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Abstract 

Chemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 

million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to 

organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities 

that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemi-

cal ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily 

scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical 

data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper 

we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic 

regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches 

for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line 

notation representations. We find that classical learning approaches such as logistic regression perform well with sets 

of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping 

classes but needs more examples per class to learn from, and is not able to make a class prediction for every mole-

cule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including 

neuro-symbolic approaches.
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Introduction

In the last decades, significant progress has been made 

within the life sciences in bringing chemical data into 

the public domain in open databases such as PubChem 

[1]. �ese resources are massive in scale: as of Febru-

ary 2021, PubChem contains approximately 110 million 

structurally distinct entries. �is presents both oppor-

tunities and challenges; the annotation, interpretation 

and organisation of such huge datasets at scale becomes 

ever more important. Classification into meaningful 

groupings or classes enables effective downstream filter-

ing, selection, analysis and interpretation [2]. Chemical 

ontologies provide structured classifications of chemical 

entities into hierarchically arranged and clearly defined 

chemical classes. To address the challenge of scale, it 

would be beneficial if structurally described molecular 

entities could be automatically and efficiently classified 

into chemical ontologies [2–4].

Machine learning has a long history of applications in 

computational chemistry. For example, it is used for the 

prediction of various chemical and biological properties 
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from chemical structures (e.g. [5–7]). Classical mul-

tivariate statistics and machine learning approaches 

include logistic regression, support vector machines, 

decision trees and Bayesian networks. For these classi-

cal approaches, relevant features need to be specified in 

advance. With recent advances in algorithms, data avail-

ability and computational processing capability, multi-

layer artificial neural networks, which are able to learn 

features directly from raw data, have begun to be used in 

chemistry applications [8–10].

For the purpose of machine learning, the problem of 

automated classification of a structurally defined molec-

ular entity into a chemical ontology can be transformed 

into a multi-class prediction problem: given the molecu-

lar structure (and associated features) corresponding to 

a molecular entity, a model can be trained that aims to 

automatically predict the class or classes into which that 

molecular entity should be classified. �e desiderata for 

an ontology class prediction for a molecular entity is that 

it should be (a) correct, i.e. it should be a class to which 

the molecular entity does belong; and (b) as specific as 

possible, i.e. there should ideally be no sub-classes of the 

predicted class in the ontology to which the molecule 

also belongs.

In this contribution, we evaluate several machine learn-

ing approaches for their applicability to the problem of 

classifying novel molecular entities into the ChEBI chem-

ical ontology [11] based on their chemical structures. 

�is is to our knowledge the first systematic and broad 

evaluation of machine learning for the problem of struc-

ture-based chemical ontology classification as applied 

to an existing ontology of the scope of ChEBI. �ere are 

challenges with the transformation of ChEBI into a form 

that can be  used for this task, which we discuss below. 

We evaluate both classical machine learning approaches, 

which learn to predict a single “best match” class for an 

input molecule, and artificial neural networks, which 

learn to predict a likelihood of class membership for 

every class that the network knows about, given an input 

molecule. We use input encodings based on chemical fin-

gerprints for the classical classifiers, and on the SMILES 

character-based line notation [12] for the artificial neural 

networks. �e overall objective of this work is to assess 

how suitable machine learning is for the task of auto-

matically predicting chemical ontology classes for novel 

chemical structures. We also explore whether there are 

performance differences between different families of 

machine learning approaches for this problem, and if so, 

whether these differences are uniform or interact with 

different branches of the ontology or different types of 

molecule.

In the next section, we present some background for 

our approach and discuss related work. �is is followed 

by a section describing our methods. �ereafter, we pre-

sent and discuss our results.

Background

Chemical ontologies

Chemical ontologies provide a standardised and shared 

classification of chemical entities into chemical classes. 

One prominent example of a chemical ontology is ChEBI 

[11, 13], a publicly available and manually annotated 

ontology, containing approximately 58,700 fully anno-

tated entities, and over 100,000 preliminary (partially 

annotated) entities, as of the last release (February 2021). 

�is includes both molecules and classes of molecules. 

ChEBI offers separate ontology hierarchies for the clas-

sification of molecular entities based on features of their 

associated chemical structures (atoms, bonds and overall 

configuration) and based on their functions or how they 

are used. For the purpose of this paper we only use the 

structure-based branch of the ontology.

ChEBI has been widely adopted throughout the life sci-

ences, and can be considered the “gold standard” chemi-

cal ontology in the public domain. It has been applied for 

multiple purposes, including in support of the bioinfor-

matics and systems biology of metabolism [14], biological 

data interpretation [15, 16], natural language processing 

[17], and as a chemistry component for the semantic web 

(e.g. [18, 19]). However, ChEBI is manually maintained, 

which creates an obvious bottleneck that hinders the util-

ity of ChEBI and its chemical classification. With growth 

primarily limited by the manual annotation process, 

ChEBI is not able to scale to encompass the full scope 

of the publicly available chemical datasets such as are 

included in PubChem. Moreover, ChEBI cannot address 

use cases that arise in the context of novel molecular dis-

covery, e.g. in the pharmaceutical domain where ontolo-

gies are used in the management of integrated private 

and public large-scale datasets as input to early drug dis-

covery pipelines [20] for which it is important that part of 

the data be kept private. Moreover, it hinders applications 

in the context of investigations into large-scale molecular 

systems such as whole-genome metabolism, for which it 

is important that the knowledge base be as complete as 

possible [21].

Automated structure-based classi�cation in chemical 

ontologies

Chemical ontologies are typically implemented using 

logic-based semantic formalisms, including the W3C 

standard Web Ontology (OWL) language [22]. Based on 

Description Logics [23], OWL allows definitional axi-

oms to specify necessary and sufficient conditions for 

class membership such that an automated reasoner can 

compute the hierarchy and thus detect subsumption 
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relationships between classes automatically. Some 

approaches to automated chemical ontology classifica-

tion have used OWL to express necessary and sufficient 

definitions for chemical classes in terms of atoms and 

bonds (e.g. [24]). However, the representation of and rea-

soning with molecular structures as graphs of atoms con-

nected by bonds at the class level in OWL is hindered by 

the fact that class expressions in OWL must have tree-

shaped models [25]. Extensions to OWL have been devel-

oped to address this challenge, including description 

graphs [26], description logic programs [27] and rules 

[28]. However, such approaches have not yet been widely 

adopted into tools that scale.

Alternative approaches to automate structure-based 

chemical ontology classification have harnessed highly 

optimised cheminformatics algorithmic approaches for 

graph substructure and superstructure matching, in 

combination with weakly axiomatised ontologies. One of 

the first such attempts was “CO” [29], an ontology of  260 

classes based on combinations of chemical functional 

groups generated with the cheminformatics “checkmol” 

software. �is was later developed into the more com-

plete approach reported in [4] which used a custom gen-

eral molecular fragmentation algorithm to enumerate 

all the parts of each molecular entity and assert those as 

axioms in a resulting OWL ontology to make the parts 

available for ontology reasoning about the class hierar-

chy. However, this strategy quickly creates a combinato-

rial explosion of content, which becomes inefficient as 

the size of the knowledge base grows.

