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Abstract

Previous work has modeled the composi-

tionality of words by creating character-

level models of meaning, reducing prob-

lems of sparsity for rare words. However,

in many writing systems compositionality

has an effect even on the character-level:

the meaning of a character is derived by

the sum of its parts. In this paper, we

model this effect by creating embeddings

for characters based on their visual charac-

teristics, creating an image for the charac-

ter and running it through a convolutional

neural network to produce a visual char-

acter embedding. Experiments on a text

classification task demonstrate that such

model allows for better processing of in-

stances with rare characters in languages

such as Chinese, Japanese, and Korean.

Additionally, qualitative analyses demon-

strate that our proposed model learns to

focus on the parts of characters that carry

semantic content, resulting in embeddings

that are coherent in visual space.

1 Introduction

Compositionality—the fact that the meaning of a

complex expression is determined by its structure

and the meanings of its constituents—is a hall-

mark of every natural language (Frege and Austin,

1980; Szabó, 2010). Recently, neural models have

provided a powerful tool for learning how to com-

pose words together into a meaning representation

of whole sentences for many downstream tasks.

This is done using models of various levels of

sophistication, from simpler bag-of-words (Iyyer

et al., 2015) and linear recurrent neural network

(RNN) models (Sutskever et al., 2014; Kiros et al.,

2015), to more sophisticated models using tree-
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Figure 1: Examples of character-level composi-

tionality in (a, b) Chinese, (c) Korean, and (d) Ger-

man. The red part of the characters are shared, and

affects the pronunciation (top) or meaning (bot-

tom).

structured (Socher et al., 2013) or convolutional

networks (Kalchbrenner et al., 2014).

In fact, a growing body of evidence shows that it

is essential to look below the word-level and con-

sider compositionality within words themselves.

For example, several works have proposed mod-

els that represent words by composing together

the characters into a representation of the word it-

self (Ling et al., 2015; Zhang et al., 2015; Dhingra

et al., 2016). Additionally, for languages with pro-

ductive word formation (such as agglutination and

compounding), models calculating morphology-

sensitive word representations have been found ef-

fective (Luong et al., 2013; Botha and Blunsom,

2014). These models help to learn more robust

representations for rare words by exploiting mor-

phological patterns, as opposed to models that op-

erate purely on the lexical level as the atomic units.

For many languages, compositionality stops at

the character-level: characters are atomic units of

meaning or pronunciation in the language, and no

further decomposition can be done.1 However, for

other languages, character-level compositionality,

where a character’s meaning or pronunciation can

1In English, for example, this is largely the case.
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Lang Geography Sports Arts Military Economics Transportation

Chinese 32.4k 49.8k 50.4k 3.6k 82.5k 40.4k

Japanese 18.6k 82.7k 84.1k 81.6k 80.9k 91.8k

Korean 6k 580 5.74k 840 5.78k 1.68k

Lang Medical Education Food Religion Agriculture Electronics

Chinese 30.3k 66.2k 554 66.9k 89.5k 80.5k

Japanese 66.5k 86.7k 20.2k 98.1k 97.4k 1.08k

Korean 16.1k 4.71k 33 2.60k 1.51k 1.03k

Table 1: By-category statistics for the Wikipedia dataset. Note that Food is the abbreviation for “Food

and Culture” and Religion is the abbreviation for “Religion and Belief”.

be derived from the sum of its parts, is very much

a reality. Perhaps the most compelling example

of compositionality of sub-character units can be

found in logographic writing systems such as the

Han and Kanji characters used in Chinese and

Japanese, respectively.2 As shown on the left side

of Fig. 1, each part of a Chinese character (called

a “radical”) potentially contributes to the meaning

(i.e., Fig. 1(a)) or pronunciation (i.e., Fig. 1(b))

of the overall character. This is similar to how

English characters combine into the meaning or

pronunciation of an English word. Even in lan-

guages with phonemic orthographies, where each

character corresponds to a pronunciation instead

of a meaning, there are cases where composition

occurs. Fig. 1(c) and (d) show the examples of Ko-

rean and German, respectively, where morpholog-

ical inflection can cause single characters to make

changes where some but not all of the component

parts are shared.

