Fn} by Fn|x .

For a probability distributionP on X, define theP-induced pseudometricdP over
a class of functionsF by dP( f, g)= P {x : f (x) 6= g(x)} (for f, g∈ F). For sequences
f̄ = ( f1, . . . , fn) andḡ = (g1, . . . , gn) in Fn, extenddP to the pseudometric̄dP on Fn by

d̄P( f̄ , ḡ) = 1

n

n∑
i=1

dP( fi , gi ),

and for a sequencex in Xn define

d̂x( f̄ , ḡ) = 1

n
|{i : fi (xi ) 6= gi (xi )}|.

We shall consider a variety of constraints on the function sequences, that restrict how
much the functions can fluctuate over time. Given a (pseudo)metricd over a classF of
functions, a natural measure of these fluctuations is the average distance, in the metricd,
between subsequent functions,

Vd( f̄ )
def= 1

| f̄ | − 1

| f̄ |−1∑
i=1

d( fi , fi+1). (1)

(where| f̄ | stands for the length of the sequencef̄ ).
Note that, for the discrete metricD over F (for which D( f, g) takes value 0 iff = g

and 1 otherwise), one gets

VD( f̄ )
def= 1

| f̄ | − 1
|{1≤ i < | f̄ | : fi 6= fi+1}| (2)

We shall refer toVdP ( f̄ ) asVP( f̄ ) and toVD( f̄ ) asD( f̄ ). Note also that, for every sequence
f̄ and for any probability distributionP over X, VP( f̄ ) ≤ D( f̄ ).

In the definition ofVd, it is not essential thatd be a metric. In particular, it need not be
a symmetric function. Consider a directed graph whose nodes are members of the function
classF . Such a graph may be used to model a scenario in which, if a system is in some state
f ∈ F at one moment, it may switch at the next moment to a state in a restricted subset
of F . In such a case we shall define a digraph by having the edges reflect this ‘possible
next state’ relation. Given a directed graphG overF , letdG be the ‘shortest path’ function,
so thatdG( f, g) is the length of the shortest path fromf to g in G. We shall refer toVdG

asVG.
Let log denote logarithm to base 2 and ln denote the natural logarithm.
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3. Sequence estimation

Definition 1. Forn ∈ N and any distributionP on X, let Fn(P) ⊆ Fn be a set of function
sequences of lengthn. We call theselegal sequences.

• An estimation algorithm Ais a function that maps sequences fromX×{0, 1} to sequences
of functions fromF .
• For 0< ε, δ < 1, we say thatA (ε, δ)-estimates Fn onn examples if, for all distributions

P on X, for all f̄ ∈ Fn(P), the probability overx ∈ Xn that d̄P(A(x, f̄ (x)), f̄ ) ≥ ε is
less thanδ.

We remark that this definition could be extended torandomizedestimation algorithms,
which return a probability distribution over function sequences.

For brevity, we often writeFn in place ofFn(P). We first consider consistent algorithms,
that is, algorithms that choose a function sequence fromFn that agrees with the target
sequence on all of the examples. The following theorem gives a uniform convergence result
for classes of function sequences. It implies a sufficient condition for a consistent algorithm
to be able to estimateFn. The proof is in Appendix A.

Theorem 2. For all 0< ε < 1, n ≥ 6/ε, and f̄ ∈ Fn, and for all distributions P on X,

Pn {x ∈ Xn : ∃ḡ ∈ Fn s.t. gi (xi ) = fi (xi ) for all i ,

andd̄P( f̄ , ḡ) ≥ ε} < 2−nε/2+1E|Fn|x |2,
where the expectation is over x in Xn.

In fact, the proof of Theorem 2 does not make use of the fact that the target sequencef̄ was
in the setFn of legal sequences. This observation by itself is not useful for learning, since
we cannot be sure that there will be a function sequence in the classFn that is consistent
with an arbitrary target sequence. However, we can use a similar argument (together with
techniques of Haussler (1992)) to prove the following more general uniform convergence
result, which is useful for learning when the target sequencef̄ is arbitrary. The proof is in
Appendix B.

Theorem 3. For a, b ≥ 0, define

dγ (a, b) = |a− b|
a+ b+ γ .

For all 0 < α, γ < 1, n ≥ 5/(α2γ ), all sequencesf̄ of measurable functions, and all
distributions P on X,

Pn{x : ∃ḡ ∈ Fn s.t. dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ)) ≥ α} < 4E
∣∣Fn|x

∣∣2 exp

(
−nγα2

3

)
,

where the expectation is over x in Xn.
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A slightly weaker version of Theorem 2 follows easily from this result. Choosing appro-
priate values forα andγ gives the following corollary.

Corollary 4. Suppose0< ε < 1, f̄ is a sequence of measurable functions defined on X,

and P is a distribution on X.
1. If n ≥ 20/ε then

Pn

{
x : ∃ḡ ∈ Fn s.t.d̂x( f̄ , ḡ) <

1

3
d̄P( f̄ , ḡ)− ε or d̂x( f̄ , ḡ) > 3d̄P( f̄ , ḡ)+ ε

}
< 4E

∣∣Fn|x
∣∣2 exp

(
− nε

12

)
.

2. If n ≥ 45/ε2 then

Pn{x : ∃ḡ ∈ Fn s.t.|d̂x( f̄ , ḡ)− d̄P( f̄ , ḡ)| ≥ ε} < 4E
∣∣Fn|x

∣∣2 exp

(
− nε2

27

)
.

