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Abstract

Cognitive NLP systems- i.e., NLP systems

that make use of behavioral data - augment

traditional text-based features with cogni-

tive features extracted from eye-movement

patterns, EEG signals, brain-imaging etc..

Such extraction of features is typically

manual. We contend that manual extrac-

tion of features may not be the best way to

tackle text subtleties that characteristically

prevail in complex classification tasks like

sentiment analysis and sarcasm detection,

and that even the extraction and choice of

features should be delegated to the learn-

ing system. We introduce a framework

to automatically extract cognitive features

from the eye-movement / gaze data of hu-

man readers reading the text and use them

as features along with textual features for

the tasks of sentiment polarity and sar-

casm detection. Our proposed framework

is based on Convolutional Neural Network

(CNN). The CNN learns features from

both gaze and text and uses them to clas-

sify the input text. We test our technique

on published sentiment and sarcasm la-

beled datasets, enriched with gaze infor-

mation, to show that using a combination

of automatically learned text and gaze fea-

tures often yields better classification per-

formance over (i) CNN based systems that

rely on text input alone and (ii) existing

systems that rely on handcrafted gaze and

textual features.

1 Introduction

Detection of sentiment and sarcasm in user-

generated short reviews is of primary importance

for social media analysis, recommendation and di-

alog systems. Traditional sentiment analyzers and

sarcasm detectors face challenges that arise at lex-

ical, syntactic, semantic and pragmatic levels (Liu

and Zhang, 2012; Mishra et al., 2016c). Feature-

based systems (Akkaya et al., 2009; Sharma and

Bhattacharyya, 2013; Poria et al., 2014) can aptly

handle lexical and syntactic challenges (e.g. learn-

ing that the word deadly conveys a strong positive

sentiment in opinions such as Shane Warne is a

deadly bowler, as opposed to The high altitude Hi-

malayan roads have deadly turns). It is, however,

extremely difficult to tackle subtleties at semantic

and pragmatic levels. For example, the sentence

I really love my job. I work 40 hours a week to

be this poor. requires an NLP system to be able

to understand that the opinion holder has not ex-

pressed a positive sentiment towards her / his job.

In the absence of explicit clues in the text, it is dif-

ficult for automatic systems to arrive at a correct

classification decision, as they often lack external

knowledge about various aspects of the text being

classified.

Mishra et al. (2016b) and Mishra et al. (2016c)

show that NLP systems based on cognitive data

(or simply, Cognitive NLP systems) , that lever-

age eye-movement information obtained from hu-

man readers, can tackle the semantic and prag-

matic challenges better. The hypothesis here is

that human gaze activities are related to the cog-

nitive processes in the brain that combine the “ex-

ternal knowledge” that the reader possesses with

textual clues that she / he perceives. While in-

corporating behavioral information obtained from

gaze-data in NLP systems is intriguing and quite

plausible, especially due to the availability of low

cost eye-tracking machinery (Wood and Bulling,

2014; Yamamoto et al., 2013), few methods ex-

ist for text classification, and they rely on hand-

crafted features extracted from gaze data (Mishra

et al., 2016b,c). These systems have limited ca-

pabilities due to two reasons: (a) Manually de-

signed gaze based features may not adequately
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capture all forms of textual subtleties (b) Eye-

movement data is not as intuitive to analyze as text

which makes the task of designing manual features

more difficult. So, in this work, instead of hand-

crafting the gaze based and textual features, we

try to learn feature representations from both

gaze and textual data using Convolutional Neu-

ral Network (CNN). We test our technique on

two publicly available datasets enriched with eye-

movement information, used for binary classifica-

tion tasks of sentiment polarity and sarcasm detec-

tion. Our experiments show that the automatically

extracted features often help to achieve signifi-

cant classification performance improvement over

(a) existing systems that rely on handcrafted gaze

and textual features and (b) CNN based systems

that rely on text input alone. The datasets used

in our experiments, resources and other relevant

pointers are available at http://www.cfilt.iitb.ac.in/

cognitive-nlp

The rest of the paper is organized as follows.

