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Abstract

Algorithms for learning classification trees have had successes in artificial intelli-

gence and statistics over many years. This paper outlines how a tree learning algorithm

can be derived from Bayesian decision theory. This introduces Bayesian techniques for

splitting, smoothing, and tree averaging. The splitting rule turns out to be similar

to Quinlan's information gain splitting rule, while smoothing and averaging replace

pruning. Comparative experiments with reimplementations of a minimum encoding

approach, Quinlan's C4 [20] and Breiman et al.'s CART [4] show the full Bayesian al-

gorithm is consistently as good, or more accurate than these other approaches though

at a computational price.
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Abstract

Algorithmsforlearningclassificationtreeshavehad successesinartificialintelligenceand

statisticsovermany years.This paperoutlineshow a treelearningalgorithmcan be derived

from Bayesiandecisiontheory.ThisintroducesBayesiantechniquesforsplitting,smoothing,

and treeaveraging.The splittingruleturnsout to be similarto Quinlan'sinformationgain

splittingrule,whilesmoothingand averagingreplacepruning.Comparativeexperimentswith

reimplementationsofa minimum encodingapproach,Quinlan'sC4 [20]and Breiman etaL's

CART [4]show thefullBayesianalgorithmisconsistentlyasgood,ormore accuratethanthese

otherapproachesthoughata computationalprice.

1 Introduction

A common inference task is where we wish to make a discrete prediction about some object given

other details about the object. For instance, in financial credit assessment [7] we wish to decide

whether to accept or reject a customer's application for a loan given their personal particulars.

This prediction task is a basic function in many expert systems, and is referred to in AI as the

classification problem, where the prediction is referred to as the classification. The task is to learn a

classifier given a training sample of classified examples. In the credit assessment case above, classes

correspond to "accept" and "reject". A trig sample in this case would be historical records

of previous loan applications together with how the loan turned out. This generic learning task

is referred to as supervised learning in pattern recognition, and induction or empirical learning in

machine learning [18]. Various techniques have been developed in the statistical community such

as discriminant analysis and nearest neighbour methods [22].

This prediction problem is often handled with partitioning classifiers. These classifiers split

the example space into partitions, for instance, ID3 [18] and CART [4] use classification trees to

recursively partition the example space and CN2 [11] and PVM [28] use disjunctive rules (disjunctive

rules also partition a space, but not recursively in the manner of trees). Tree algorithms build trees

such as the ones shown in Figure 1. The one shown on the left has the classes hypo (hypothyroid)

and not (not hypothyroid) at the leaves. This tree is referred to as a decision tree because decisions

about class membership are represented at the leaf nodes. Notice that the first test, TSH > 200 is

a test on the real valued attribute TSH. In typical problems involving noise, class probabilities are

usually given at the leaf nodes instead of class decisions, forming a class probability tree (where each



@SH > 200_ @SH > 200_

Figure 1: A decisiontreeand a classprobabilitytreefrom the thyroidapplication

S

leafnode has a vectorofclassprobabilities).A correspondingclassprobabilitytreeisgivenin the

rightof Figure I. The leafnodes givepredictedprobabilitiesforthe two classes.Notice thatthis

treeisa representationfora conditionalprobabilitydistributionof classgiven informationhigher

in the tree.We willonlybe concernedwith classprobabilitytreesin thispaper sincedecisiontrees

are a specialcase. The tree-basedapproaches have been pursued in many areas such as applied

statistics,characterrecognitionand informationtheory for wellover two decades. Perhaps the

major classicalstatisticstextin thisarea is[4],and a wide varietyof methods and comparative

studiesexistin other areas[17,16,6,16,2,21,12,10].

The standard approach to buildinga classprobabilitytreeisto use a sequence ofstages.A tree

isfirstgrown to completion so thatthe treepartitionsthe trainingsample intoterminalregionsof

allthe one class.This isusuallydone from the top down using a reeursive partitioning algorithm.