In both inequalities, the expectation is over x in Xn.

Proof: The first part follows from Theorem 3 withα = 1/2 andγ = ε. For the second
part, useα = ε/3 andγ = 1, and notice that̄dP( f̄ , ḡ) ≤ 1 andd̂x( f̄ , ḡ) ≤ 1. 2

It is not hard to see that for sets of sequencesFn whose definition does not depend
on the underlying distributionP, the slow growth ofE|Fn|x | for all distributions is also
necessary for uniform convergence. More precisely, if for somea > 1, E|Fn|x | = Ä(an),
then there exist distributionsP relative to which the empirical weighted differences between
sequences inFn do not converge uniformly tōdP. However the following example shows
that there are distributionsP and distribution-dependent families of sequencesFn which
exhibit uniform convergence as above, despite the exponential growth rate ofE|Fn|x |. Let
Fn be any family of sequences such that for all sequencesf̄ ∈ Fn, P( fi (x) 6= fi+1(x)) = 0
for all i . Clearly, if the VC-dimension ofF is finite, the components of any sequence in
Fn are all equal except on a set of measure zero, and so uniform convergence follows from
standard results. But if, for instance,X = [0, 1], P is the uniform distribution onX, andF
is the set of indicator functions of singletons{x}, thenE|Fn|x | = 2n. (A similar comment
was made by Bertoni et al. (1992) in the context of the uniform convergence of relative
frequencies of sets to their probabilities.)

Clearly, Theorem 2 implies that if the cardinality of the setFn is uniformly bounded
for all n, thenFn can be estimated. As another example, consider a function classF and
suppose thatG is a directed graph with nodes inF . Forn ∈ N, let Fn be the set of walks of
lengthn on G. If F has finite VC-dimension and for all nodesf in F the number of walks
of lengthn onG starting atf grows polynomially inn, thenFn can be(ε, δ)-estimated for
sufficiently largen. By restricting the set of legal sequences to sequences defined by slow
walks on the graph, the restriction on the underlying graph may be relaxed.

Theorem 5. Let G= (F, E) be a directed graph, where F is a function class. For n∈ N
and 0<1<1/2, let Fn(G,1) be the set of sequences̄f = ( f1, . . . , fn) whose dG
variation is bounded by1, i.e., Fn(G,1) = { f̄ ∈ Fn : VG( f̄ ) ≤ 1}.
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1. Let pk denote the number of paths in G of length no more than k. Suppose that, for some
η > 0, pk < 2ηk for all k ≥ 1. Then for any0< δ < 1, if

ε > 81

(
η + log

2e

1

)
and

n ≥ 6

ε
log

2

δ
,

it follows that any consistent algorithm will(ε, δ)-estimate Fn(G,1) (on n examples).

2. Let O be the outdegree of G, and let d be the VC-dimension of F. Then for0< ε, δ < 1,
if

ε > 81 log
2eO

1
,

and

n >
8

ε

(
2d log

16

ε ln 2
+ log

2

δ

)
,

then any consistent algorithm will(ε, δ)-estimate Fn(G,1) from n examples.

Proof: We assume thatb1(n− 1)c ≥ 1; otherwise the result follows trivially from results
for learning (constant) functions fromF (see, for example, (Blumer et al., 1989; Vapnik,
1982)).

1. Because of the constraint on the number of paths inG,

|Fn| <
(

n− 1

b1(n− 1)c
)

2ηb1(n−1)c ≤
(

e(n− 1)

b1(n− 1)c
)b1(n−1)c

2ηb1(n−1)c

≤
(

e2η+1

1

)1(n−1)

.

It follows from Theorem 2 thatFn(G,1) can be(ε, δ)-estimated by any consistent
algorithm whenever

nε

2
− 21n

(
log

(
2e

1

)
+ η

)
> log

2

δ
, (3)

providedn ≥ 6/ε. The condition onε in the theorem statement implies that the second
term on the left hand side is less thanεn/4. The condition onn then implies (3).

2. Since the outdegree ofG is bounded byO, the number of function sequences of length
k starting from a given function is no more thanOk−1. It follows that, for anyx in Xn
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we have

∣∣Fn|x
∣∣ ≤ b1(n−1)c∑

i=0

(
n− 1

i

)
Ob1(n−1)c

(
en

d

)d

≤
(

2eO

1

)1n(en

d

)d

.

Theorem 2 implies thatFn(G,1) can be(ε, δ)-estimated by any consistent algorithm
whenever

nε

2
− 21n log

2eO

1
− 2d log

en

d
> log

2

δ
.

So if

ε > 81 log
2eO

1
,

it suffices thatn > (4/ε)(2d log(en/d)+ log(2/δ)). Using the fact that ln(an)+1≤ an
for all a > 0, we have that(8d/ε) logn ≤ n/2+ (8d/ε) log(16d/(εe ln 2)). Thus, it
suffices that

n >
8

ε

(
2d log

16

ε ln 2
+ log

2

δ

)
.

2

The first part of the next theorem gives a similar result that applies when the functions
can change arbitrarily over some classF , but only occasionally. The lower bound onε (the
guaranteed proximity of the estimation to the target sequence) now depends on the VC-
dimension ofF , whereas when graph constraints apply the out-degree of the graph imposed
a fixed bound for all (finite VC-dimension) classesF . The second part of the theorem shows
that, if there is a slowly changing function sequence that is close to the targetf̄ with respect
to d̄P, an algorithm that chooses any slowly changing sequence with minimal error on the
examples will find a good approximation to the target.