Within the cheminformatics domain, the SMARTS 

language has been developed to encode general struc-

tural features of chemical classes [30]. SMARTS allows 

the specification of structures of molecules and allows 

specifying generalised attributes of atoms and bonds in 

particular locations within the overall graph structure 

and overall molecular features such as the total num-

ber of rings. In addition, SMARTS allows composition 

by means of the standard logical operators and, or and 

not. SMARTS has been used for structure-based chemi-

cal ontology classification: first OntoChem’s SODIAC 

[31] commercially, and then the ClassyFire application 

non-commercially [3] used the approach of associating 

chemical ontology classes with SMARTS patterns for 

the purpose of embedding cheminformatics knowledge 

within a chemical ontology, and offered accompany-

ing software packages that are able to use this informa-

tion to perform automatic structure-based classification 

of chemical entities in chemical ontologies. At the time 

of writing, the ClassyFire algorithm is the state of the art 

for a structure-based chemical ontology supported by 

automated classification, in terms of size (9000 definition 

rules, and an associated ontology of 4825 classes) and 

adoption. However, ClassyFire is based on rules rather 

than adaptive learning technologies, thus, updating the 

integrated knowledge system can only be accomplished 

by updating the software and its associated rules.

Machine learning for chemical classi�cation

In cheminformatics, machine learning approaches are 

commonly used for the prediction of function from 

structure, e.g. for the prediction of bioactivity classes, for 

virtual screening, or for the prediction of physicochemi-

cal properties [32]. �ey have recently also been applied 

for chemical class prediction: In [33], a back-propagating 

artificial neural network is applied to classify natural 

products. �is classifier–named NPClassifier–is trained 

on a dataset of around 73,000 natural products sourced 

from public databases including Pubchem, ChEBI, and 

the Universal Natural Products Database. �e classifica-

tion structure which these molecules were organised into 

had just three hierarchical levels: 7 Pathways, 70 Super-

classes (each of which is classified into a pathway), and 

653 Classes (each of which is classified into a superclass). 

NPClassifier uses chemical fingerprints as input encod-

ing. �e fingerprint they used was a version of the Mor-

gan fingerprint modified to integer format to include 

counts of atoms and substructures, calculated with 

RDKit [34]. After evaluating which would work better 

(single task or multi-task models), they used three sin-

gle-task models–one model for each of the classification 

hierarhichal levels. �ey report that NPClassifier outper-

formed ClassyFire for a selection of overlapping classes at 

the superclass and pathway level (1000 members), and in 

particular performed well on polyketides and lignans. In 

the evaluation at the class level (100 members), NPClas-

sifier outperformed ClassyFire for 50 out of the 62 classes 

chosen for the test. However, this task uses an artificially 

restricted classification problem in the sense that they 

only accommodate three levels of hierarchy, while in the 

general problem of classification in chemical ontologies, 

classes can be arranged in a hierarchy of arbitrary depth.

In another recent publication, machine learning was 

used to predict class membership directly from mass 

spectrometry features in an untargeted metabolomics 

study [35]. �is is an important use case, as in untar-

geted metabolomics there are often many features which 

relate to ‘unknown’ molecular entities and thus are not 

mapped to defined molecular entities about which meta-

bolic information is known; however, they may neverthe-

less share detectable chemical classes. In this effort, the 

chemical fingerprint was used as an intermediary struc-

tural representation for learning purposes: one network 

was trained to predict chemical fingerprints from mass 

spectrometry features, and another to predict class mem-

bership from fingerprints.
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In another recent application learning in chemistry, a 

recurrent neural network was trained on SMILES strings 

as grammatical structures in order to predictively gen-

erate novel molecular entities that could be considered 

‘grammatically correct’ [36], structures that were valid. 

�e generated molecules showed evidence of being sam-

pled from the same problem space as the original training 

molecules, thus, were good candidates for being novel 

molecules with a similar bioactivity profile. While this 

work does not try to predict classes for molecules, it uses 

an encoder for SMILES strings that is similar to the one 

we use.

Methods

Preparation of ChEBI data for learning

In order to prepare the ChEBI ontology for the learning 

task, we downloaded and parsed the OBO format export 

of ChEBI’s ontology using Python’s PRONTO library 

[37]. We use only the hierarchical (is a) relationships 

from the ontology for this study.

ChEBI’s ‘chemical entity’ branch of the ontology 

includes both fully-defined molecular entities with 

associated molecular structures as well as chemical 

classes that group together multiple molecular entities. 

Although the molecular entities are often leaves in the 

ontology, from ChEBI’s perspective these are all classes, 

and indeed in some cases there are hierarchical relation-

ships defined between molecular entities with structures, 

such as between alanine (CHEBI:16449) and L-alanine 

(CHEBI:16977). However, for the purpose of this learn-

ing exercise we need to introduce a distinction between 

classes, which we define as those classes within ChEBI 

that subsume multiple members, and members, which 

we define as those classes in ChEBI that (a) are leaves of 

the ontology hierarchy and (b) are associated with a fully-

defined molecular structure, indicated by the presence 

of an associated SMILES annotation. By this distinction, 

alanine is a class with L-alanine as a member.

�e number of classes within the full ChEBI ontol-

ogy, their unbalanced sizes, and the problem of multiple 

inheritance at every level, makes it challenging to train 

classifiers on the whole ontology, in particular simple 

classifiers that predict just one class for a given chemi-

cal structure as input. We thus implemented a dedi-

cated selection strategy that does not use the full ChEBI 

ontology, but rather chooses classes, and sub-samples 

randomly from their members, such that the result is 

balanced (i.e. each class having an identical number of 

members). �is provides a more well-defined task for 

the classification algorithms. We restrict the sampling of 

classes to those that are classified beneath the ‘molecular 

entity’ root of ChEBI, as this is where the bulk of the leaf 

members with defined molecular structures are found.

Alongside the need to prepare a balanced dataset 

in terms of the number of members per class, it is also 

important that the members with structures are selected 

so that individual members are not duplicated across 

multiple classes, in order to enable the clean separation 

of the dataset into training, test and validation sets. How-

ever, in practice the ontology contains a large percentage 

of overlapping members between classes, since the ontol-

ogy classes higher up in the hierarchy describe general 

chemical features that in many cases can be composi-

tionally combined in classes lower down in the hierarchy 

[2], as illustrated in Fig.  1. To mitigate this challenge, 

the selection process only sampled each leaf member 

structure once, assigning it as a member of the training 

data for just one class, even though in the actual under-

lying ontology that molecule in fact belongs to multiple 

classes. �is is an artificially restriction for the purpose 

of the learning task: we sub-sample the leaf members 

with molecular structures for each class such that no 

leaf member with structure is selected for more than one 

class.

Sub-sampling members for classes such that no classes 

have any shared members can potentially introduce a 

bias. In order to perform the selection in a way that will 

have the least impact by minimising the discrepancy 

from the actual ontology structure, the classes were first 

sorted from the smallest to the largest (in terms of the 

number of leaf members with structures) so as to priori-

tise classes with fewer members over classes with more 

members, and thus reduce the amount of sub-sampling 

required. Following this strategy, we iteratively selected 

sets of N classes with M randomly sampled member 

structures, where N and M were specified dynamically, so 

as to be able to evaluate performance across a range of 

different problem sizes. A dataset containing N classes of 

which each has M members will be denoted as N × M . 

No additional chemical prioritisation strategy (e.g. to 

ensure chemical diversity in selected members) was used 

in the selection.