Choose a testforthe rootnode to createa treeof depth one and partitionthe trainingsetamong

the new leavesjustcreated.Now apply the same algorithmrecursivelyto each of the leaves.The

testischosenat each stageusinga greedyone-plylookaheadheuristic.Experience has shown that

a treeso grown willsufferfrom over-fitting,in the sensethatnodes near the bottom of the tree

willhave justbeen fittedto noisein the sample, and theirremoval can often increasepredictive

accuracy,see [18]foran introduction.To help overcome thisover-fittingproblem, a secondprocess

issubsequentlyemployed toprune back the tree,forinstanceusingresamplingorhold-outmethods

[4,12], approximate significance tests [19,15], or minimnm encoding [21]. The pruned tree may still

have observed class probabilities at the leaves with zeroes for some classes, an unrealistic situation

when noisy data is being used. So smoothing techniques, eqexplained later, are sometimes employed

to make better class probability estimates [2,10]. A final technique is to build mnltiple trees and

use the benefits of averaging to arrive at possibly more accurate class probability estimates [13].

This paper outlines a Bayesian approach to the problem of building trees that is related to the

minimum encoding techniquesofWallace and Patrick[27]and Rissanen [24].These two encoding

approaches arebased on the ideaofthe "most probablemodel", or itslogarithmiccounterpart,the

minimum encoding.But the approach here averagesoverthe bestfew models using two techniques,

the simplestisa Bayesian variantofthe smoothing techniqueofBabl,Brown, De Souza and Mercer

[2].A fullerdiscussionof the Bayesian methods presentedhere,includingthe treatment of real

values and extensivecomparative experiments,can be found in [6].A fullerpresentationof the



experimentsdiscussedhere can be found in [5].

2 Theory

2.1 Basic theory

To reason about posterior probabilities of class probability trees, we need to separate out the discrete

and the continuous component of a class probability tree. These need to be modelled by probability

functions, and probability density functions respectively. The treatment of real-valued tests has

not been given here, see [6] for further details. More advanced techniques such as subsetting have

also not been addressed.

A class probability tree partitions the space of examples into disjoint subsets, each leaf corre-

sponding to one such subset, and associates a conditional probability rule with each leaf. Denote the

tree structure that defines the partition by T; this is determined by the branching structure of the

tree together with the tests made at the internal nodes. Suppose there are C classes, dl,..., de. The

probabilistic rule associated with each leaf can be modelled as a conditionM probability distribution.

Suppose example z falls to leaf I in the tree structure T, denoted z fall8 in leaf I. Then the tree

gives a vector of class probabilities Cj,! for j = 1,..., C which give the proportion of examples at the

leaf that have class dj. A class probability tree then corresponds to a (discrete) tree structure T, to-

gether with the (continuous) matrix of class proportions _T = { d;jj : _ = 1,..., C, l E lea_;es(T) }.

If the choice of a test at a node requires selecting a "cut-point" (a real value), however, as does

the test at the root of the tree in Figure 1, then this framework needs to be modified. The "cut-

points" chosen are continuous, not discrete parameters. This problem is not adequately handled

here, although some rough approximations are discussed in [6].

In this paper, the loss function assumed for prediction is minimum errors, so this corresponds

to determining which class has m_Yim_m posterior probability of being true. In the Bayesian

framework, the prediction task to be solved involves determining posterior probabilities for different

tree structures and class proportions, and then returning the posterior class probability vector for a

new example based on posterior probability over all possible trees. Since posterior class probabilities

are being calculated, loss functions other than rniuimllrn errors could be readily handled in the same

framework. The mathematics of this process is outlined in the next few sections.

For the learning problem, we are given a training sample consisting of N examples _ with known

classification given by N class values _'. Examples and their classes are assumed to be generated

identically and independently. The distribution of a single classified example z, c can be specified

by a probability distribution on the example together with a conditional probability distribution on

the class c given the example z. Only the conditional probability distribution is important here and

it is this we are modelling with class probability trees. Given a sample consisting of N examples

with known classification _', we are interested in determining the conditional posterior of a class

probability tree given the training sample:

N

Pr(T,+T[_,c-') <x Pr(T,+T) H Pr( cilzi'T'+r) '
i=l

C

: e,(r,+T) II
leleaues(T) j=l



where nj,l is the number of examples of class dj falling in the /-th leaf of the tree structure T.

Consider a prior 1 consisting of a term for the tree structure, and a term for the class proportions

at each leaf, given by

1 c
Cal--1

Pr(T,+T) = Pr(T)Pr(+T]T)= Pr(T) H Bv(al,.. at)1"I j,l (1)
IEleaves(T) " ' j=l

This assumes different class probability vectors at the leaves are a prior independent. Bc is the

C-dimensional beta function defined by

= rcEC= 

and r isgamma function [1](forinstance, r(n) = (n - 1)!).The term indexed by Iin Equation (1)

isa Dirichlet distribution (a C-dimensional variant of the two-dimensional beta distribution)with

allC parameters identicallyequal to at. This form of prior ischosen because itseems reasonably

general, and itisa conjugate prior (that is,in the same functional form as the likelihoodfunction

[3])so it simplifiesthe mathematics to follow. Choices for Pr(T) and the at are discussed below.