Theorem 6. For a set F of{0, 1}-valued functions defined on X and1 > 0, define the
sets of1-frequently switching function sequences of F as

Fn(D,1) = { f̄ ∈ Fn : D( f̄ ) ≤ 1},

where D( f̄ ) is the average variation of a sequencef̄ , as defined by Equation(2) above.
Suppose thatVCdim(F) = d ≥ 2.
1. There are constants c1 and c2 such that, for0< ε, δ,1 < 1, if

ε > c11d log
1

1
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( for which1 < c′1ε/(d log(d/ε)) suffices) and

n ≥ c2

ε

(
d log

1

ε
+ log

1

δ

)
,

then any consistent algorithm will(ε, δ)-estimate Fn(D,1) (on n examples).
2. There are constants c1 and c2 such that, for 0<ε, δ,1<1 and any sequencēf of

measurable{0, 1}-valued functions, if

ε > c11d log
1

1

( for which1 < c1ε/(d log(d/ε)) suffices) and

n ≥ c2

ε

(
d log

1

ε
+ log

1

δ

)
,

then

Pn { x : ∃ḡ ∈ Fn(D,1) s.t.d̂x( f̄ , ḡ) < ε/6 andd̄P( f̄ , ḡ) ≥ ε or

d̂x( f̄ , ḡ) > 4ε andd̄P( f̄ , ḡ) ≤ ε} < δ.

Proof: In order to apply Theorem 2 and Corollary 4, we begin by establishing a bound
on E|Fn|x |. Fix x ∈ Xn. Notice that it does not suffice to argue that

∣∣Fn|x
∣∣ ≤ b1(n−1)c∑

i=0

(
n− 1

i

)
(5F (n))

(i+1),

since this grows too quickly withn.
Let k = b1(n−1)c and assume thatk ≥ 1. (Otherwise, the result follows from standard

results; see, for example, (Blumer et al., 1989; Vapnik, 1982).) Clearly,

∣∣Fn|x
∣∣ ≤∑ k∏

j=0

5F (i j ), (4)

where the sum is over all 1≤ i j ≤ n satisfying

k∑
j=0

i j = n.

Sauer’s lemma (see, for example, [15]) implies5F (i ) ≤ 2i d. For each term in the sum (4),
taking logs gives

log

( k∏
j=0

(
2i d

j

)) = (k+ 1)+ d
k∑

j=0

log i j
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≤ k+ 1+ d(k+ 1) log

(
k∑

j=0

(
i j

k+ 1

))

= k+ 1+ d(k+ 1) log

(
n

k+ 1

)

= log

(
2

(
n

k+ 1

)d
)k+1

,

where the inequality follows from Jensen’s inequality. It follows that

∣∣Fn|x
∣∣ ≤ k∑

i=0

(
n− 1

i

)(
2

(
n

k+ 1

)d
)k+1

≤
(

e(n− 1)

k

)k
(

2

(
n

k− 1

)d
)k+1

.

Theorem 2 implies that any consistent algorithm can(ε, δ)-estimate provided thatn ≥ 6/ε
and

2−nε/2+1

(
2e

(
n

k+ 1

)d+1
)2(k+1)

< δ.

So it suffices if

nε

2
− 2(k+ 1) log(2e)− 2(k+ 1)(d + 1) log

(
n

k+ 1

)
≥ log

2

δ
,

which is implied by

nε

2
− 2(k+ 1)(d + 1) log

(
2en

k+ 1

)
≥ log

2

δ
.

Recalling thatk = b1(n− 1)c, if

ε > 161(d + 1) log

(
3e

1

)
,

then the second term in the left hand side is no more thannε/4, so

n = 4

ε
log

(
2

δ

)
examples will suffice.

For the second part of the theorem, ifn ≥ 20/ε, Corollary 4 implies that the desired
probability is less than

4

(
2e

(
n

k+ 1

)d+1
)2(k+1)

exp

(−nε

72

)
,
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which is no more thanδ when

nε

72
− 2(k+ 1) ln(2e)− 2(k+ 1)(d + 1) ln

(
n

k+ 1

)
≥ ln

4

δ
.

This is implied by

nε

72
− 2(k+ 1)(d + 1) ln

(
2en

k+ 1

)
≥ ln

(
4

δ

)
.

Reasoning as above, it suffices if

ε

144
≥ 41(d + 1) ln

(
3e

1

)
and

n ≥ 144

ε
ln

4

δ
. 2

Notice that if the classFn of legal sequences depends on the distributionP, then it
is not clear how to construct a consistent algorithm or an algorithm that minimizes error
over Fn, since the algorithm does not have access toP. In the following result, we avoid
this problem by relating such a sequence class to one that does not depend on the distri-
bution.

Theorem 7. Suppose F is a set of{0, 1}-valued functions defined on X withVC dim(F) =
d, P is a probability measure on X, and1>0. Define the set of(P,1)-slowly changing
sequences in Fn as

Fn(P,1) = { f̄ ∈ Fn : VP( f̄ ) ≤ 1}.