Input encodings

We used three different strategies to encode the molec-

ular structures of individual molecules. First, chemical 

fingerprints were calculated for each structure using the 

RDKit [34] software library’s RDKFingerprint, repre-

sented as a bit string with size 1024 bits. �e RDK fin-

gerprint represents a hash of random walks of length 1–n 

(we used the default, n = 7) through the molecule includ-

ing atom types, bond types and branches, thus represents 

a generalised representation of the substructures present 

in the molecule. Note that in this work we did not con-

sider alternative fingerprints. For comparison, the natu-

ral products classifier mentioned in the related work [33] 
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used an enhanced version of the Morgan fingerprint in 

which a count of distinct occurrences of substructures 

was embedded into the fingerprint vector (not just pres-

ence or absence).

For learning systems that require fixed-length inputs, 

as do many of the classifiers that we tested, fingerprints 

are a feature-rich input encoding that has regularly been 

used. However, encoding structural features via finger-

prints may lose crucial information concerning the actual 

arrangement of these features. Artificial neural networks 

are able to exploit variable-length inputs. SMILES can 

be regarded as a language with atoms and their bonds as 

the alphabet. Figure 2 illustrates the molecular structure 

and SMILES of a representative ChEBI entity. In connec-

tion with the learning objectives for our classification 

problem, language models have been shown to have the 

potential to be applicable for chemical classification [38]. 

�us, we also explored using the full SMILES represen-

tation. Similar encoding approaches have been success-

fully employed in analyses of natural language [39]. �ese 

approaches have shown promising results with a tokeni-

zation on the character level. 

In comparison to linguistic examples, SMILES 

strings present information more compactly, with-

out the equivalent of word boundaries. Despite their 

similar abbreviations, Hydrogen (H) and Helium (He) 

or Phosphorus (P) and Lead (Pb) have very different 

Fig. 1 The figure illustrates the many branching and partially overlapping ancestor classes subsuming the molecule L-alanine (CHEBI:16977). Each 

of the illustrated mid-level classes similarly contains an overlapping range of molecular entity leaf members. For this reason, the ChEBI ‘chemical 

entity’ ontology can be described as diamond-shaped. Blue arrows indicate subsumption relationships and the black arrow indicates a parthood 

relationship

Fig. 2 CHEBI:82275 benzoyl chloride, ClC(=O)C1=CC=CC=C1 
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properties. Therefore, it may be beneficial to remove 

the burden of learning these differences from the 

dataset by using an encoding that encodes atoms as 

units. For this reason we used two alternative encod-

ings: one where each token represents a character of 

the SMILES string, and one where letter combinations 

that represent an atom are encoded as one token. This 

approach is depicted in Fig. 3. Note the different han-

dling of Chlorine (Cl) in the two approaches. Multi-

digit cycle pointers are still encoded as sequences of 

digits, as they may become arbitrarily large, which 

does not work well with the token embedding used in 

our networks.

Classi�ers used

We perform a broad evaluation of learning approaches 

that have shown good results in the field of data sci-

ence. We reasoned that trying a wider range of dif-

ferent approaches may give deeper insights into the 

structure and properties of the problem than just try-

ing a single approach. We implemented the classifiers 

using Python’s SciKit-learn library, and the artificial 

neural networks using Python’s TensorFlow library.

The following subsections briefly describe the dif-

ferent algorithms for the different classifiers. For all 

algorithms except the artificial neural networks, fin-

gerprints with fixed input size are used as the input 

data. Only the artificial neural networks are capable of 

processing SMILES, which have variable length.

Logistic regression

Classifiers based on logistic regression represent the 

classification problem as a relationship between the 

categorical dependent variable (i.e. ontology class 

membership) and the independent variables (i.e. the 

molecular structural features) by estimating prob-

abilities using a logistic function, which is the cumu-

lative distribution function of the logistic distribution. 

An individual logistic regression function can dis-

criminate between two classes, thus to scale to multi-

ple classes we have used the “one-vs-rest" strategy in 

which a separate classifier is trained for each node.

K-nearest neighbor

�e popular K-nearest neighbor approach classifies a 

new data point by selecting those k existing data points 

that are the closest to the new data point w.r.t some met-

ric in a multivariate space. �e labels of this selection 

are used to determine the class of the given data point. 

�is is done either by a simple “majority vote" or more 

sophisticated methods based on the distances between 

the points.

Decision tree

Decision trees are a supervised learning method which 

fits a model that predicts the categorical dependent vari-

able (i.e. class membership) by learning simple decision 

rules inferred from the input data features. �e primary 

advantage of decision trees is that they can be inter-

rogated and visualised; explanations (in terms of rules) 

can be given for their outcomes. A disadvantage is that 

decision trees are susceptible to overfitting and to bias in 

unbalanced datasets.

Random forest

Individual decision trees are prone to over-fitting. Ran-

dom forests aim to overcome this by training multiple 

trees on random subsets of the training set to induce dif-

ferent tree structures, then, using an ensemble approach 

to derive the correct prediction. �e correct estimation 

is expected to be present more often in the results, and 

the individual fitted tree structures are different enough 

to allow more precise predictions.

Naive Bayes

Naive Bayes methods are supervised learning approaches 

based on applying Bayes’ theorem with the “naive” 

assumption of conditional independence between fea-

tures. Naive Bayes approaches have the advantage of 

requiring less training data than other approaches and 

showing good performance in many real-world situations 

despite this somewhat unrealistic assumption.

Linear discriminant analysis

One of the main drawbacks of Naive Bayes methods is 

their independence assumption. Linear Discriminant 

Analysis follows a similar mechanism, but does account 

Fig. 3 Character-wise tokenisation with and without atom groupings
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for possible co-variances among features. �e estimated 

probability distributions are still expected to follow a nor-

mal distribution, which leads to poor performances for 

classes that depend on different combinations of features.

Support vector machine

Support vector machines are supervised learning 

approaches that map the example data as points in a 

high-dimensional space such that the examples of the dif-

ferent categories are divided by a gap that is as wide as 

possible. While by default support vector machines per-

form linear separation, they can be used for non-linear 

classification using what is known as a ‘kernel trick’: a 

non-linear kernel ‘reshapes’ the problem space to make 

it more easily separable by linear functions. In this work, 

we use three different kernels: 

Linear  A linear kernel aims to separate the prob-

lem space using a linear plane–similar to 

linear regression–but adds additional penal-

ties for points that are too close to the line 

of separation. �is results in a more robust 

classification.

RBF  A radial basis kernel reshapes the problem 

space according to the euclidean distance to 

some centroid. �is makes points that are 

close to the center of the centroid more easily 

separable from those that are not.

Sigmoid  A sigmoid kernel reshapes the problem space 

with respect to a sigmoid function (e.g. tanh). 

�is makes points on the high end of the 

function more easily separable from the ones 

on the low side.

Arti�cial neural networks

Character encodings from molecular line notations pro-

duce a sequence of vectors that represent the structure 

of a molecule. Such sequences of vectors are common in 

natural language processing, for which different types of 

gated networks have been successfully applied [39, 40]. 

�e most prominent gated networks are Gated Recur-

rent Units (GRU, [41]) and Long short-term memories 

(LSTM, [42]). Whilst GRUs show better performance 

when it comes to runtime, the controllable memory 

functions of LSTMs improve the in-process informa-

tion management. �is kind of management is especially 

important for molecules, because information that may 

belong to the same cycle of atoms may be separated far 

apart due to the way cycles are broken up during the 

SMILES generation. Given these properties, we decided 

to use LSTMs.