Section 2 discusses the motivation behind using

readers’ eye-movement data in a text classification

setting. In Section 3, we argue why CNN is pre-

ferred over other available alternatives for feature

extraction. The CNN architecture is proposed and

discussed in Section 4. Section 5 describes our ex-

perimental setup and results are discussed in Sec-

tion 6. We provide a detailed analysis of the results

along with some insightful observations in Section

7. Section 8 points to relevant literature followed

by Section 9 that concludes the paper.

Terminology

A fixation is a relatively long stay of gaze on a

visual object (such as words in text) where as a

sacccade corresponds to quick shifting of gaze be-

tween two positions of rest. Forward and back-

ward saccades are called progressions and regres-

sions respectively. A scanpath is a line graph that

contains fixations as nodes and saccades as edges.

2 Eye-movement and Linguistic

Subtleties

Presence of linguistic subtleties often induces

(a) surprisal (Kutas and Hillyard, 1980; Mals-

burg et al., 2015), due to the underlying dispar-

ity /context incongruity or (b) higher cognitive

load (Rayner and Duffy, 1986), due to the pres-

ence of lexically and syntactically complex struc-

tures. While surprisal accounts for irregular sac-

cades (Malsburg et al., 2015), higher cognitive
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S2: The lead actress is terrible and I cannot be convinced she is supposed 
to be some forensic genius.

S1: I'll always cherish the original misconception I had of you..

Figure 1: Scanpaths of three participants for two

sentences (Mishra et al., 2016b). Sentence S1 is

sarcastic but S2 is not. Length of the straight lines

represents saccade distance and size of the circles

represents fixation duration

load results in longer fixation duration (Kliegl

et al., 2004).

Mishra et al. (2016b) find that presence of

sarcasm in text triggers either irregular sac-

cadic patterns or unusually high duration fixa-

tions than non-sarcastic texts (illustrated through

example scanpath representations in Figure 1).

For sentiment bearing texts, highly subtle eye-

movement patterns are observed for semanti-

cally/pragmatically complex negative opinions

(expressing irony, sarcasm, thwarted expectations,

etc.) than the simple ones (Mishra et al., 2016b).

The association between linguistic subtleties and

eye-movement patterns could be captured through

sophisticated feature engineering that considers

both gaze and text inputs. In our work, CNN takes

the onus of feature engineering.

3 Why Convolutional Neural Network?

CNNs have been quite effective in learning filters

for image processing tasks, filters being used to

transform the input image into more informative

feature space (Krizhevsky et al., 2012). Filters

learned at various CNN layers are quite similar

to handcrafted filters used for detection of edges,

contours, and removal of redundant backgrounds.

We believe, a similar technique can also be ap-

plied to eye-movement data, where the learned fil-

ters will, hopefully, extract informative cognitive

features. For instance, for sarcasm, we expect the

network to learn filters that detect long distance

saccades (refer to Figure 2 for an analogical il-
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Figure 2: Illustrative analogy between CNN

applied to images and scanpath representations

showing why CNN can be useful for learning fea-

tures from gaze patterns. Images partially taken

from Taigman et al. (2014)

lustration). With more number of convolution fil-

ters of different dimensions, the network may ex-

tract multiple features related to different gaze at-

tributes (such as fixations, progressions, regres-

sions and skips) and will be free from any form

of human bias that manually extracted features are

susceptible to.

4 Learning Feature Representations:

The CNN Architecture

Figure 3 shows the CNN architecture with two

components for processing and extracting features

from text and gaze inputs. The components are

explained below.

4.1 Text Component

The text component is quite similar to the one pro-

posed by Kim (2014) for sentence classification.

Words (in the form of one-hot representation) in

the input text are first replaced by their embed-

dings of dimension K (ith word in the sentence

represented by an embedding vector xi ∈ R
K). As

per Kim (2014), a multi-channel variant of CNN

(referred to as MULTICHANNELTEXT) can be im-

plemented by using two channels of embeddings-

one that remains static throughout training (re-

ferred to as STATICTEXT), and the other one that

gets updated during training (referred to as NON-

STATICTEXT). We separately experiment with

static, non-static and multi-channel variants.