There are constants c1 and c2 such that, for any0< ε, δ < 1, any

1 < c1ε
2

/(
d log

(
d

ε

))
,

and any

n ≥ c2

ε

(
d log

1

ε
+ log

1

δ

)
,

there exists an algorithm that(ε, δ)-estimates any sequence in Fn(P,1).
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Proof: We consider an estimation algorithm that works with the classFn(D,1′) of slowly
switching function sequences fromFn, for some appropriate value of1′. The algorithm
chooses a sequence from that class with minimal error on the training examples. We show
that this class (with1′ = 241/ε) approximatesFn(P,1), and that this implies the algo-
rithm is successful.

Consider a target sequencēf ∈ Fn(P,1). We shall construct a piecewise constant
sequencēg that approximates̄f with respect tod̄P, and does not have too many switches.
Let g1= f1, and let i1> 1 denote the first index such thatdP( f1, fi1)≥ ε/24. Set
gi = g1 for 1≤ i ≤ i1− 1. Let gi1 = fi1, and let i2> i1 be the smallest index such that
dP( fi1, fi2)≥ ε/24. Then setgi = fi1 for i1≤ i ≤ i2− 1. Continue in this manner to form the
piecewise constant sequenceḡ. Note that by the construction ofḡ and the triangle inequality,
if D(ḡ)=α thenVP( f̄ )≥αε/24. Therefore, if f̄ ∈ Fn(P,1) then D(ḡ)<241/ε. Also
note that by construction̄dP( f̄ , ḡ)< ε/24.

Thus, for any target sequencēf ∈ Fn(P,1), there is a sequencēg in the classFn(D,
241/ε) with d̄P(ḡ, f̄ ) ≤ ε/24. Let1′ = 241/ε. Theorem 6 implies that, if

ε > c11
′d log

1

1′

and

n ≥ c2

ε

(
d log

1

ε
+ log

1

δ

)
,

then with probability 1− δ we have botĥdx(ḡ, f̄ ) ≤ ε/6 and, for anȳh ∈ Fn(D,1′) with
d̄P(h̄, f̄ ) ≥ ε, d̂x( f̄ , h̄) > ε/6. That is, with probability 1− δ, the algorithm returns a
function sequencēh that satisfiesd̄P( f̄ , h̄) < ε.

For some positive constantsc3 andc4, the conditionε > c11
′d log(1/1′) is implied by

the conditionε2 > c31d log(ε/1), which is implied by1 < c4ε
2/(d log(d/ε)). 2

Note that in contrast with Theorem 6, one cannot in general estimate a sequence in
Fn(P,1) using just any consistent algorithm. There are examples for which for every
n there are consistent sequencesh̄ with VP(h̄) = 0 but d̄P(h̄, f̄ ) = 1. For example, let
X = [0, 1] andP be the uniform distribution on [0, 1]. Let F contain the indicator functions
of the concept [0, 1] and all singletons{x} for x ∈ [0, 1]. Note that VCdim(F) = 2. Now,
for anyn consider the sequencēf = ( f1, . . . , fn) with fi = [0, 1] for i = 1, . . . ,n. For
everyx1, . . . , xn the sequencēf labels eachxi as 1. The sequenceh̄ = (h1, . . . , hn) defined
by hi = {xi } also labels eachxi as 1. Thus, if the true sequence of concepts isf̄ , then for
everyx1, . . . , xn the correspondinḡh is consistent and yetVP(h̄) = 0 while d̄P(h̄, f̄ ) = 1.
Clearly, Theorem 2 implies thatE

∣∣Fn(P,1)|x
∣∣ grows exponentially withn in this case. In

fact, it is easy to see directly that
∣∣Fn(P,1)|x

∣∣ = 2n for everyx.
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4. Prediction

In this section, we consider the problem of online prediction of function sequences from
labelled examples.

Definition 8. SupposeM is a positive integer,P is a distribution onX, andFM is a set
of legal function sequences of lengthM from a setF of functions. (In some cases,FM

depends onP.) A prediction problem forFM proceeds as follows. There is an unknown
target sequencēf = ( f1, . . . , fM) ∈ FM . At each time 1≤ t ≤ M , a prediction strategy
receives an example(xt , ft (xt )), wherext is chosen according toP. The strategy then
hypothesizes a functionht+1.

For 0< ε, δ < 1, we say that a strategy can(ε, δ)-predictFM online fromM examples
if, for all probability distributionsP on X and all legal sequences̄f in FM , the probability
overx in XM thatd̄P(h̄, f̄ ) ≥ ε is less thanδ, whereh̄ = (h1, . . . , hM).

Clearly, if there is a strategy that can(ε, δ)-predict a classFM from M examples, then it
can be used to construct an algorithm that can(ε, δ)-estimateFM in the sense of Definition 1.

We shall construct prediction strategies that are based on the estimation results of the
previous section. Theorem 10 below shows that these strategies predict well whenever the
underlying estimation strategy works well. In fact, this result applies more generally to
the problem of online prediction of elements of an arbitrary pseudometric space.

Definition 9. Let (F, d) be a pseudometric space. A prediction problem on this space is
defined as follows. ForM ∈ N, there is a sequencēf in F M . At time t − 1, a prediction
strategy receives partial informationGt−1( ft−1) about ft−1. The strategy then predictsht .
At time t , it receives partial information aboutft , and so on. The strategy aims to ensure
that

d̄(h̄, f̄ )

(
def= 1

M

M∑
i=1

d( fi , hi )

)

is small.
A k-th order Markovian prediction strategyH is one that, at timet − 1, considers only

the partial information that it has received about the sequence( ft−k, . . . , ft−1) in forming
its predictionht .