Using standard properties of the Dirichlet distributions [6,Sec.2.5],posteriors conditioned on the

training sample can now be computed as follows.

Pr(T, {_T I _, _ = Pr(T I _, _" Pr(_r I _, e, T),

PrCTI $,c') oc Pr(T) II Bc(m,z + az,...,nc,l + az) (2)
/e/,a..(T) Bc( al , . . . , at) '

C

I T) II II •
_el,,,,,,,(r) Bc(az,...,al)#=a

One important property of these posteriors is that they are multiplicative on the nodes in the

tree whenever the prior is also multiplicativeon the nodes. This means posteriors for a collection

of similar trees can be efficientlyadded together using an extended distributivelaw as described

below. A second important property isthat the discrete space of tree structures is combinatoric,

and only partially ordered. This means for smaller data sets we might expect to have very many

differentlooking trees with a similarhigh posterior.In contrast, consider the space of polynomials

of a singlevariable. This isa linearlyordered discretespace, so we can expect polynomials with a

high posterior to be closelyrelated in the space.

Posterior expected values and variances for the proportions _, can be deduced from the poste-

rior using standard properties of the Dirichletdistribution. For instance, the posterior expected 2

classproportions given a particular tree structure are:

E_rl_,e',r (¢j,l) = n#,l + a!
n.,l + Cat ' (3)

c
where n.,t = _.,j=l nj,l.

l In what follows, the term "prio:" is an abbreviation for "prior probability distribution".

2The notation for the expected value E=I_ (z(z,y)) denotes the expected value of z(z,y) according to the distri-

bution for = conditioned on knowing y.



The posterior for the tree structure can be approximated when the sample size at each leaf (n.,t)

is large using Sterling's approximation [1].

- log Pr(T I _, _ _ - log Pr(T) + N. I(C[T) + constant, (4)

where the dominant term I(C I T) represents the expected information gained about class due to

making the tests implicit in the tree structure T. That is:

= Z "''
-- ..o,

lel...,_.(T) \ n.,z n.,l /

The function I used here is the standard information or entropy function over discrete probability

distributions. The information measure I(C I T) when applied to a tree of depth one is used as

a splitting rule when growing trees [18,4]. If some leaves have small numbers of examples, then

approximation (4) is poor, and the beta function really needs to be used. The beta function then

has the effect of discounting leaves with small example numbers.

2.2 Choice of prior

There are two components for the prior: the choice of az for each leaf node l, and the choice of

the prior on the tree structure T. The actual choice of prior depends on the problem at hand.

The choice of a non-informative prior for Dirichtet distributions (i.e. for a multinomial sampling

process, what is a non-informative prior on the unknown parameters?) is a controversial topic in

Bayesian statistics. Laplace originally suggested a -- 1, and a - 0.5 is also widely used. Both

these values do not seem to make sense when there are a large number of classes, because with C

large in Formula (3), it takes many examples before the effect of the prior becomes _hed. In

general, a smaller a gives more prior preference to extreme distributions. A common compromise

is to use a -- _, and this has worked well in experiments.

Wallace [27] has suggested setting

at = 7_ d_pth(z) ,

where 7 and _ are some other parameters less then 1.0, and depth(1) is the depth of the leaf I. This

has the effect of saying nodes should be more accurate as they get lower down the tree. (This is

because decreasing a makes extreme probabilities in the multinomial more likely.) While this is

certainly true during the growing process, there seems no inherent justification for it of the final

tree in general. Why should larger trees be inherently more accurate than smaller trees.

Wallace also suggests attempting to maximise the posterior distribution with respect to these

prior meta-parameters. For instance, we make the parameters uniform, at = a, and then use gradi-

ent descent or the Newton-Raphson method to find the value of a maximising the posterior. This

is not difficult because derivatives of the beta function are readily determined from the digamma

family of functions [1]. One would think that modification of the prior in such a way is sacrilege to a

Bayesian. Surprisingly enough this is not the case; the devout Bayesian can take up this meta-prior

without guilt. Because we do not know a, our prior should really average over possible values of

a as well. But this is not usually computationally practical, for then we lose the benefits of using

a conjugate prior. Instead we assume the majority weight of the posterior will be localised in one



particular region of a values, so we only need consider a set near that value. The maximisation

process is used to determine where the majority weight of the posterior lies.