Figure 4 illustrates the way we apply LSTMs to the dif-

ferent tokenisations. Each token is embedded into a real 

vector. �e LSTM consumes each of these embeddings in 

sequence and adapts its internal activation and memory 

state. �e output of the last cell is then passed though a 

dense layer with a trailing dropout to prevent overfitting. 

�e results are passed to a dense layer with sigmoid acti-

vation function. �e result is a vector of values between 0 

and 1, representing membership values of each class. 

Fig. 4 One-directional LSTM
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Evaluation

Each approach has been trained on a series of NxM data-

sets for different problem sizes, in each of which N is the 

number of classes, and M is the number of class mem-

bers for each class, generated from the CHEBI ontology 

as described in the Methods. It is important to bear in 

mind that different classification approaches may have 

different goals which approximate the overall objective of 

structure-based chemical classification in different ways. 

For the logistic regression classifier, a one-vs-rest classi-

fier is built for each class in the problem set in order to 

determine the best matching class for a given input. In 

the remaining classical approaches, a multi-class single-

label classifier directly outputs a single predicted best 

match amongst the classes in the problem space. For the 

LSTM, the network predicts the likelihood of member-

ship of multiple classes simultaneously, which are then 

subject to a threshold-based selection to determine pre-

dicted membership of classes.

Additionally, for the LSTM, the resulting dataset for 

each problem size has been split three ways, into a train, 

test and validation set. �e network was trained on the 

training set, while the validation was used to evaluate 

the hyper-parameter configuration. �e test set has only 

been used for the final evaluation. For the other classifi-

cation approaches which do not have hyper-parameters 

to configure, the dataset has been split two ways into a 

training and a test set.

For each problem size, class and classification 

approach, we obtain a set of class predictions for the test 

set of molecular structures (either encoded as finger-

prints or directly into the network). �ese predictions 

are scored against the classes that they were sampled 

from according to the usual metrics of precision, recall 

and F1, where precision is defined as TP/(TP + FP) and 

recall is defined as TP/(TP + FN ) (TP = true positive, 

FP = false positive, FN = false negative). �e F1 score 

is the harmonic mean of the precision and the recall, i.e. 

2 ∗ precision ∗ recall/(precision + recall).

We perform one additional evaluation, in which we cal-

culate, for each predicted class or classes for a given input 

molecule, how far that prediction is from the "ground 

truth" of the asserted parents of that molecule in ChEBI. 

For each predicted classification, and for each asserted 

parent, we calculate a distance based on the path length, 

i.e. the number of subclass relationships that must be tra-

versed to get from the predicted parent to the actual par-

ent. If the predicted parent is an actual asserted parent, 

this length is 0. If the predicted parent is the parent of 

the asserted parent, the length is 1 and so on. Note that 

by virtue of our selection strategy, not all the classifica-

tions we input to the training and prediction exercise are 

direct asserted parents. With this distance-based metric 

we are able to compare not only our approaches, but also 

the state of the art approach, ClassyFire.

Note that we only evaluate performance in terms of 

metrics for prediction correctness; we do not evaluate 

the temporal aspect of performance in terms of the time 

taken to perform the classification task.

Results and discussion

We explore our results in several sub-sections that each 

focus on a different aspect of the comparison. First, we 

look at the results by problem size. �ereafter, we com-

pare the different algorithmic approaches to learning. We 

then interpret the best and worst predictions, and finally 

we compare the predictions to the state of the art tool.

Evaluation results by problem size

We have used different sizes of classes and members 

selected from ChEBI, in order to evaluate how the per-

formance of classification scales with the size of the prob-

lem. Note that we do not include the LSTMs for every 

one of the problem sizes, as in general training artificial 

neural networks is more expensive than other classifiers, 

and such networks require larger training sets to operate.

�ere are two different relevant dimensions for “size of 

the problem": one is the size of the ontology, which we 

proxy with the number of classes selected for the clas-

sification task, and the other is the size (in number of 

leaf member compounds with structures) of each class 

within the ontology, which we proxy by selecting dif-

ferent numbers of leaf members with structures from 

the selected classes. In general, we would expect that a 

smaller number of classes, and a larger set of examples to 

learn from, would yield an easier task for most automated 

approaches to classification.

As expected, we find better scores in general for prob-

lems involving a smaller numbers of classes. As Fig.  5 

depicts, there is a robust general relationship between the 

number of classes given to the problem, and the average 

F1 score for predictions of members of those classes. For 

some of the classifiers, 25 classes had worse performance 

than 100 classes, but from 100 to 500 classes there is a 

robust effect of decreased performance across all clas-

sifiers. Although expected, this result nevertheless sug-

gests a challenge for the translation of these results into a 

classifier that scales to the size of the full ontology: there 

are currently 1721 classes in ChEBI that have at least 25 

members (Fig. 6a), and this number can only be expected 

to grow.

On the other hand, perhaps contrary to what might be 

expected, smaller numbers of members per class appears 

to result in better performance for this problem. In Fig. 5, 

different line styles indicate different numbers of mem-

bers selected per class. With 500 members per class, 
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performance is worse than with 100 members per class, 

and performance with 25 members per class is best of all.

While perhaps a surprising result, this is likely an arti-

fact of the class selection strategy coupled with the par-

tially overlapping nature of classes within the chemistry 

domain: sampling larger numbers of members per class 

forces the sampler to use classes that have larger num-

bers of (leaf ) members, which in turn means that the 

classes will be broader and have fewer uniquely defining 

features. While our training data was created in such a 

way that each leaf member is sampled just for one class, 

nevertheless, each molecule in practice belongs to many 

different classes, and by definition many of the classes 

overlap in terms of their membership. And indeed, this 

is what we observe: Fig. 6b shows the different F1 scores 

for classes across all the different models for the 500x100 

problem size, in the context of the actual class size in the 

underlying ontology in terms of the number of mem-

bers. �ere is a robust decrease in performance with the 

increase in class size.

�is presents a challenge in particular if the problem 

of structure-based ontology classification in chemistry 

Fig. 5 Mean F1 score across all classes for different problem sizes. LR = logistic regression;KNN = K-nearest neighbours; CART = decision tree; RF = 

random forest; NB = naive bayes; SVM = support vector machine; LDA = linear discriminant analysis; LSTM = long short-term memory network

Fig. 6 a Number of classes with at least M members, for different sizes of M, in ChEBI. b Performance of all models in the 500x100 problem for 

classes with different sizes. Each dot represents the F1 score for a single class in a single model
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is framed as a multi-class, single-label prediction clas-

sification problem, which it is for the classical learning 

approaches that we evaluated. We therefore also explored 

whether multi-label hierarchical classification approaches 

could mitigate the shortcomings of the classical classi-

fier algorithms applied to this problem. Any of the above 

classifiers can be used together with a hierarchical clas-

sification strategy [43]. In a hierarchical classifier, hierar-

chical relationships between the target classes are taken 

into consideration by training separate classifiers for each 

of the higher-level nodes in the hierarchy, which then 

derive predictions just for the levels beneath them, in a 

chain of nested classifiers that are iteratively applied until 

a leaf node is reached. �is is also closely related to the 

approach that was taken in the natural products classifier 

mentioned above [33], as in that work a different classi-

fier was trained for each of their three hierarchical levels. 