The pseudometric space that will be of interest to us is that of binary valued functions over
some domain setX, with the pseudometric,dP, induced by some probability measure,P,
overX. The prediction strategy receives partial informationGt ( ft ) about the target function
ft in the form of the labelft (xt ) of ft for a P-randomly drawn examplext . However, for
the statement and proof of Theorem 10 below, we shall remain in the more abstract setting
of Definition 9.

Of course the error of a prediction strategy depends on the intrinsic ‘fluctuations’ of the
sequencef̄ it comes to estimate. We measure these fluctuations by the ‘total variation’ of
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the function sequencēf relative to a given metricd overF , Vd( f̄ ) (defined in Eq. (1)). We
shall consider separately the case whered is the discrete metric overF , giving rise to the
variationD( f̄ ) (defined in Eq. (2)),

Theorem 10. Let (F, d) be a pseudometric space with d( f, g) ≤ 1 for all f , g ∈ F.
Consider f̄ ∈ F M for M ∈ N. Let H be a k-Markovian prediction strategy for(F, d)
and, for each t≤ M, let f̄ k

t = ( ft−k, . . . , ft−1). Suppose that, at time t, H constructs
a sequencef̂ k

t = ( f̂t,t−k, . . . , f̂t,t−1) ∈ Fk that satisfiesd̄( f̂ k
t , f̄ k

t ) ≤ ε, and H predicts
ht = f̂t,t−1.

We say that H is D-conservative if, for all t , L tail( f̂ k
t ) ≥ L tail( f̄ k

t ), where Ltail(ḡ) for a
sequencēg ∈ Fk denotes

L tail(ḡ) = max{i ∈ {1, . . . , k} : gk+1−i = gk+2−i = · · · = gk},

the length of̄g’s “constant tail” .
We say that H is Vd-conservative if, for all t , Vd( f̂ k

t ) ≤ Vd( f̄ k
t ).

1. If H is D-conservative then,
• If k > 1/(D( f̄ )+ 1/M) then

d̄(h̄, f̄ ) ≤ k

M
+ 2εkD( f̄ ) log

(
1

D( f̄ )

)
+ Vd( f̄ ).

• If k ≤ 1/(D( f̄ )+ 1/M) then

d̄(h̄, f̄ ) ≤ k

M
+ ε + 2εkD( f̄ )(log(k)− 1)+ Vd( f̄ ).

2. If H is Vd-conservative, then

d̄(h̄, f̄ ) ≤ k/M +min{ε + 2kVd( f̄ ), kε} + Vd( f̄ ).

Furthermore, the bounds are‘ local’ in the sense that, if H only satisfies

1

M − k

∣∣{k+ 1≤ t ≤ M : d̄
(

f̂ k
t , f̄ k

t

)
> ε

}∣∣ < α,

then the upper bounds on̄d(h̄, f̄ ) increase only by an additive term ofα.

Proof: 1. The proof proceeds in two stages. We start by producing an upper bound on the
instantaneous error of a prediction strategy at each time pointt . We then apply this bound
to derive the desired upper bound for the cumulative error over the full prediction process.

SinceL tail( f̂ k
t ) ≥ L tail( f̄ k

t ), for all t − L tail( f̄ k
t ) ≤ i ≤ t − 1, we haved( fi , f̂t,i ) =

d( ft−1, f̂t,t−1). By the triangle inequality, the error of the hypothesisht = f̂t,t−1 is

d(ht , ft ) ≤ d
(

f̂t,t−1, ft−1
)+ d( ft−1, ft ).

Note that the first term depends upon the strategyH , whereas the second term is an intrinsic
property of the target sequencēf , and it sums up toMVd( f̄ ). Regarding the first term, we
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have:

d̄
(

f̄ k
t , f̂ k

t

) = 1

k

t−1∑
i=t−k

d( f̂t,i , fi )

≥ 1

k

t−1∑
i=t−L tail( f̄ k

t )

d( f̂t,i , fi )

= 1

k
L tail

(
f̄ k
t

)
d( f̂t,t−1, ft−1).

Applying the assumption that the hypothesis sequencef̂ k
t is ε-close to the target sequence

f̄ k
t , we conclude thatd( f̂t,t−1, ft−1) ≤ kε/L tail( f̄ k

t ). We now turn to the cumulative error
over the full sequencēf . We have

Md̄( f̄ , h̄) =
M∑

t=1

d( f̂t,t−1, ft ) ≤ k+ kε
M∑

t=k+1

1

L tail
(

f̄ k
t

) +MVd( f̄ ).

Denoteαt = L tail( f̄ k
t ). Notice thatαt takes values in the range 1 (whenft−2 6= ft−1) up to

k (when ft−k = · · · = ft−1). So from a point of change in̄f , 1/αt starts at 1 and decays as
1/ i until it reaches 1/k, where it remains until the next change inf̄ . Among the sequences
f̄ with a fixed number of function switches (i.e. fixed value ofD( f̄ )),

∑M
t=k+1 1/αt assumes

its maximal value when these switches are equally spaced along the sequencef̄ . (To see
this, suppose that there areN switches in f̄ . Let si denote the index immediately after the
i th switch, and lets0 = 0 andsN+1 = M + 1. Then denote the length of the sequence
preceding thei th switch byl i = si − si−1 for i = 1, . . . ,M + 1. If we havel i 6= l i+1,
moving the switch to dcrease the larger (say,l i ) by one and increase the smaller by one will
increase the sum by 1/(l i+1)− 1/ l i ≥ 0.)