For each possible input channel of the text com-

ponent, a given text is transformed into a tensor of

fixed length N (padded with zero-tensors wherever

necessary to tackle length variations) by concate-

nating the word embeddings.

x1:N = x1 ⊕ x2 ⊕ x3 ⊕ ...⊕ xN (1)

where ⊕ is the concatenation operator. To ex-

tract local features1, convolution operation is ap-

plied. Convolution operation involves a filter,

W ∈ R
HK , which is convolved with a window

of H embeddings to produce a local feature for

the H words. A local feature, ci is generated from

a window of embeddings xi:i+H−1 by applying a

non linear function (such as a hyperbolic tangent)

over the convoluted output. Mathematically,

ci = f(W.xi:i+H−1 + b) (2)

where b ∈ R is the bias and f is the non-linear

function. This operation is applied to each possi-

ble window of H words to produce a feature map

(c) for the window size H .

c = [c1, c2, c3, ..., cN−H+1] (3)

A global feature is then obtained by applying max

pooling operation2 (Collobert et al., 2011) over the

feature map. The idea behind max-pooling is to

capture the most important feature - one with the

highest value - for each feature map.

We have described the process by which one

feature is extracted from one filter (red bordered

portions in Figure 3 illustrate the case of H = 2).

The model uses multiple filters for each filter size

to obtain multiple features representing the text.

In the MULTICHANNELTEXT variant, for a win-

dow of H words, the convolution operation is sep-

arately applied on both the embedding channels.

Local features learned from both the channels are

concatenated before applying max-pooling.

4.2 Gaze Component

The gaze component deals with scanpaths of mul-

tiple participants annotating the same text. Scan-

paths can be pre-processed to extract two se-

quences3 of gaze data to form separate channels

of input: (1) A sequence of normalized4 durations

of fixations (in milliseconds) in the order in which

1features specific to a region in case of images or window
of words in case of text

2mean pooling does not perform well.
3like text-input, gaze sequences are padded where neces-

sary
4scaled across participants using min-max normalization

to reduce subjectivity
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Figure 3: Deep convolutional model for feature extraction from both text and gaze inputs

they appear in the scanpath, and (2) A sequence of

position of fixations (in terms of word id) in the

order in which they appear in the scanpath. These

channels are related to two fundamental gaze at-

tributes such as fixation and saccade respectively.

With two channels, we thus have three possible

configurations of the gaze component such as (i)

FIXATION, where the input is normalized fixation

duration sequence, (ii) SACCADE, where the in-

put is fixation position sequence, and (iii) MULTI-

CHANNELGAZE, where both the inputs channels

are considered.

For each possible input channel, the input is in

the form of a P × G matrix (with P → number

of participants and G → length of the input se-

quence). Each element of the matrix gij ∈ R, with

i ∈ P and j ∈ G, corresponds to the jth gaze

attribute (either fixation duration or word id, de-

pending on the channel) of the input sequence of

the ith participant. Now, unlike the text compo-

nent, here we apply convolution operation across

two dimensions i.e. choosing a two dimensional

convolution filter W ∈ R
JK (for simplicity, we

have kept J = K, thus , making the dimension of

W , J2). For the dimension size of J2, a local fea-

ture cij is computed from the window of gaze ele-

ments gij:(i+J−1)(j+J−1) by,

cij = f(W.gij:(i+J−1)(j+J−1) + b) (4)

where b ∈ R is the bias and f is a non-linear func-

tion. This operation is applied to each possible

window of size J2 to produce a feature map (c),

c =[c11, c12, c13, ..., c1(G−J+1),

c21, c22, c23, ..., c2(G−J+1),

...,

c(P−J+1)1, c(P−J+1)2, ..., c(P−J+1)(G−J+1)]

(5)

A global feature is then obtained by applying max

pooling operation. Unlike the text component,

max-pooling operator is applied to a 2D window

of local features size M × N (for simplicity, we

set M = N , denoted henceforth as M2). For

the window of size M2, the pooling operation on

c will result in as set of global features ĉJ =
max{cij:(i+M−1)(j+M−1)} for each possible i, j.