In this paper, we investigate the feasibility of

modeling the compositionality of characters in a

way similar to how humans do: by visually ob-

serving the character and using the features of its

shape to learn a representation encoding its mean-

ing. Our method is relatively simple, and gener-

alizable to a wide variety of languages: we first

transform each character from its Unicode repre-

sentation to a rendering of its shape as an image,

then calculate a representation of the image us-

ing Convolutional Neural Networks (CNNs) (Cun

et al., 1990). These features then serve as inputs

to a down-stream processing task and trained in

an end-to-end manner, which first calculates a loss

function, then back-propagates the loss back to the

CNN.

2Other prominent examples are largely for extinct lan-
guages: Egyptian hieroglyphics, Mayan glyphs, and Sume-
rian cuneiform scripts (Daniels and Bright, 1996).

As demonstrated by our motivating examples

in Fig. 1, in logographic languages character-level

semantic or phonetic similarity is often indicated

by visual cues; we conjecture that CNNs can

appropriately model these visual patterns. Con-

sequently, characters with similar visual appear-

ances will be biased to have similar embeddings,

allowing our model to handle rare characters ef-

fectively, just as character-level models have been

effective for rare words.

To evaluate our model’s ability to learn repre-

sentations, particularly for rare characters, we per-

form experiments on a downstream task of classi-

fying Wikipedia titles for three Asian languages:

Chinese, Japanese, and Korean. We show that

our proposed framework outperforms a baseline

model that uses standard character embeddings for

instances containing rare characters. A qualita-

tive analysis of the characteristics of the learned

embeddings of our model demonstrates that visu-

ally similar characters share similar embeddings.

We also show that the learned representations are

particularly effective under low-resource scenar-

ios and complementary with standard character

embeddings; combining the two representations

through three different fusion methods (Snoek

et al., 2005; Karpathy et al., 2014) leads to con-

sistent improvements over the strongest baseline

without visual features.

2 Dataset

Before delving into the details of our model, we

first describe a dataset we constructed to exam-

ine the ability of our model to capture the com-

positional characteristics of characters. Specifi-

cally, the dataset must satisfy two desiderata: (1)

it must be necessary to fully utilize each charac-

ter in the input in order to achieve high accuracy,

and (2) there must be enough regularity and com-
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Figure 2: The character rank-frequency distribu-

tion of the corpora we considered in this paper. All

three languages have a long-tail distribution.

positionality in the characters of the language. To

satisfy these desiderata, we create a text classifi-

cation dataset where the input is a Wikipedia ar-

ticle title in Chinese, Japanese, or Korean, and

the output is the category to which the article be-

longs.3 This satisfies (1), because Wikipedia titles

are short and thus each character in the title will

be important to our decision about its category. It

also satisfies (2), because Chinese, Japanese, and

Korean have writing systems with large numbers

of characters that decompose regularly as shown

in Fig. 1. While this task in itself is novel, it is

similar to previous work in named entity type in-

ference using Wikipedia (Toral and Munoz, 2006;

Kazama and Torisawa, 2007; Ratinov and Roth,

2009), which has proven useful for downstream

named entity recognition systems.

2.1 Dataset Collection

As the labels we would like to predict, we use

12 different main categories from the Wikipedia

web page: Geography, Sports, Arts, Military, Eco-

nomics, Transportation, Health Science, Educa-

tion, Food Culture, Religion and Belief, Agricul-

ture and Electronics. Wikipedia has a hierarchical

structure, where each of these main categories has

a number of subcategories, and each subcategory

has its own subcategories, etc. We traverse this

hierarchical structure, adding each main category

tag to all of its descendants in this subcategory tree

structure. In the case that a particular article is the

descendant of multiple main categories, we favor

the main category that minimizes the depth of the

3The link to the dataset and the crawling scripts
– https://github.com/frederick0329/

Wikipedia_title_dataset

Geography
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Education
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Religion and Belief
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Electronics

Visual model
(Image as input)