To upper bound the cumulative error for sequences of a fixed lengthM and a fixedD( f̄ ),
we therefore consider sequences composed of(MD( f̄ ) + 1) blocks, each consisting of
1/(D( f̄ )+ 1/M) many identical functions. Let us consider two cases:

Case 1: k> 1/(D( f̄ )+ 1/M). On each sequence of 1/(D( f̄ )+ 1/M) identical ft ’s, the
sum of the appropriate terms 1/αt is the harmonic series,

1/(D( f̄ )+1/M)∑
i=1

1

i
≤ log

1

D( f̄ )+ 1/M
.

As there areMD( f̄ )+ 1 many such subsequences inf̄ , we get

d̄P( f̄ , H) ≤ k

M
+ kε

(
D( f̄ )+ 1

M

)
log

1

D( f̄ )+ 1/M
+ Vd( f̄ )

≤ k

M
+ 2kεD( f̄ ) log

(
1

D( f̄ )

)
+ Vd( f̄ ).
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Case 2: k≤ 1/(D( f̄ )+1/M). In this case, on each subsequence of identical functionsft ,
the corresponding sequence of 1/αt ’s consists of the harmonic sequence 1, 1/2, . . . ,1/k
followed by a sequence of(1/(D( f̄ )+1/M)−k) values equal to 1/k. A straightforward
calculation shows that in this case we get

d̄P( f̄ , H) ≤ k

M
+ ε + 2kεD( f̄ )(log(k)− 1)+ Vd( f̄ ).

2. Just as in the first part of the proof, at each staget ,

d(ht , ft ) = d( f̂t,t−1, ft ) ≤ d( f̂t,t−1, ft−1)+ d( ft−1, ft ). (5)

The second term sums up toMVd( f̄ ), so our task is to upper bound the sum
∑M−1

t=1 d( f̂t,t−1,

ft−1).
SinceH is Vd-conservative, for everyk+ 1 ≤ t ≤ M , Vd( f̂ k

t ) ≤ Vd( f̄ k
t ). This together

with the triangle inequality imply that, for every(t − k) ≤ i ≤ t − 1,

d( f̂t,t−1, ft−1) ≤ d( f̂t,i , fi )+
t−2∑
j=i

d( f j , f j+1)+
t−2∑
j=i

d( f̂t, j , f̂t, j+1)

≤ d( f̂t,i , fi )+ kVd
(

f̄ k
t

)+ kVd
(

f̂ k
t

)
≤ d( f̂t,i , fi )+ 2kVd

(
f̄ k
t

)
. (6)

Since, by assumption,

1

k

t−1∑
i=t−k

d( f̂t,i , fi ) ≤ ε,

there must be at−k ≤ i ≤ t−1 withd( f̂t,i , fi ) ≤ ε. Applying inequality (6), we conclude
that

d( f̂t,t−1, ft−1) ≤ ε + 2kVd
(

f̄ k
t

)
.

Averaging inequality (5) over allt , one gets,

d̄(h̄, f̄ ) ≤ k/M + ε + 2kVd( f̄ )+ Vd( f̄ ).

But the assumption̄d( f̂ k
t , f̄ k

t ) ≤ ε also implies thatd( f̂t,t−1, ft−1)≤ kε. Averaging in-
equality (5) using this last inequality amounts to

d̄(h̄, f̄ ) ≤ k/M + kε + Vd( f̄ ). 2

We can now combine this theorem with the estimation theorems derived in Section 3 to
give a result on the prediction of changing concepts.
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Definition 11. For a setF of {0, 1}-valued functions defined onX, and numbersk,M ∈ N
and 0<1<1, define the sets ofk-local-1-frequently-switchingfunction M-sequences
of F as

Fk
M(D,1) =

{
f̄ ∈ F M : for k ≤ t < M , D

(
f̄ k
t

) ≤ 1}.
For a probability measureP define the sets ofk-local-(P,1)-slowly-changing M-sequences
of F as

Fk
M(P,1) =

{
f̄ ∈ F M : for k ≤ t < M , VP

(
f̄ k
t

) ≤ 1}.
Theorem 12. Suppose that F is a class with VC-dimension d, and P is a probability
distribution on X.
1. There are constants c1 and c2 such that for0< ε, δ,1 < 1, if

ε > c11d log
1

1
log

1

1δ
,

k = c2

ε

(
d log

1

ε
+ log

1

δε

)
,

and M ≥ k/ε, then there is a k-Markovian prediction strategy that can(ε, δ)-predict
Fk

M(D,1) online from M examples.
2. There are constants c1 and c2 such that for0< ε, δ,1 < 1, if

ε2 > c11d log2 d

δ1
,

k = c2

ε

(
d log

1

ε
+ log

1

δε

)
,

and M ≥ k/ε, then there is a k-Markovian prediction strategy that can(ε, δ)-predict
Fk

M(P,1) online from M examples.