For the choice of prior on the tree structure T, there are several choices that seem reasonable.

Each of these priors are mnltiplicative on the nodes in the tree, which means the posterior of

Formula (2) is a mnltiplicative function over the nodes in the tree. Also, the priors presented are

not normalised as their later use does not require it.

I: Each tree structure is equally likely, Pr(T) is constant.

II: Give a slight preference to simpler trees, such as Pr(T) oc wlleare,(T)], for w < 1.

III: The tree shapes (tree structure minus choice of tests at internal nodes) are equally likely.

1
[[

nEnodes(T)-leaves(T) #possible tests at n

IV: Tree structures are coded using bits for "node", "leaf", and "choice of test". See [24, p.165]

or [27] for details.

The priors have been given in increasing strength, in the sense that type IV priors represent an

extreme preference for simpler trees, but type I priors represent no such preference. In medical

data, for instance, where many of the attributes supplied for each example may well be noise, we

would expect the stronger priors to be more reasonable. In problems like the classic faulty LED

problem [4], we would expect all faulty LED indicators to be somewhat informative about the actual

digit being represented, so larger trees seem reasonable. The minimum encoding approaches [21,24]

seem to suggest there is some inherent universality of the tree encoding (or prior) they outline. In

the Bayesian framework, the "best" choice of prior over a combinatorial discrete model space like

trees is not at all clear, and the notion of a universal prior makes no sense. Experimental results

discussed later support the view that when choosing the most probable model from limited data a

prior can and should be selected with caution.

2.3 Tree growing

Formula (2) suggests a heuristic for growing a tree in the standard recursive partitioning algorithm

described in the introduction. When expanding the (single) current node, for each possible test

grow a tree of depth one at that node by extending it one more level. Then choose the new

test yielding a tree structure with the maximum posterior probability. Because the posterior is

multiplicative, we only need look at that component of the posterior contributed by the new test

and its leaves. The one-ply lookahead heuristic for evaluating a test then becomes:

Quality(test) = pr(test) y_ Bc(nl,, + az,.. .,nc,z + az)
_-t_--,,(,,oO Bc( al, . . . , a_)

(s)

where Pr(test) is the contribution to the tree prior, outcomes(test) is the set of test outcomes, and

nj,z is the number of examples in the training sample at the current node with class ] and having

test outcome 1. Computation should be done in log-space to avoid underflow. A test should be

chosen to maximise Formula (5).



If the test being evaluated contains a cut-point, as does the test at the root of the tree in

Figure 1, then this too should be averaged over. Formula (5) in this case represents an evaluation

of the test conditioned on knowing the cut-point. In reality we have to chose this as well, so we

should calculate the expected value of Formula (5) across the full range of cut-points [6].

The quality heuristic of Equation (5) can also be used as a stopping rule [8], which is a method

for guessing when to stop expanding the current node. If the measure is much less than 1.0, then

the expanded subtree is expected to be worse than turning the current node into a leaf. The quality

heuristic can also be readily improved using an N-ply lookahead beam search instead of the 1-ply.

The heuristic of Equation (5) is very similar in performance [6, Sec.6.6.1] to the information

gain measure of Quinlan [18] and to the GINI measure of CART [4]. It has the distinct advantage,

however, of returning a measure of quality that is a probability. This can be used to advantage

when either growing trees from a very large training sample, or when growing trees incrementally,

and as already explained, can be used as a stopping rule.

When determining which test to make at a node using any one-ply lookahead heuristic, we

need to do O(AN) operations, or O(.4NlogN) if a sort is involved, where N is the size of the

sample at that node, and .4 is the number of potential tests. To reduce computation for very

large N, we could evaluate the tests on a subset of the sample (i.e. reduce N in the computation).

Because the measure of quality is in units of probability, one can readily determine if one test is

significantly better than another according to the measure simply by taking their ratio. This can

be used to determine if evaluation on the current subsample is sufficient, or if we need to view a

larger subsample.