Lookup model
(Symbol as input)

CNN CNN CNN

Softmax

GRU

36

36

Figure 3: An illustration of two models, our pro-

posed VISUAL model at the top and the base-

line LOOKUP model at the bottom using the same

RNN architecture. A string of characters (e.g. “温

病学”), each converted into a 36x36 image, serves

as input of our VISUAL model. dc is the dimen-

sion of the character embedding for the LOOKUP

model.

article in the tree (e.g., if an article is two steps

away from Sports and three steps away from Arts,

it will receive the “Sports” label). We also per-

form some rudimentary filtering, removing pages

that match the regular expression “.*:.*”, which

catches special pages such as “title:agriculture”.

2.2 Statistics

For Chinese, Japanese, and Korean, respectively,

the number of articles is 593k/810k/46.6k, and the

average length and standard deviation of the ti-

tle is 6.25±3.96/8.60±5.58/6.10±3.71. As shown

in Fig. 2, the character rank-frequency distribu-

tions of all three languages follows the 80/20

rule (Newman, 2005) (i.e., top 20% ranked char-

acters that appear more than 80% of total frequen-

cies), demonstrating that the characters in these

languages belong to a long tail distribution.

We further split the dataset into training, valida-

tion, and testing sets with a 6:2:2 ratio. The cat-

egory distribution for each language can be seen

in Tab. 1. Chinese has two varieties of characters,

traditional and simplified, and the dataset is a mix

of the two. Hence, we transform this dataset into

two separate sets, one completely simplified and

the other completely traditional using the Chinese

text converter provided with Mac OS.

3 Model

Our overall model for the classification task fol-

lows the encoder model by Sutskever et al. (2014).
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Layer# 3-layer CNN Configuration

1 Spatial Convolution (3, 3) → 32

2 ReLu

3 MaxPool (2, 2)

4 Spatial Convolution (3, 3) → 32

5 ReLu

6 MaxPool (2, 2)

7 Spatial Convolution (3, 3) → 32

8 ReLu

9 Linear (800, 128)

10 ReLu

11 Linear (128, 128)

12 ReLu

Table 2: Architecture of the CNN used in the ex-

periments. All the convolutional layers have 32

3×3 filters.

We calculate character representations, use a RNN

to combine the character representations into a

sentence representation, and then add a softmax

layer after that to predict the probability for each

class. As shown in Fig. 2.1, the baseline model,

which we call it the LOOKUP model, calculates

the representation for each character by looking it

up in a character embedding matrix. Our proposed

model, the VISUAL model instead learns the rep-

resentation of each character from its visual ap-

pearance via CNN.

LOOKUP model Given a character vocabulary

C, for the LOOKUP model as in the bottom part of

Fig. 2.1, the input to the network is a stream of

characters c1, c2, ...cN , where cn ∈ C. Each char-

acter is represented by a 1-of-|C| (one-hot) en-

coding. This one-hot vector is then multiplied by

the lookup matrix TC ∈ R
|C|×dc , where dc is the

dimension of the character embedding. The ran-

domly initialized character embeddings were opti-

mized with classification loss.

VISUAL model The proposed method aims to

learn a representation that includes image in-

formation, allowing for better parameter sharing

among characters, particularly characters that are

less common. Different from the LOOKUP model,

each character is first transformed into a 36-by-36

image based on its Unicode encoding as shown in

the upper part of Fig 2.1. We then pass the im-

age through a CNN to get the embedding for the

image. The parameters for the CNN are learned

through backpropagation from the classification

loss. Because we are training embeddings based

on this classification loss, we expect that the CNN

will focus on parts of the image that contain se-

mantic information useful for category classifica-

tion, a hypothesis that we examine in the experi-

ments (see Section 5.5).

In more detail, the specific structure of the CNN

that we utilize consists of three convolution layers

where each convolution layer is followed by the

max pooling and ReLU nonlinear activation lay-

ers. The configurations of each layer are listed in

Tab. 2. The output vector for the image embed-

dings also has size dc which is the same as the

LOOKUP model.