Proof: 1. For all t ∈ {k+1, . . . ,M}, f̄ k
t ∈ Fk(D,1). At time t , our estimation algorithm

chooses a consistent sequencef̂ k
t . For anyt , let Mt represent the set of training samples

for which d̄P( f̂ k
t , f̄ k

t ) ≥ ε. Theorem 6 implies that, ifε > c11d log(1/1) and

k ≥ c2

ε

(
d log

1

ε
+ log

1

δε

)
, (7)

then for allt we have Pr(Mt ) < δε. It follows that

E

(
1

M − k

M∑
t=k+1

1Mt

)
< δε,

where 1Mt is the indicator function for the setMt . Markov’s inequality implies that, with
probability at least 1− δ,∣∣{t ∈ {k+ 1, . . . ,M} : d̄P

(
f̂ k
t , f̄ k

t

) ≥ ε}∣∣ < ε(M − k).



170 P.L. BARTLETT, S. BEN-DAVID AND S.R. KULKARNI

If our consistent estimation algorithm also maximizesL tail( f̂ k
t ) for its estimatef̂ k

t at each
time t , it is also D-conservative. Applying Theorem 10 (taking the maximum of both
bounds), if we ensurek < 1/(21 log(1/1)) andM ≥ k/ε, we haved̄P(h̄, f̄ ) ≤ 5ε. For
the first of these inequalities, it suffices if we setk equal to the right hand side of (7), and
ensure that

ε > c31d log
1

1
log

1

δε

⇐ ε > c31d log
1

1
log

1

δ1
.

2. The algorithm of Theorem 7 can easily be modified by, instead of choosing theh̄ that
is closest to the target and does not have too many switches, choosing one that maximizes
the length of its “constant tail” but is sufficiently close to the target and does not have too
many switches. The proof of Theorem 7 shows that, with probability at least 1− δ, there is
a function sequencēg in Fn(D, 241/ε) with d̂x(ḡ, f̄ ) ≤ ε/6. So if the algorithm returns a
function sequencēh that has the longest “constant tail” of those sequences inFn(D, 241/ε)
satisfyingd̂x(h̄, f̄ ) ≤ ε/6, it will be D-conservative. We can then use an argument identical
to the proof above of the first part of the theorem, but with1 replaced by 241/ε. In this
case, we get

ε > c31d
1

ε
log

ε

1
log

1

δε

⇐ ε2 > c41d log

(
d log

1

δ1

)
log

1

δ1

⇐ ε2 > c41d log2 d

δ1
,

for some universal constantc4. 2

Appendix A: Proof of Theorem 2

Proof: Define

Q = {x ∈ Xn : ∃ḡ ∈ Fn, ḡ(x) = f̄ (x), d̄P( f̄ , ḡ) ≥ ε}

R =
{
(x, y) ∈ X2n : ∃ḡ ∈ Fn, ḡ(x) = f̄ (x), d̄P( f̄ , ḡ) ≥ ε, d̂y( f̄ , ḡ) ≥ ε

2

}
.

We shall first show that

Pn(Q) ≤ 1

1− e−εn/8
P2n(R). (8)
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To see this, notice that

P2n(R)=
∫

Q
Pn

{
y : ∃ḡ ∈ Fn, ḡ(x) = f̄ (x), d̄P( f̄ , ḡ)

≥ ε, d̂y( f̄ , ḡ) ≥ ε

2

}
d Pn(x). (9)

Fix x ∈ Xn andḡ ∈ Fn with d̄( f̄ , ḡ) ≥ ε andḡ(x) = f̄ (x). Then

Pn

{
y ∈ Xn : d̂y( f̄ , ḡ) ≥ ε

2

}
= 1− Pr

(
1

n

n∑
i=1

Xi <
ε

2

)
,

whereXi ∈ {0, 1} and Pr(Xi = 1) = Pr( fi (xi ) = gi (xi )), so that

1

n

n∑
i=1

Pr(Xi = 1) = d̄( f̄ , ḡ) ≥ ε.

Chernoff bounds (see, for example, (Hagerup and Rub, 1990)) imply that

Pr

(
1

n

n∑
i=1

Xi <
ε

2

)
≤ e−εn/8.

It follows that the probability inside the integral in (9) is at least 1− exp(−εn/8), which
implies (8).

Let U be the uniform distribution on the set of permutations on{1, . . . ,2n} that swap
elements from the first to the second half of the sequence (that is, all permutationsσ that
satisfy{σ(i ), σ (i +n)} = {i, i +n} for all i ∈ {1, . . . ,n}). For such a permutationσ denote
the permuted version of a sequence(x, y) ∈ X2n by (xσ , yσ ). Then, given the assumption
onn, the probability ofQ is less than

2E(x,y)∼P2nU

{
σ : ∃ḡ ∈ Fn s.t. ḡ(xσ ) = f̄ (xσ )

andd̄P( f̄ , ḡ) > ε andd̂yσ ( f̄ , ḡ) >
ε

2

}
≤ 2E(x,y)∼P2nU

{
σ : ∃(v,w) ∈ Fn|(x,y) s.t. f̄ (xσ ) = vσ

and
1

n

∣∣{i : fi
(
yσ(i )

) 6= wσ(i )}∣∣ ≥ ε

2

}
,

whereFn|(x,y) is the set

{(h1(x1), . . . , hn(xn), h1(y1), . . . , hn(yn)) : h̄ ∈ Fn}.
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The union bound and a simple counting argument show that this quantity is no more than

2E|Fn|(x,y) | sup
(v,w)∈Fn |(x,y)

U

{
σ : f̄ (xσ ) = vσ and

1

n

∣∣{i : fi
(
yσ(i )

) 6= wσ(i )}∣∣ ≥ ε

2

}
≤ 2E

∣∣Fn|(x,y)
∣∣2−εn/2.