We thus evaluated a hierarchical classification approach 

based on subsets of ChEBI corresponding to the hier-

archy above a given set of selected classes. However, we 

found that this approach in practice did not scale to sub-

sets of ChEBI classes at the problem sizes we have used, 

likely because the need to extract a spanning sub-graph 

in which all classes are connected to the root to apply the 

hierarchical approach generates large graphs with signifi-

cant multiple inheritance even for smaller problem sizes. 

Moreover, performing hierarchical classification in the 

case of ChEBI classes would involve significant redun-

dancy because the classes at the intermediary levels have 

so much mutual overlap in terms of their lower-level 

members. Artificial neural network-based approaches 

can learn hierarchical structures directly, as we will see, 

thus, we did not further explore hierarchical classifiers at 

this stage, although we may return to this in future work.

Comparison of di�erent algorithmic approaches

Among the classical classifiers, we see that logistic 

regression robustly performs best (Fig.  7), followed by 

linear discriminant analysis and random forests perform-

ing about the same.

Fig. 7 F1 scores per algorithm for the 25x100 problem, 100x100 problem, 500x25 problem and 500x100 problem. LR = Logistic regression;KNN = 

K-nearest neighbours; CART = Decision tree; RF = Random forest; NB = Naive Bayes; SVM = Support vector machine; LDA = Linear discriminant 

analysis; LSTM = Long short-term memory network
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Naive Bayes shows the worst performance among the 

classical classifiers for this problem. �e large difference 

in performance between Naive Bayes and LDA implies 

that there are considerable co-variances among the fin-

gerprint features–which would be expected–and can be 

confirmed by a correlation analysis. �ese may originate 

from the fact that the random walks that produce the fin-

gerprints are performed on the same substructure, or by 

the way the hashes are calculated. Decision trees seem 

to over-fit–especially with larger sample sizes. �e ran-

dom forests mitigate this to some extent, but a decline in 

decision tree performance impacts the random forests as 

well.

�e performance of Logistic Regression and Sup-

port Vector Machines is almost identical, which is to be 

expected as they use essentially the same classification 

method. �e different loss functions used in the respec-

tive gradient descents do not have any significant impact. 

However, non-linear kernels had a highly negative impact 

on the SVM classification performance.

While a direct comparison should be interpreted with 

caution, as the LSTM is performing a different classifi-

cation task to the other classifiers (i.e. multi-label rather 

than single-label), nevertheless, we can make some obser-

vations about the resulting F1 scores. Interestingly, we see 

that from the overall performance perspective, although 

the LSTM does not outperform the other approaches 

at problem size 100x100 (Fig.  7), it performs somewhat 

better at the 100x500 problem size, and significantly bet-

ter than the other approaches for the 500x100 problem 

size (Fig. 8). �is implies that the LSTM is, at least on the 

face of it, better able to scale towards the scope of the full 

ontology than the classical approaches, although we did 

not attempt to use the LSTM for problem size categories 

involving small numbers of members per class (e.g. with 

25 members), as network performance decreased with 

decreased numbers of members per class, as would be 

expected for this type of approach. 

In the remainder of this section we give more detail 

about the evaluation of the networks.

�e LSTM networks have been trained on the above 

datasets for 100 epochs with binary crossentropy as 

loss function. Figures 9, 10, 11, 12, 13, 14 show the pro-

gress of different metrics during this process. �e loss 

on the validation set rebounds after the 25th epoch, 

which indicates overfitting on the dataset. Surprisingly, 

this does not impact the precision and recall negatively. 

For computing precision and recall, we used a thresh-

old of 0.5 to distinguish class membership from non-

membership. Further inspection of the predictions 

reveals that the mentioned lack of impact is caused 

Fig. 8 Violin plot of F1 scores per algorithm for the 100x500 problem (left) and the 500x100 problem (right). LR = Logistic regression;KNN = 

K-nearest neighbours; CART = Decision tree; RF = Random forest; NB = Naive Bayes; SVM = Support vector machine; LDA = Linear discriminant 

analysis; LSTM-Long short-term memory network

Fig. 9 Loss on training data
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by the predictions diverging from the optimal answers 

towards the threshold, but not passing it. �is means 

that after the turn, prediction strength decreases, since 

distance form the threshold can be seen as confidence 

about the prediction. �e slight, but constant rise of 

precision and recall after that turn indicate an addi-

tional improvement of those, but apparently at the cost 

of overfitting.

�e encoding of chemicals does not have any signif-

icant impact on the success of the learning task. �is 

implies that the networks successfully learn the struc-

ture of atom labelling in SMILES strings relatively early 

on without much effort. Similar experiments in natu-

ral language processing [44] have been conducted and 

results implied that aggregations of syntactic structures 

have an impact on the training. Our results indicate 

Fig. 10 Loss on validation data

Fig. 11 Precision on training data

Fig. 12 Precision on validation data

Fig. 13 Recall on training data

Fig. 14 Recall on validation data
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that this impact does not exist with the aggregation of 

characters into atoms.

�e violin plot in Fig.  15 depicts the distribution of 

F1-scores per molecule amongst the different mole-

cules in the evaluation set. Note the accumulations at 

the ends of the scales. �is shape corresponds to the 

response behaviour of the network. �ere is a subset of 

molecules for which the network does not give any any 

positive response for any class, i.e. the LSTM does not 

recognise the molecule as a member of any class. �is 

behaviour is rather detrimental to the overall recall, but 

it is easily identifiable and thus may be used as an indi-

cator that other approaches should be used on these 

molecules.

LSTMs were the approach that did not suffer greatly 

from larger sample sizes. One aspect of this is that the 

larger sample sizes create problem spaces that are more 

uneven, which the LSTM is better suited to handle, as 

the LSTM is able to make a multi-label prediction and 

predict multiple classes simultaneously, rather than (as 

is the case for the other approaches) making just a sin-

gle prediction. Furthermore, as described above, the 

data sampling procedure from the ontology will lead 

to more generic classes if the number of members is 

larger. �is implies that smaller substructures are rel-

evant for the classification, which may be distributed 

widely across the actual molecules. A random walk has 

a lower probability of covering all the relevant aspects 

in this case. �e LSTM consumes the whole SMILES 

string, which allows a more consistent classification.

Figure  8 shows that there is a large variance in per-

formance w.r.t different chemical classes. A more 

class-focused analysis of the results is done in the fol-

lowing section.

It should be noted that we explored several configu-

rations of LSTMs, and none of them performed better 

than the given configuration, whilst a substantial num-

ber showed almost identical results on the validation set. 

�e introduction of a dropout led to a clear rise in per-

formance, whilst different LSTM sizes and structures–

even bidirectional ones–showed no positive impact. A 

possible reason is that there are some SMILES struc-

tures that LSTMs struggle to learn, and in future work 

we will explore alternative encodings to circumvent such 

limitations.

By chemical class within the ontology

As can be seen by the wide distribution of F1-scores for 

the performances within each of the different problem 

sizes and algorithmic approaches, there is variance in the 

performance of learning for different ontology classes. 

At the same time, we see variance in the performance for 

different molecules. �is prompts us to ask whether there 

are some general observations that we can derive about 

the problem of structure-based chemical ontology classi-

fication from these experiments.

Firstly, we can ask whether different algorithms give 

the same best-performing classes or different best-per-

forming classes. Figure 16 shows the overlap of top-per-

forming classes for different problem sizes for the three 

best-performing algorithms.