Encoder and Classifier For both the

LOOKUP and the VISUAL models, we adopt

an RNN encoder using Gated Recurrent Units

(GRUs) (Chung et al., 2014). Each of the GRU

units processes the character embeddings sequen-

tially. At the end of the sequence, the incremental

GRU computation results in a hidden state e

embedding the sentence. The encoded sentence

embedding is passed through a linear layer whose

output is the same size as the number of classes.

We use a softmax layer to compute the posterior

class probabilities:

P (y = j|e) =
exp(wT

j e+ bj)
∑L

i=1
exp(wT

i e+ bi)
(1)

To train the model, we use cross-entropy loss

between predicted and true targets:

J =
1

B

B∑

i=1

L∑

j=1

−ti,j log(pi,j) (2)

where ti,j ∈ {0, 1} represents the ground truth la-

bel of the j-th class in the i-th Wikipedia page ti-

tle. B is the batch size and L is the number of

categories.

4 Fusion-based Models

One thing to note is that the LOOKUP and the

VISUAL models have their own advantages. The

LOOKUP model learns embedding that captures

the semantics of each character symbol without

sharing information with each other. In con-

trast, the proposed VISUAL model directly learns

embedding from visual information, which natu-

rally shares information between visually similar

characters. This characteristic gives the VISUAL
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Lookup/Visual 100% 50% 12.5%

zh trad 0.55/0.54 0.53/0.50 0.48/0.47

zh simp 0.55/0.54 0.53/0.52 0.48/0.46

ja 0.42/0.39 0.47/0.45 0.44/0.41

ko 0.47/0.42 0.44/0.39 0.37/0.36

Table 3: The classification results of the LOOKUP

/ VISUAL models for different percentages of full

training size.

model the ability to generalize better to rare char-

acters, but also has the potential disadvantage of

introducing noise for characters with similar ap-

pearances but different meanings.

With the complementary nature of these two

models in mind, we further combine the two em-

beddings to achieve better performances. We

adopt three fusion schemes, early fusion, late fu-

sion (described by Snoek et al. (2005) and Karpa-

thy et al. (2014)), and fallback fusion, a method

specific to this paper.

Early Fusion Early fusion works by concatenat-

ing the two varieties of embeddings before feeding

them into the RNN. In order to ensure that the di-

mensions of the RNN are the same after concate-

nation, the concatenated vector is fed through a

hidden layer to reduce the size from 2 × dc to dc.

The whole model is then fine-tuned with training

data.

Late Fusion Instead of learning a joint represen-

tation like early fusion, late fusion averages the

model predictions. Specifically, it takes the output

of the softmax layers from both models and aver-

ages the probabilities to create a final distribution

used to make the prediction.

Fallback Fusion Our final fallback fusion

method hypothesizes that our VISUAL model does

better with instances which contain more rare

characters. First, in order to quantify the over-

all rareness of an instance consisting of multiple

characters, we calculate the average training set

frequency of the characters therein. The fallback

fusion method uses the VISUAL model to predict

testing instances with average character frequency

below or equal to a threshold (here we use 0.0 fre-

quency as cutoff, which means all characters in the

instance do not appear in the training set), and uses

the LOOKUP model to predict the rest of the in-

stances.

5 Experiments and Results

In this section, we compare our proposed VISUAL

model with the baseline LOOKUP model through

three different sets of experiments. First, we ex-

amine whether our model is capable of classify-

ing text and achieving similar performance as the

baseline model. Next, we examine the hypothesis

that our model will outperform the baseline model

when dealing with low frequency characters. Fi-

nally, we examine the fusion methods described in

Section 4.

5.1 Experimental Configurations

The dimension of the embeddings and batch size

for both models are set to dc = 128 and B =
400, respectively. We build our proposed model

using Torch (Collobert et al., 2002), and use Adam

(Kingma and Ba, 2014) with a learning rate η =
0.001 for stochastic optimization. The length of

each instance is cut off or padded to 10 characters

for batch training.

5.2 Comparison with the Baseline Model

In this experiment, we examine whether our VI-

SUAL model achieves similar performance with

the baseline LOOKUP model in classification ac-

curacy.