Notice thatFn|(x,y) is contained in

{(h1(x1), . . . , hn(xn)) : h̄ ∈ Fn} × {(h1(y1), . . . , hn(yn)) : h̄ ∈ Fn},

which gives the desired result. 2

Appendix B: Proof of Theorem 3

Proof: Define

Q = {x ∈ Xn : ∃ḡ ∈ Fn, dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ)) ≥ α},

R =
{
(x, y) ∈ X2n : ∃ḡ ∈ Fn, dγ (d̂x( f̄ , ḡ), d̂y( f̄ , ḡ)) ≥ α

2

}
.

Notice that the triangle inequality fordγ (see (Haussler, 1992)) implies that

P2n(R) ≥
∫

Q
Pn

{
y : ∃ḡ ∈ Fn, dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ)) ≥ α, and

dγ (d̄P( f̄ , ḡ), d̂y( f̄ , ḡ)) ≤ α
2

}
d Pn(x). (10)

Fix x ∈ Q and ḡ ∈ Fn with dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ))≥α. We shall show that, forn≥
5/(α2γ ),

Pn

{
y : dγ (d̄P( f̄ , ḡ), d̂y( f̄ , ḡ)) >

α

2

}
≤ 1

2
. (11)

To see this, notice that̂dy( f̄ , ḡ) ≥ 0 implies that

Pn

{
|d̄P( f̄ , ḡ)− d̂y( f̄ , ḡ)|

d̄P( f̄ , ḡ)+ d̂y( f̄ , ḡ)+ γ >
α

2

}

≤ Pn

{
|d̄P( f̄ , ḡ)− d̂y( f̄ , ḡ)| > α

2
(d̄P( f̄ , ḡ)+ γ )

}

= Pn

{∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ > α

2
(µ+ γ )

}
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where the independent random variablesXi ∈ {0, 1} satisfy Pr(Xi = 1) = Pr( fi (xi ) 6=
gi (xi )), andµ is defined asµ = (1/n)

∑n
i=1 Pr(Xi = 1). Chernoff bounds imply that this

probability is no more than

2 exp

(
−nα2(µ+ γ )2

12µ

)
.

Elementary calculus shows thatnα2(µ + γ )2/(12µ) is minimized whenµ= γ , so the
probability is no more than 2 exp(−nα2γ /3). This is no more than 1/2 for n ≥ 4/(α2γ ),
which implies (11). It follows that, for anyx ∈ Q, the probability inside the integral in (10)
is at least 1/2, and soPn(Q) ≤ 2P2n(R).

Now,

Pn{x : ∃ḡ ∈ Fn s.t.dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ)) ≥ α}

≤ 2P2n

{
(x, y) : ∃ḡ ∈ Fn s.t.dγ (d̂x( f̄ , ḡ), d̂y( f̄ , ḡ)) ≥ α

2

}
= 2E(x,y)∼P2nU

{
σ : ∃ḡ ∈ Fn s.t.dγ (d̂xσ ( f̄ , ḡ), d̂yσ ( f̄ , ḡ)) ≥ α

2

}
,

whereU is the uniform distribution on the group of swapping permutations on the set
{1, . . . ,2n}, as in the proof of Theorem 2. Taking the union bound as in that proof, we have
that

Pn{x : ∃ḡ ∈ Fn s.t.dγ (d̂x( f̄ , ḡ), d̄P( f̄ , ḡ)) ≥ α}

≤ 2E
∣∣Fn|(x,y)

∣∣ sup
(v,w)∈X2n

U

{
σ : dγ (d̂vσ ( f̄ , ḡ), d̂wσ ( f̄ , ḡ)) ≥ α

2

}
.

Now, dγ (d̂xσ ( f̄ , ḡ), d̂yσ ( f̄ , ḡ)) ≥ α/2 if and only if∣∣∣∣∣1n
n∑

i=1

βi (ai − bi )

∣∣∣∣∣ ≥ α2
(

1

n

n∑
i=1

(ai + bi )+ γ
)
,

whereai = | fi (vi )−gi (vi )|, bi = | fi (wi )−gi (wi )|, and the independent random variables
βi ∈ {−1, 1} satisfy Pr(βi = 1)= 1/2. Then Bernstein’s inequality (see, for example,
(Anthony and Bartlett, 1999, p. 363)) implies that this occurs with probability no more
than

2 exp

(
− (α2/4)

(
(1/n)

∑n
i=1(ai + bi )+ γ

)2
n

(2/n)
∑n

i=1(ai − bi )2+ (α/3)
(
(1/n)

∑n
i=1(ai + bi )+ γ

)).
Sinceai , bi ∈ {0, 1}, (ai − bi )

2 ≤ ai + bi , so this probability is no more than

2 exp

(
− (α2/4)(S+ γ )2n

2S+ (α/3)(S+ γ )
)
,
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whereS = (1/n)
∑n

i=1(ai + bi ). Since(S+ γ )2/(2S+ (α/3(S+ γ )) is minimized at
S= γ (2− α/3)/(2+ α/3), this is no more than

2 exp

(
− 2α2γ 2n

(2+ α/3)2γ
)
≤ 2 exp

(
−α

2γn

3

)
,

sinceα ≤ 1. 2
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