Figure 16 indicates that while there is a shared common 

core, different classifiers give partially non-overlapping 

sets of ‘best scoring’ classes. �at is, they have partially 

distinct profiles with respect to the classes for which they 

give the best performance. �is suggests that the general 

problem of structure-based chemical ontology classifica-

tion might benefit from ensemble-based approaches that 

integrate results across different approaches.

In general, the classical classifiers perform best on 

classes that have relatively few members and well-defined 

structural features. For example, the best performers 

(F1 = 1.0) using the LR algorithm all have fewer than 50 

members (Table 1).

�e worst-performing classes for the classical classifi-

ers, exemplified by the worst-ranked for the LR algorithm 

indicated in Table  1, include those with features not 

directly represented in the fingerprint, such as D-stereo-

chemistry, cations and salts. �e information that would 

be required to make these classifications is just not avail-

able for these classifiers to learn, however, these could be 

improved with the adoption of alternative fingerprinting 

strategies.

�e profile of poor performers is different for the 

LSTMs compared to the classical approaches (Table 2).

Fig. 15 Violin plot of F1 scores on molecules in test set after 100 

epochs
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�e best-performing classes with the LSTM approach 

also include classes that have well-defined structural fea-

tures, but these have far more members than the best 

performers in the LR approach, illustrating the ability 

of the LSTM to cope with larger problem sizes–and the 

added value of additional examples to learn from.

�e worst-performing classes for the LSTMs have a 

quite different profile to those of the LRs, and as expected 

do not include salt or ion classes. Rather, somewhat 

intriguingly, we see many examples of classes with com-

plex ring structures, especially aromatic or substituted 

ring structures.

To confirm this observation, we applied the BiNChE 

chemical enrichment analysis utility [16] on the 50 worst-

performing classes from the LSTM-only set. We see a 

number of clear enrichments–benzenes, aromatic com-

pounds, and carbocyclic compounds (Fig.  17), while in 

the worst-performing classes from all algorithms we see 

no similar enrichment.

We can hypothesise that the poor performance for the 

aromatic molecules with the LSTM may be due to the 

fact that aromaticity can be encoded in SMILES strings 

in multiple different ways–using alternating single and 

double bonds, or using lowercase letters. It is plausible 

that the network did not learn that e.g. the aromatic ‘c’ 

carbon atom is in fact the same atom type as the typi-

cal ‘C’ in another molecular representation, and treated 

them as different entities. Larger datasets from possibly 

synthetic sources or a more homogenous representa-

tion of aromatic components may help the network to 

learn those abstractions. It is also worth observing that 

in general the LSTM can be expected to have more diffi-

culty with parsing cycles from SMILES strings than linear 

molecular structures because these structures are broken 

up during the translation of a molecule into its SMILES 

representation.

Comparison to the state of the art

As a final evaluation, we compare our results to the state 

of the art structure-based ontology classification tool, 

ClassyFire [3]. We do this comparison using as input the 

500x100 problem size dataset, by executing ClassyFire on 

the SMILES strings associated with the test set of mol-

ecules, encompassing 20% of the full 50,000 set of mol-

ecules, i.e. 10,000 sample molecules with SMILES. Of 

these, ClassyFire was unable to process 501 of them due 

to errors in the generation of an InChI (IUPAC inter-

national chemical identifier, [45]) from the SMILES. 

ClassyFire uses an InChI-Key-indexed cache of parent 

classes for molecules that have been previously classi-

fied in order to speed up its classification performance, 

as matching multiple substructural patterns is expensive. 

�ere are known to be certain molecules for which it is 

not possible to generate an InChI but for which it is pos-

sible to have a SMILES, and these 501 molecules are of 

this type–mainly due to the explicit representation of 

attachment points within the SMILES, e.g. the follow-

ing SMILES: ‘C(C(COP(=O)(OC[C@@H](C(=O)O)N)

O)OC(=O)*)OC(=O)*’. �ere were also a few entries 

for which ClassyFire returned other errors. In total, we 

received 9,484 classification results for our 10,000 sam-

ple molecules. Each classification result includes multiple 

ChEBI classes including the very high-level ChEBI classes 

such as ‘molecular entity’. We condensed these to only 

include classes that were not superclasses of each other.

It is not straightforward to make a direct comparison 

between our results and the performance of the Classy-

Fire tool, for various reasons. First, ClassyFire uses a dif-

ferent underlying ontology to ChEBI that is only partially 

mapped to ChEBI. �e ontologies differ in some funda-

mental ways in their treatment of chemical classes. For 

example, ClassyFire’s classes include molecules with dif-

ferent charge states, encompassing conjugate bases and 

Fig. 16 The Venn diagrams show the overlap of classes which scored F1 more than 0.8 (i.e., best-performing classes) for three of the classifiers in 

each of these problem sizes. LR = logistic regression; RF = random forest; LDA = linear discriminant analysis; LSTM = long short-term memory
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acids in the same grouping, while ChEBI strictly sepa-

rates these. �erefore, ChEBI class predictions returned 

by ClassyFire may be less precise than the ClassyFire 

original class. However, our dataset is restricted to 

the ChEBI classification from which it was generated. 

Second, ClassyFire makes multiple parent class predic-

tions, while our classical classifiers make only a single 

best match parent class prediction, and although the 

LSTM is able to make multiple predictions, it makes far 

fewer predictions than ClassyFire does. Figure 18a shows 

Table 1 Highest and lowest-scoring classes using the LR algorithm

Class_id f1_score Class_name Class_members

CHEBI:61689 1.0 Amino cyclitol 41

CHEBI:26253 1.0 Polyprenylhydroquinone 45

CHEBI:134209 1.0 Aporphine alkaloid 54

CHEBI:132157 1.0 Hydroxy-1,4-naphthoquinone 35

CHEBI:17810 1.0 1-O-(alk-1-enyl)-2-O-acyl-sn-glycero-3-phospho... 46

CHEBI:17636 1.0 Sphingomyelin d18:1 46

CHEBI:26255 1.0 Prenylquinone 38

CHEBI:83563 1.0 Long-chain alkane 29

CHEBI:60687 1.0 Cembrane diterpenoid 35

CHEBI:38836 1.0 1-benzothiophenes 43

CHEBI:36685 1.0 Chlorocarboxylic acid 33

CHEBI:75946 1.0 Cytochalasan alkaloid 30

CHEBI:38768 1.0 Phthalazines 41

CHEBI:80291 1.0 Aliphatic nitrile 35

CHEBI:38769 1.0 Indazoles 45

CHEBI:37531 1.0 Polyprenyl diphosphate 41

CHEBI:58168 1.0 1-O-acyl-sn-glycero-3-phosphocholine 37

CHEBI:83876 1.0 Cationic sphingoid 30

CHEBI:64590 1.0 Monoalkyl-sn-glycero-3-phosphocholine 30

CHEBI:131903 1.0 Pyranopyrazole 32

Class_id f1_score Class_name Class_members

CHEBI:16733 0.0 D-alpha-amino acid 51

CHEBI:48544 0.0 Methanesulfonates 54

CHEBI:33702 0.0 Polyatomic cation 2178

CHEBI:47704 0.0 Ammonium salt 38

CHEBI:59869 0.0 L-alpha-amino acid zwitterion 53

CHEBI:50128 0.0 Biflavonoid 53

CHEBI:25414 0.0 Monoatomic monocation 32

CHEBI:46899 0.0 Benzothiazine 37

CHEBI:35218 0.0 Anthocyanin cation 47

CHEBI:64985 0.0 Bioconjugate 39

CHEBI:33639 0.0 Ortho- and peri-fused compound 56

CHEBI:38716 0.0 Carboxylic acid dianion 311

CHEBI:59635 0.0 Organophosphonate oxoanion 38

CHEBI:35284 0.0 Ammonium betaine 1205

CHEBI:29089 0.0 1,2-diacyl-sn-glycerol 3-phosphate 52

CHEBI:35296 0.0 Ortho-fused polycyclic arene 38

CHEBI:26469 0.0 Quaternary nitrogen compound 1317

CHEBI:38037 0.0 Methanesulfonate salt 40

CHEBI:76176 0.0 2-hydroxy fatty acid anion 43

CHEBI:59558 0.0 Medium-chain fatty acid anion 36
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Table 2 Highest and lowest-scoring classes using the LSTM 