A related problem occurs when growing trees incrementally [12]. In this regime, a tree needs

to be updated given some additions to the training sample. Crawford shows that if we take the

naive approach as done in [25] and attempt to update the current tree so the "best" split according

to the updated sample is taken at each node, the algorithm suffers from repeated restructuring.

This occurs because the best split at a node vacillates while the sample at the node is still small.

To overcome this problem Crawford suggested allowing restructuring only if some other test was

currently significantly better than the current test at the node, and suggests using a resampling

approach to determine sigv.ificance of splits. Crawford suggested this relatively expensive approach

because there was no distribution theory available for developing an appropriate significance test

for the quality of tests. The probabilistic measure of Formula (5) now provides a comparative

significance test. As the sample becomes larger, this same comparative test could also be used to

show that the higher nodes of a tree (which have the larger sample sizes) need not have their tests

checked again, to further reduce computational cost.

2.4 Tree smoothing

The posterior on the tree structure also suggests a pruning method based on the "most probable

model" approach [9]. Of all those tree structures obtained by pruning back the completed tree, pick

the tree structure with m_imllm posterior probability. This pruning approach was tried with a

range of different priors and the approach was sometimes better in performance than Quinlan's C4

or Breiman et al.'s CART, and sometimes worse. With careful choice of prior, the most probable

model approach was usually better, however it was unduly sensitive to the choice of prior. This

somewhat disappointing performance suggests a more thorough Bayesian approach is needed.

To implement a full Bayesian approach, we need to introduce avera_ug over possible models,



as for instance approximated by Kwok and Carter [13]. Intuitively, this involves averaging all those

trees that seem a reasonable explanation of the classifications in the training sample, and then

predicting the class of a new example based on the weighted predictions of the reasonable trees.

This is what is required to estimate the posterior probability conditioned on the training sample

that a new example z will have class c, given by the formula:

ET,_rl_,_(Pr(c [ z, T, _r)) = _T, ffiJazz. to Zea!___rPr(Tl_, T Pr(T[£, _ I , -+..t+_._ , (6)

where the summations are over all possible tree structures. This formula says to compute the

posterior expected class probabilities for each tree structure, and take the average of all the resultant

class probabilities, weighted by their posteriors on the tree structures. Given the combinatoric

number of tree structures, such a calculation is not feasible.

There are two computationally reasonable approximations to this general formula that can

be made by restricting the summations to a reduced subset of tree structures. Notice that the

denominator of the right hand side of Equation (6) can be simplified to 12. However, when

approximating the summations with a reduced set of tree structures, this full form is required to

normalise the result.

The first approximation I call Bayesian smoothing. The standard approach for classifying an

example using a class probability tree is to send the example down to a leaf and then return the

class probability at the leaf. In the smoothing approach, we also average all the class probability

vectors encounted at interior nodes along the way [2, p1005]. Given a particular tree structure

T', presumably grown using the algorithm described in Section 2.3, consider the space of tree

structures, pruned(T'), obtained by pruning the tree structure T' in all possible ways. If we restrict

the summation in Equation (6) to this space and the prior on the tree structure is a multiplicative

function over nodes in the tree, then the sum can be recursively calculated (using a grand version

of the distributive law) and is computable in a number of steps linear in the size of the tree [6,

Lemma 6.5.1].

Er,+_l_,e(PrCc I z,T, +r))

_-_TEpruned(T'), tall. to _.a! I i.T Pr(T Iz,__
x "J --.l+Gal

_Ten_...d(T')Pr(T [ _, c')

Pr(. is leaf lS,g,Feuning of T') n+,.+ a.

.Etra._'.ed(x,T') n.,. + Can '

where traversed(z, T') is the set of nodes on the path traversed by the example z as it falls to a

leaf, and Pr(n is leaf I _,g, pruning of T') is the posterior probability that the node n in the tree

T' will be pruned back to a leaf. This smoothing process can also be used to prune a tree because

in some cases, Pr(n is leaf I z, g, pruning of T) for n and all its descendents will be so small that

they will have no effect on the sum, so can be pruned.

This smoothing approach sometimes significantly improved class probability estimates for a

class probability tree (for instance, as measured using the half-brier score [4]), and sometimes made

no significant difference. This happened regardless of the pruning and growing approach used to

construct the tree originally. In some cases smoothing an adequate replacement for tree pruning,

compared with the standard pruning approaches such as pessimistic pruning or cost complexity

8



pruning. However, for really noisy data using a weak prior, this form of pruning was not strong

enough, whereas, for strongly structured data with a strong prior, the pruning was too severe due to

the choice of prior. The smoothing method gives predictions quite sensitive to the prior, although

it was generally better or at least as good as finding the most probable model.