The results in Tab. 3 show that the baseline

model performs 1-2% better across four datasets;

this is due to the fact that the LOOKUP model can

directly learn character embeddings that capture

the semantics of each character symbol for fre-

quent characters. In contrast, the VISUAL model

learns embeddings from visual information, which

constraints characters that has similar appearance

to have similar embeddings. This is an advantage

for rare characters, but a disadvantage for high fre-

quency characters because being similar in appear-

ance does not always lead to similar semantics.

To demonstrate that this is in fact the case, be-

sides looking at the overall classification accuracy,

we also examine the performance on classifying

low frequency instances which are sorted accord-

ing to the average training set frequency of the

characters therein. Tab. 4 and Fig. 4 both show that

our model performs better in the 100 lowest fre-

quency instances (the intersection point of the two

models). More specifically, take Fig. 4(a)’ as ex-

ample, the solid (proposed) line is higher than the

dashed (baseline) line up to 102, indicating that the

proposed model outperforms the baseline for the
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Figure 4: Experiments on different training sizes for four different datasets. More specifically, we con-

sider three different training data size percentages (TPs) (100%, 50%, and 12.5%) and four datasets: (a)

traditional Chinese, (b) simplified Chinese, (c) Japanese, and (d) Korean. We calculate the accumulated

number of correctly predicted instances for the VISUAL model (solid lines) and the LOOKUP model

(dashed lines). This figure is a log-log plot, where x-axis shows rarity (rarest to the left), y-axis shows

cumulative correctly classified instances up to this rank; a perfect classifier will result in a diagonal line.

first 100 instances. Lines depart the x-axis when

the model classifies its first instance correctly, and

the LOOKUP model did not correctly classify any

of the first 80 rarest instances, resulting in it cross-

ing later than the proposed model. This confirms

that the VISUAL model can share visual informa-

tion among characters and help to classify low fre-

quency instances.

For training time, visual features take signifi-

cantly more time, as expected. VISUAL is 30x

slower than LOOKUP, although they are equiv-

alent at test time. For space, images of Chinese

characters took 36MB to store for 8985 characters.

5.3 Experiments on Different Training Sizes

In our second experiment, we consider two smaller

training sizes (i.e., 50% and 12.5% of the full

training size) indicated by green and red lines in

Fig. 4. We performed this experiment under the

hypothesis that because the proposed method was

more robust to infrequent characters, the proposed

model may perform better in low-resourced sce-

narios. If this is the case, the intersection point of

the two models will shift right because of the in-

crease of the number of instances with low average

character frequency.

Lookup/Visual 100 1000 10000

zh trad 0.22/0.49 0.35/0.35 0.40/0.39

zh simp 0.25/0.53 0.39/0.37 0.41/0.40

ja 0.30/0.35 0.45/0.41 0.44/0.41

ko 0.44/0.33 0.44/0.33 0.48/0.42

Table 4: Classification results for the LOOKUP

/ VISUAL of the k lowest frequency instances

across four datasets. The 100 lowest frequency in-

stances for traditional and simplified Chinese and

Korean were both significant (p-value < 0.05).

Those for Japanese were not (p-value = 0.13);

likely because there was less variety than Chinese

and more data than Korean.

As we can see in Fig. 4, the intersection point

for 100% training data lies between the intersec-

tion point for 50% training data and 12.5%. This

disagrees with our hypothesis; this is likely be-

cause while the number of low-frequency charac-

ters increases, smaller amounts of data also ad-

versely impact the ability of CNN to learn useful

visual features, and thus there is not a clear gain

nor loss when using the proposed method.