algorithm

Class_id f1_score Class_name Class_
members

CHEBI:17984 1.000000 Acyl-CoA 696

CHEBI:37240 0.998350 Adenosine 3’,5’-bisphosphate 697

CHEBI:22251 0.995114 Adenosine bisphosphate 702

CHEBI:61078 0.993104 Purine nucleoside bisphosphate 706

CHEBI:58946 0.992382 Acyl-CoA oxoanion 707

CHEBI:61079 0.991522 Ribonucleoside bisphosphate 707

CHEBI:51277 0.990164 Thioester 745

CHEBI:37123 0.989925 Nucleoside bisphosphate 708

CHEBI:60971 0.989796 Aminophospholipid 104

CHEBI:18303 0.989796 Phosphatidyl-L-serine 104

CHEBI:64583 0.986667 Sphingomyelin 251

CHEBI:58342 0.985302 Acyl-CoA(4-) 613

CHEBI:74927 0.985222 Furopyran 934

CHEBI:35766 0.983871 Glycerophosphoserine 129

CHEBI:78799 0.983607 Hydroxy fatty acid ascaroside 152

CHEBI:52565 0.980769 Acylglycerophosphoserine 114

CHEBI:26875 0.980392 Terpenyl phosphate 133

CHEBI:36233 0.980392 Disaccharide 156

CHEBI:64482 0.979315 Phosphatidylcholine 623

CHEBI:57643 0.979315 1,2-diacyl-sn-glycero-3-phospho-
choline

621

Class_id f1_score Class_name Class_
members

CHEBI:64365 0.333333 Aralkylamino com-
pound

138

CHEBI:22715 0.333333 Benzimidazoles 352

CHEBI:23697 0.328358 Dichlorobenzene 452

CHEBI:48470 0.322581 Amidobenzoic acid 148

CHEBI:25235 0.320000 Monomethoxyben-
zene

247

CHEBI:46848 0.315789 N-arylpiperazine 176

CHEBI:51681 0.305085 Dimethoxybenzene 269

CHEBI:26455 0.294118 Pyrroles 200

CHEBI:83403 0.293333 Monochloroben-
zenes

429

CHEBI:50995 0.292683 Secondary amino 
compound

417

CHEBI:27024 0.277778 Toluenes 135

CHEBI:37407 0.259887 Cyclic ether 806

CHEBI:73539 0.256410 Naphthyridine deriva-
tive

162

CHEBI:26878 0.251429 Tertiary alcohol 756

CHEBI:36786 0.246246 Tetralins 108

CHEBI:27116 0.235294 Trihydroxyflavone 150

CHEBI:38338 0.235294 Aminopyrimidine 149

CHEBI:33572 0.222222 Resorcinols 153

CHEBI:83812 0.114286 Non-proteinogenic 
amino acid deriva-
tive

145

CHEBI:13248 0.108108 Anilide 279

Fig. 17 Enrichment analysis result on the ChEBI structural ontology 

for the 50 worst-performing classes in the LSTM

a kernel density diagram for the number of parent classes 

in different approaches: (1) ChEBI directly asserted par-

ents (with a mean of 1.816 parent classes per leaf struc-

ture across the full ontology), (2) the LSTM predicted 

parent classes (mean = 1.435 in the 500 x 100 problem), 

and (3) ClassyFire predicted parent classes (mean = 

9.926). For both ClassyFire and the LSTM, these counts 

exclude any parent classes returned by the algorithm that 

are superclasses of any of the other parent classes. Finally 

and most importantly, ClassyFire has since its initial 

release in 2016 been used in the development of ChEBI: 

it is used in the bulk submissions pipeline to automati-

cally classify entities that are incorporated into ChEBI 

before they can be manually curated. �is means that 

ClassyFire has actually produced a portion of the classi-

fications in our dataset (both training and test), although 

these are not flagged or indicated as such in any way. �is 

introduces a bias which it is difficult to fully address.

We compare the approaches by computing a path 

length distance between what we might call the ‘ground 

truth’ of the asserted classification in ChEBI, and the 

predicted classification. �at is, we count the number of 

subclass relations that must be traversed to get from a 

directly asserted parent to the predicted parent. In prac-

tice, the longer paths tend to reflect classifications that 

are either wrong (in a different ontology branch) or not 

very useful (as very high level). �us, path length pro-

vides a useful metric for the quality of a classification. As 

there may be multiple directly asserted parents and mul-

tiple predicted parents, for each structure in the test set, 

we computed all path lengths between pairwise combina-

tions of asserted and predicted  classes. If the predicted 

class was identical with one of the asserted parents, we 

added a path length of 0 to indicate a match. Note that the 

asserted parents in ChEBI are not always the class which 

we used as input to our classifiers, due to the selection 

processing of the ontology for learning purposes. �us, 

we compute the path lengths also on the classes that we 

used as the selection. Figure  18b illustrates the overall 

density of the returned path lengths in this metric, with 

the selected classes indicated as ‘Training’, showing the 
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results for the LSTM, the best and worst of the classical 

approaches, and ClassyFire. It can be seen that ClassyFire 

returns the widest range of path lengths on this metric 

with a mean path length of 3.20, while the LR (mean = 

2.29) outperforms the NB (mean = 2.74) and the LSTM 

(mean = 2.81) which appear to perform similarly. �e 

training baseline for our learning approaches has mean = 

1.48.

�ese results may reflect a bias based only on the num-

ber of paths computed. For that reason we calculated also 

the minimum path length and the maximum path length 

(Fig. 18c). On the minimum path length, ClassyFire out-

performs the other approaches, while on the maximum 

path length it shows the worst performance. However, 

in practice for a novel structure it would not be known 

without manual inspection which of the results returned 

was the best classification–reducing the benefit of using 

an automated approach. While ClassyFire provides an 

ordering in the class list for their own ontology that can 

be used to prioritise classification, they do not provide 

a similar ranking in their prediction of ChEBI terms. To 

illustrate why the maximum path length of ClassyFire 

is significantly longer than for the other approaches, 

we  consider the molecule ‘D-glucopyranose 3-phos-

phate’ as an example. In ChEBI it is classified as a glu-

cose phosphate that is a derivative of hexose. ClassyFire 

returns the following predicted classifications for this 

molecule: ‘primary alcohol’ (CHEBI:15734), ‘secondary 

alcohol’ (CHEBI:35681), ‘ether’ (CHEBI:25698), ‘mono-

alkyl phosphate’ (CHEBI:25381), ‘polyol’ (CHEBI:26191), 

‘oxanes’ (CHEBI:46942), ‘hemiacetal’ (CHEBI:5653), ‘hex-

ose’ (CHEBI:18133), and ‘organic oxide’ (CHEBI:25701). 