2.5 Option trees and averaging

The second approximation described here helps to overcome the problem of the sensitivity of

smoothing to the tree structure prior, but does so at a computational cost. This second approach

involves searching for and compactly storing the most dominant (i.e. high posterior) tree structures

in Equation 6. This approach involves building option trees and then doing Bayesian averaging on

these trees. Option trees are a generalisation of the standard tree where options are included at

each point. At each interior node, instead of there being a single test and subtrees for its outcomes,

there are several optional tests with their respective subtrees. This is a compact way of representing

many different trees that share common prefixes. Classification on the resultant structure is done

using Equation 6.

A class probability option tree built from Fisher's iris data is represented in Figure 2. These

r (.ooo) ]

_,/_D,./_s =no =yes

1.000) (.4711 etc. .97.01 .02
.01 .45.54 .97.01.02

(petal-width<17) (petal-length<48.5)

etc.

(.060).02.08.90

h<57

/\
etc. etc. etc. etc. etc. etc.

I (.364).01.98.01

/%
etc. et_

Figure 2: A class probability option tree from the iris application

trees have leaf nodes and test nodes as before, but optional test nodes are sometimes exclusively-

or'ed together in a cluster. For instance the very top node of the option tree exclusively-or's

together two test nodes, petal-_oidth < 8 and petal-length < 24.5. These two tests are referred



to as options because when selecting a single tree, we are to choose exactly one. Each node is

labelled with the probability with which we force that node to be a leaf, which corresponds to

the first probability in Equation (7). These determine the probability of selecting any single tree.

Each node is also labelled with the estimated class probabilities at the node, used when avera_ug.

These probabilities are given inside a square box for each node. The cluster of two tests at the

top is referred to as a node of degree two. So for the top node of degree two, we should treat

it as a leaf with probability 0.0 and otherwise choose either the test petal-wi_h < 8 or the test

petal-length < 24.5. Both the two options have subtrees with high probability leaves, so these two

optional trees are about as good as each other. V_nen parts of the option tree are not included in

the figure, the word etc. appears. The bottom cluster of options is a node of degree four, which has

its subtrees excluded from the figure. The fact that this bottom cluster contains optional tests on

all four attributes, which then lead to additional branching tests, indicates that this cluster gives

little indication as to which test is more appropriate or if any test is appropriate at all. A good

pruning algorithm would perhaps prune the options tree by turning the bottom node of degree four

into a leaf, reducing the options tree to depth three.

The smoothing process described in Section 2.4 can be applied to these option trees, but because

this no longer involves dealing with a single tree, we refer to the process of growing and smoothing

as tree a_eraging. Option trees are grown by expanding the node using those tests that according

to the quality measure of Equation (5) have posterior within a factor of the best test. For nodes

with large samples, usually only one test is expanded because all others are insignificant according

to the quality measure. With smaller samples, or in domains where trees are a poor representation

(such as noisy DNF concepts) many tests may be almost as good according to the quality measure

so many options will be expanded. This means option trees tend to have more options at the lower

nodes.

3 Comparison

3.1 Experiments

The various algorithms discussed, CART, C4, a generic r_im,,m encoding method, and the

Bayesian approaches, were applied to 12 different data sets with a range of characteristics. The

versions of CART, C4 and minimum encoding were reimplementations by the author that gave

comparable performance to the original algorithms on the same data sets. Data sets included

Quinlan's hypothyroid and XD6 data [19], the CART digital LED problem [4], three medical do-

mains from Bratko's induction group [8], and a variety of other data sets from the Irvine Machine

Learning Database such as "glass", "voting records", "hepatitus" and "mushrooms". More details

of the data sets, and acknowledgements to the various sources can be found in [5]. Data sets where

divided into training/test pairs, a classifier was built on the training sample and the accuracy,

predicted accuracy, and mean square error estimated on the test sample. This was done for 20

random trials of the training/test pair, and significance of difference between two algorithms was

checked using the paired t-test.