As a more extreme test of the ability of our pro-

posed framework to deal with the unseen char-
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zh trad zh simp ja ko

Lookup 0.5503 0.5543 0.4914 0.4765

Visual 0.5434 0.5403 0.4775 0.4207

early 0.5520 0.5546 0.4896 0.4796

late 0.5658 0.5685 0.5029 0.4869

fall 0.5507 0.5547 0.4914 0.4766

Table 5: Experiment results for three different fu-

sion methods across 4 datasets. The late fusion

model was better (p-value < 0.001) across four

datasets.

acters in the test set, we use traditional Chinese

as our training data and simplified Chinese as

our testing data. The model was able to achieve

around 40% classification accuracy when we use

the full training set, compared to 55%, which is

achieved by the model trained on simplified Chi-

nese. This result demonstrates that the model is

able to transfer between similar scripts, similarly

to how most Chinese speakers can guess the mean-

ing of the text, even if it is written in the other

script.

5.4 Experiment on Different Fusion Methods

Results of different fusion methods can be found

in Tab. 5. The results show that late fusion

gives the best performance among all the fu-

sion schemes combining the LOOKUP model

and the proposed VISUAL model. Early fusion

achieves small improvements for all languages ex-

cept Japanese, where it displays a slight drop.

Unsurprisingly, fallback fusion performs better

than the LOOKUP model and the VISUAL model

alone, since it directly targets the weakness of the

LOOKUP model (e.g., rare characters) and replaces

the results with the VISUAL model. These re-

sults show that simple integration, no matter which

schemes we use, is beneficial, demonstrating that

both methods are capturing complementary infor-

mation.

5.5 Visualization of Character Embeddings

Finally, we qualitatively examine what is learned

by our proposed model in two ways. First, we

visualize which parts of the image are most im-

portant to the VISUAL model’s embedding calcu-

lation. Second, we show the 6-nearest neighbor

results for characters using both the LOOKUP and

the VISUAL embeddings.

Iron Bronze Salmon Serranidae

Silk Coil Rhyme Pleased

Wave Put on Cypress Pillar

Cuckoo Eagle Mosquito Ant

Figure 5: Examples of how much each part of the

character contributes to its embedding (the darker

the more). Two characters are shown per radical to

emphasize that characters with same radical have

similar patterns.

Emphasis of the VISUAL Model In order to

delve deeper into what the VISUAL model has

learned, we measure a modified version of the oc-

clusion sensitivity proposed by Zeiler and Fergus

(2014) by masking the original character image in

four ways, and examine the importance of each

part of the character to the model’s calculated rep-

resentations. Specifically, we leave only the up-

per half, bottom half, left half, or right half of the

image, and mask the remainder with white pix-

els since Chinese characters are usually formed

by combining two radicals vertically or horizon-

tally. We run these four images forward through

the CNN part of the model and calculate the L2

distance between the masked image embeddings

with the full image embedding. The larger the dis-

tance, the more the masked part of the character

contributes to the original embedding. The contri-

bution of each part (e.g. the L2 distance) is repre-

sented as a heat map, and then it is normalized to

adjust the opacity of the character strokes for bet-

ter visualization. The value of each corner of the

heatmap is calculated by adding the two L2 dis-

tances that contribute to this corner.

The visualization is shown in Fig. 5. The mean-

ing of each Chinese character in English is shown

below the Chinese character. The opacity of the

character strokes represent how much the corre-

sponding parts contribute to the original embed-

ding (the darker the more). In general, the darker

part of the character is related to its semantics. For

example, “金” means gold in Chinese, which is
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Figure 6: Visualization of the Chinese traditional

characters by finding the 6-nearest neighbors of

the query (i.e., center) characters. The highlighted

red indicates the radical along with the meaning of

the characters.

highlighted in both “鐵” (Iron) and “銅” (Bronze).

We can also find similar results for other exam-

ples shown in Fig. 5. Fig. 5 also demonstrated

that our model captures the compositionality of

Chinese characters, both meaning of sub-character

units and their structure (e.g. the semantic content

tends to be structurally localized on one side of a

Chinese character).

K-nearest neighbors Finally, to illustrate the

difference of the learned embeddings between the

two models, we display 6-nearest neighbors (L2

distance) for selected characters in Fig. 6. As can

be seen, the VISUAL embedding for characters

with similar appearances are close to each other.

In addition, similarity in the radical part indicates

semantic similarity between the characters. For

example, the characters with radical “鳥” all refer

to different type of birds.