Many of these classifications relate to correct but very 

general chemical groupings, illustrating the challenges 

with the substructure-based approach to automated 

structure-based ontology classification in the context of 

the large and combinatorial chemical structural land-

scape. Other classifications are incorrect in ChEBI due to 

differences between ClassyFire and ChEBI’s approach to 

classification (e.g. hexose vs. hexose derivative).

Fig. 18 a Number of parent classes in different approaches. b Path length to asserted parent class in different approaches. c Minimum and 

maximum path lengths to asserted parent classes. d D-glucopyranose 3-phosphate, an example molecule for which ClassyFire performs poorly on 

this metric. Training refers to the selection of members for classes in the learning task
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ClassyFire has already had enormous impact on the 

fields of chemical data management and -omics data-

set analysis by enabling novel structures to be classi-

fied. However, our results underline that there is a role 

for dynamic machine learning-based approaches along-

side substructure-based approaches. ClassyFire predicts 

for each molecule significantly more (non-redundant) 

parent classes (mean = 9.926) than the LSTM (mean = 

1.435) or the LR (1 prediction), where—roughly speak-

ing—often, one of these predicted parent classes is better 

than the classes predicted by the LSTM or the LR in our 

path distance metric (bearing in mind the possible bias 

due to the use of ClassyFire in ChEBI development), but 

most of them are worse. ClassyFire seems particularly 

suitable for semi-automatic use cases, where the results 

that are returned by ClassyFire are validated manually. 

However, if manual validation is not possible, the other 

approaches appear to be more suitable, in particular if 

they can be used together in a way that plays to the differ-

ential strengths of the different approaches. Importantly, 

they are also likely to be easier to maintain and extend 

going forward.

Conclusions and future work

Our objective was to evaluate the applicability of machine 

learning approaches to the problem of structure-based 

chemical ontology classification, and we can conclude 

that indeed machine learning seems a very promising 

approach for this complex problem.

�ere are a few final observations we can make about 

our investigation. Firstly, while for the overall problem 

the LSTM is clearly the best-performing approach due 

to the advantages it has of dealing appropriately with 

the embedded ontology class structure, and the dynamic 

potentials of the variable-length input, it struggles with 

classes that have only a small number of members to 

learn from. Moreover, there was  a subset of molecules 

for which the LSTMs gave  no class predictions at all, 

and the LSTM also showed specific weaknesses in terms 

of smaller molecules and aromatic classes. On the other 

hand, for classes that have relatively small numbers of 

members (i.e. more specific classes) and which are non-

overlapping, logistic regression outperformed all other 

approaches while being fast and straightforward, and ran-

dom forests also achieved good performance while hav-

ing the added potential benefit of explainability. No single 

approach gives the best results in all the problem cases, 

and different approaches give partially non-overlapping 

sets of ‘best scoring’ classes, that is, they have partially 

distinct profiles with respect to which classes they per-

form best for. �is is interesting because it implies that a 

hybrid approach may have promise for solving the prob-

lem of structure-based chemical ontology classification 

more generally than an approach based on a single clas-

sifier, and further research is needed to determine  how 

to harness the best elements of the different approaches 

into a single unified system.

�ere are several parameters of the overall problem 

that we did not address yet, and which we leave for our 

future research. We did not yet attempt any dimension-

ality reduction on the data in advance of the learning, 

which might boost scalability and performance. We also 

did not try to evaluate different fingerprints, for exam-

ple circular fingerprints or fingerprints including explicit 

ring systems, which we could anticipate would achieve 

better performance by making more information avail-

able to the classifiers. We also plan to explore the use of 

an enhanced molecular structure representation such as 

DeepSMILES [46], which was developed for the problem 

of generative neural network-based structure generation, 

to determine whether this will improve the predictions in 

the areas that the LSTM is currently weak.

�ere also remain several additional challenges in 

extending our current approach to be able to classify 

molecules into a full chemical ontology at the scale of 

ChEBI, rather than the artificially selected subsets of the 

ontology data that we have used thus far. �e shape of the 

ChEBI ontology means that the full prediction task is in 

fact a sparse multi-label classification problem, as while 

each molecule belongs to multiple classes, nevertheless 

for each molecule only a few classes are assigned relative 

to the (large) overall ontology. Even when considering all 

possible classes by traversing the full ontology, the class 

vectors for each molecule are sparse. Taken together 

with the fact that class sizes are not in fact balanced, this 

makes the classification task more difficult. �erefore, as 

a follow-up investigation, we intend to consider weight 

balancing in our regression and SVM models and a mod-

ification in the loss function of our deep learning models.

Self-attention has recently been shown to be a cen-

tral contributing factor when accounting for long-term 

dependencies among different tokens [47]. While using 

SMILES strings is practical, considering the molecular 

graph as a graph is an alternative structural represen-

tation as input for the classification task. Currently, an 

active research topic in the field of language modeling is 

to examine if the meaning of a sentence can be inferred 

by combining the meanings of words to determine the 

meaning of larger units, i.e., to learn a composition func-

tion that can be applied on smaller constituents to give 

a representation for bigger semantic units [48, 49]. An 

extension of our approach would thus be to incorporate 

the compositional structure of the chemical compounds 

by using tree-structured Recursive Neural Networks 

(RvNNs). Different non-linear network structures may 

also improve this point. Graph neural networks [50] 
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traverse the graph structures  to find transformation-

invariant features that are then used as inputs for the 

classification task. Neural networks based on Latent 

Compositional Representations [51] may be used to get 

better insight on the actual substructures that classifica-

tions have been based on, while preserving this informa-

tion along the whole processing chain.

Finally, the chemistry domain includes broad regulari-

ties that can be axiomatised in logical languages [2], espe-

cially at the higher hierarchical levels within the chemical 

ontology, such as for the definitions of molecules, ions 

and salts, or representing disjointness between organic 

and inorganic entities, and so on. �ese distinctions are 

only partially encoded at present in the weakly axioma-

tised ChEBI ontology through the use of relationships 

such as has part, but they can be supplemented by exten-

sions both within OWL (e.g. [52]) and in higher order 

logics (e.g. [53]) to more formally capture the logical 

rules of chemical classification. Neuro-symbolic learn-

ing approaches encode logical axioms in ways that can be 

used by ANNs in order to derive systems that can learn 

both from facts and axioms [54, 55], thus potentially 

improving performance while simultaneously reduc-

ing the amount of data that is needed for training. �ese 

systems might be particularly potent for chemical ontol-

ogy classification if ChEBI were to be enhanced with a 

stronger axiomatisation, allowing neural networks to be 

built that improve the classification performance whilst 

remaining interpretable and based on expert knowledge. 

Another possible neuro-symbolic approach would be to 

use hierarchical classification based on an ontology for 

which the immediate subclasses of a given parent class 

provides a disjoint partition. �e class structure in ChEBI 

does not satisfy this requirement. Hence, one would need 

to create an ontology using feature-based classes in the 

style of concept lattices [56], and embed ChEBI into this 

ontology. We plan to explore in the future whether such 

approaches can yield a benefit for structure-based chemi-

cal ontology classification.
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