Accuracy estimates for the different approaches are displayed in Figures 3, 4 and 5. To standard-

ise the experiments, all methods used the tree growing method of Section 2.3. The non-Bayesian

methods use different pruning approaches to the grown tree, reimplementations of CART, C4, a

generic MML approach (using the type IV prior), and using no pruning at all ("none"). More details

10



of these methods are given in sections below. Bayesian averaging (growing option trees, followed

by smoothing) using both 1 or 2-ply lookahead ("Aver-lP", "Aver-2P") and Bayesian smoothing

("Smooth") on the single grown tree were also tried. Finally, a simple multiple models approach

was tried where 5 trees were randomly grown and smoothed, and their class probability vectors

averaged using equal weighting ("Mult"). This corresponds to doing a Monte Carlo approximation

to the sum in Equation 6 using importance sampling. Trees were grown randomly with each choice

of test proportional to the quality heuristic of Formula 5, to try and generate trees in approximate

proportion with their posterior.

100

8O

6O

4O

2O

Figure 3: Average accuracy estimates and standard deviations

Each column in the bar chart or line graphs corresponds to one data set at a particular size.

Columns are grouped according to the data sets, and then the three or four columns in a group

correspond to dift"erent sample sizes, ordered in increasing size. The bar chart, Figure 3, gives the

estimated accuracy averaged across all methods plus or minus one standard deviation (the average

standard deviation for any given method). This average and the standard deviation has been used

to normalise the accuracy estimates for the individual methods, as they are displayed in Figures

4 and 5.

11



1.5

1

0.5 E

,!

o:-0.5

> ,

-1

-1.5

-2

-2.5

@

'_ • CART

'_ 4 [] c4

>

• IVlML

¢ none

• Aver-2P

Figure 4: Normalised Accuracies for Methods

Of the algorithms tried, a generic minimum encoding approach, CART, C4, Bayesian smoothing

and Bayesian averaging, the averaging approach using a weak prior (type I prior) on tree structures

was the only approach that consistentlyproduced the best predictions.In severalcasesitwas

pairwisesignificantlybetterthan allother non-Bayesian approaches at the 5% level.Bayesian

averagingwith a two-ply lookahead during growing yieldsimprovement in predictiveaccuracy

averaged over 20 trialsas often as high as 2%, sometimes more. With a one-plylookahead,the

improvement isnot as dramatic but stillsignificant.One has to be cautiousin interpretingthis

result,however, because option treesare more than just a singledecisiontree,they effectively

involvean extensionofthe model space.The growing ofoptiontreessometimes involvedan extra

order of magnitude in time and space. Certainlythe Bayesian approaches are competitive,and

they appear to be superiorforsmallersamples.

For many of the data sets,itwas appropriateto selecta priorthat had strongerpreference

towards smallertrees.When thiswas done, Bayesian smoothing of a singletreegave good pre-

dictions,oftenas good as the Bayesian averagingwith one-plylookahead. This isusefulbecause

we would not always wish to go to the computationalexpense of Bayesian averaging,or we may

requirejusta singletreeforexplanatorypurposes.

A second point of comparison of the algorithmsisthe parameters availablewhen drivingthe

algorithms.CART and C4 have defaultsettingsfortheirparameters.With CART, heavy pruning
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Figure 5: Normalised Accuracies for Bayesian Variations

can be achieved using the I-SE rule rather than the O-SE rule. The number of partitions to use

in cross-validation cost complexity pruning can also be changed, but the effect of this is unclear,

especially since leaving-one-out cross-validation cost complexity pruning gives poor predictive accu-

racy. The mlnlmllm encoding approaches are (according to the purist) free of parameters. However,

these approaches often strongly overprune, so Quinlan and P_ivest introduce a parameter that allows

lighter pruning. So all approaches Bayesian and non-Bayesian have parameters that allow more or

less pruning, that can be chosen depending on the amount of structure believed to exist in the data.

In the fuller Bayesian approach with option trees and Bayesian averaging, choices available also

allow greater search during growing and fuller elaboration of the available optional trees. These

parameters have the useful property that predictive accuracy (or some other utility measure) and

computational expense are on average monotonic in the value of the parameter. The parameter

setting allows improved predictive accuracy at computational expense.

The experiments are described in more detail in [5], and earlier related experiments are reported

in [6].