The LOOKUP embedding do not show such fea-

ture, as it learns the embedding individually for

each symbol and relies heavily on the training set

and the task. In fact, the characters shown in Fig. 6

for the LOOKUP model do not exhibit semantic

similarity either. There are two potential expla-

nations for this: First, the category classification

task that we utilized do not rely heavily on the fine-

grained semantics of each character, and thus the

LOOKUP model was able to perform well without

exactly capturing the semantics of each character

precisely. Second, the Wikipedia dataset contains

a large number of names and location and the char-

acters therein might not have the same semantic

meaning used in daily vocabulary.

6 Related Work

Methods that utilize neural networks to learn

distributed representations of words or charac-

ters have been widely developed. However,

word2vec (Mikolov et al., 2013), for example, re-

quires storing an extremely large table of vectors

for all word types. For example, due to the size

of word types in twitter tweets, work has been

done to generate vector representations of tweets

at character-level (Dhingra et al., 2016).

There is also work done in understanding math-

ematical expressions with a convolutional net-

work for text and layout recognition by using

an attention-based neural machine translation sys-

tem (Deng et al., 2016). They tested on real-

world rendered mathematical expressions paired

with LaTeX markup and show the system is ef-

fective at generating accurate markup. Other than

that, there are several works that combine visual

information with text in improving machine trans-

lation (Sutskever et al., 2014), visual question an-

swering, caption generation (Xu et al., 2015), etc.

These works extract image representations from a

pre-trained CNN (Zhu et al., 2016; Wang et al.,

2016).

Unrelated to images, CNNs have also been used

for text classification (Kim, 2014; Zhang et al.,

2015). These models look at the sequential depen-

dencies at the word or character-level and achieve

the state-of-the-art results. These works inspire

us to use CNN to extract features from image and

serve as the input to the RNN. Our model is able

to directly back-propagate the gradient all the way

through the CNN, which generates visual embed-

dings, in a way such that the embedding can con-

tain both semantic and visual information.

Several techniques for reducing the rare words

effects have been introduced in the literature, in-

cluding spelling expansion (Habash, 2008), dictio-

nary term expansion (Habash, 2008), proper name

transliteration (Daumé and Jagarlamudi, 2011),

treating words as a sequence of characters (Lu-

ong and Manning, 2016), subword units (Sennrich

et al., 2015), and reading text as bytes (Gillick

et al., 2015). However, most of these techniques

still have no mechanism for handling low fre-

quency characters, which are the target of this

work.

Finally, there are works on improving embed-

dings with radicals, which explicitly splits Chi-

nese characters into radicals based on a dictionary
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of what radicals are included in which characters

(Li et al., 2015; Shi et al., 2015; Yin et al., 2016).

The motivation of this method is similar to ours,

but is only applicable to Chinese, in contrast to

the method in this paper, which works on any lan-

guage for which we can render text.

7 Conclusion and Future Work

In this paper, we proposed a new framework

that utilizes appearance of characters, convolu-

tional neural networks, recurrent neural networks

to learn embeddings that are compositional in the

component parts of the characters. More specif-

ically, we collected a Wikipedia dataset, which

consists of short titles of three different languages

and satisfies the compositionality in the characters

of the language. Next, we proposed an end-to-end

model that learns visual embeddings for characters

using CNN and showed that the features extracted

from the CNN include both visual and semantic

information. Furthermore, we showed that our

VISUAL model outperforms the LOOKUP baseline

model in low frequency instances. Additionally,

by examining the character embeddings visually,

we found that our VISUAL model is able to learn

visually related embeddings.

In summary, we tackled the problem of rare

characters by using embeddings learned from im-

ages. In the future, we hope to further general-

ize this method to other tasks such as pronuncia-

tion estimation, which can take advantage of the

fact that pronunciation information is encoded in

parts of the characters as demonstrated in Fig. 1,

or machine translation, which could benefit from

a wholistic view that considers both semantics and

pronunciation. We also hope to apply the model to

other languages with complicated compositional

writing systems, potentially including historical

texts such as hieroglyphics or cuneiform.
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