3.2 Minimum encoding approaches

The negative logarithm of the posterior for the tree structure given in Equation (2), given a suitable

prior, can be interpreted as the code length for the tree and the classifications combined, and so is
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related to the encoding measures of Wallace and Freeman [26], and l_issanen [23]. Wallace et al.

derive their Minimum Message Length measure as an approximation to the area under the posterior

in the neighbourhood of the proposed model. However, Wallace and Patrick use the exact formula

in I27] which is equivalent to the one presented here apart from the choice of prior, l_issanen uses a

cruder appro_nation of this posterior with his MDL measure, although in [24] he extends Quinlan

and Rivest's encoding [21] to a more accurate encoding virtually equivalent to the one presented

here (using a type IV tree prior and al = 0.5).

These encoding approaches correspond to the "most probable model" approach. Each represent

strong preference for simpler trees because they implicitly use the type IV tree structure prior,

which may or may not be appropriate. Experiments indicate the approach often underprunes,

sometimes severely (see also [21]). This illustrates how the miniml,m encoding approaches are

unduly sensitive to their implicit choice of prior. Quinlan and Rivest, for instance, suggested

weakening the preference for simpler trees (in a manner compromising the correctness of their

coding scheme) to obtain somewhat larger trees but more accurate predictions in some cases.

The experiments show that by using a weaker prior but also doing Bayesian averaging on trees

as suggested here, the sensitivity to the prior was considerably decreased. Of course, this is to be

expected from the Bayesian decision theory, and supports Wallace et al.'s view [26] of minimum

encoding as a first approximation to Bayesian theory.

3.3 CART and C4

Breiman, Friedland, Olshen and Stone's approach to building class probability trees [4] is best

distinguished from the others in that it uses cost complexity pruning using either cross-validation

or hold-out methods to estimate the right cost complexity tradeoff. Whereas Quinlan's earlier

version of C4 (reimplemented for these experiments) uses pessimistic pruning [19]. The versions of

the algorithms used were reimplementations of the published descriptions. Comparisons with the

original algorithms had been made earlier on the full suite of data sets, and the reimplementations

are, on the whole, in fair agreement with the original.

In experiments, cost complexity pruning was done with 10-fold cross validation using the 0-

SE rule. Breiman et al. suggest this gives the most accurate predictions, and this was confirmed

experimentally. There was no consistent decline in performance by changing to the 1-SE rule,

or by using 5-fold cross-validation (although leaving-one-out cross-validation performed poorly).

B.ather, changing the parameters of the pruning method meant changes, sometimes for the worse,

sometimes for the better.

In experiments on problems with less structure and more noise, CART was the most consistently

accurate of the compared methods other than Bayesian averaging, and C4 was the most consistently

accurate in problems with more structure and less noise. In general CART tended to overprune

(even though the 0-SE rule was used) and C4 tended to underprune. I tried fiddling the various

parameters in these algorithms to adjust for this behaviour but was unsuccessful.

As training samples became large, the CART or C4 approaches became comparable with

Bayesian averaging. Bayesian methods are of course particularly suited to learning from smaller

samples, where one has to take care with the choice of prior, and to average over the many possible

tree structures that seem reasonable given the training sample. With larger samples, all this extra

work may be unnecessary. Also, because CAI_T seems to have an implicit preference for smaller

trees (it usually overprunes on smaller samples), it can be appropriate in training samples where
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there is expected to be less structure and more noise.

4 Conclusion

Bayesian algorithms for learning class probability trees were presented and compared empirically

with reimplementations of existing approaches like CART [4], C4 [19] and miuimllm encoding

approaches. The Bayesian averaging algorithm gave significantly better accuracy on predictions for

a set of learning problems, but this was at the expense of computational cost.

First, this work has a number of implications for Bayesian learning. Simple muYirmlm posterior

methods and minirmlm encoding methods (which here would choose the single muTiml_rn posterior

tree) may not perform well in combinatorial discrete spaces if the prior is not well matched to the

problem. Considerable improvement can be got by averaging over multiple high posterior models.

Importance sampling, and collecting together many high posterior models helps in this task. This

has implications to areas like multivariate regression and model discovery (for instance, of Bayesian

networks [14]).

Second, Bayesian methods corresponded to a variety of subtasks usually done by existing tree

learning approaches. This suggested several ways of improving the growing heuristic for trees and

for doing learning in an incremental rather than a batch mode.

Third, given that many non-Bayesian techniques work as well Bayesian when sample sizes be-

come larger, it is important to determine when a sample size is "large enough" so simpler techniques

such as _sing error [28] can be applied.
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