We have described the process by which one

feature is extracted from one filter (of 2D window

size J2 and the max-pooling window size of M2).

In Figure 3, red and blue bordered portions illus-

trate the cases of J2 = [3, 3] and M2 = [2, 2]
respectively. Like the text component, the gaze

component also uses multiple filters for each fil-

ter size to obtain multiple features representing the

gaze input. In the MULTICHANNELGAZE variant,

for a 2D window of J2, the convolution operation

is separately applied on both fixation duration and

saccade channels and local features learned from

both the channels are concatenated before max-

pooling is applied.

Once the global features are learned from both

the text and gaze components, they are merged
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and passed to a fully connected feed forward layer

(with number of units set to 150) followed by a

SoftMax layer that outputs the the probabilistic

distribution over the class labels.

The gaze component of our network is not in-

variant of the order in which the scanpath data is

given as input- i.e., the P rows in the P × G can

not be shuffled, even if each row is independent

from others. The only way we can think of for

addressing this issue is by applying convolution

operations to all P × G matrices formed with all

the permutations of P , capturing every possible

ordering. Unfortunately, this makes the training

process significantly less scalable, as the number

of model parameters to be learned becomes huge.

As of now, training and testing are carried out by

keeping the order of the input constant.

5 Experiment Setup

We now share several details regarding our exper-

iments below.

5.1 Dataset

We conduct experiments for two binary-

classification tasks of sentiment and sarcasm

using two publicly available datasets enriched

with eye-movement information. Dataset 1 has

been released by Mishra et al. (2016a). It contains

994 text snippets with 383 positive and 611 neg-

ative examples. Out of the 994 snippets, 350 are

sarcastic. Dataset 2 has been used by Joshi et al.

(2014) and it consists of 843 snippets comprising

movie reviews and normalized tweets out of

which 443 are positive, and 400 are negative.

Eye-movement data of 7 and 5 readers is available

for each snippet for dataset 1 and 2 respectively.

5.2 CNN Variants

With text component alone we have three vari-

ants such as STATICTEXT, NONSTATICTEXT

and MULTICHANNELTEXT (refer to Section 4.1).

Similarly, with gaze component we have variants

such as FIXATION, SACCADE and MULTICHAN-

NELGAZE (refer to Section 4.2). With both text

and gaze components, 9 more variants could thus

beexperimented with.

5.3 Hyper-parameters

For text component, we experiment with filter

widths (H) of [3, 4]. For the gaze component, 2D

filters (J2) set to [3× 3], [4× 4] respectively. The

max pooling 2D window, M2, is set to [2× 2]. In

both gaze and text components, number of filters

is set to 150, resulting in 150 feature maps for each

window. These model hyper-parameters are fixed

by trial and error and are possibly good enough to

provide a first level insight into our system. Tun-

ing of hyper-parameters might help in improving

the performance of our framework, which is on

our future research agenda.

5.4 Regularization

For regularization dropout is employed both on the

embedding and the penultimate layers with a con-

straint on l2-norms of the weight vectors (Hinton

et al., 2012). Dropout prevents co-adaptation of

hidden units by randomly dropping out - i.e., set-

ting to zero - a proportion p of the hidden units

during forward propagation. We set p to 0.25.

5.5 Training

We use ADADELTA optimizer (Zeiler, 2012), with

a learning rate of 0.1. The input batch size is set

to 32 and number of training iterations (epochs) is

set to 200. 10% of the training data is used for

validation.

5.6 Use of Pre-trained Embeddings:

Initializing the embedding layer with of pre-

trained embeddings can be more effective than

random initialization (Kim, 2014). In our exper-

iments, we have used embeddings learned using

the movie reviews with one sentence per review

dataset (Pang and Lee, 2005). It is worth noting

that, for a small dataset like ours, using a small

data-set like the one from (Pang and Lee, 2005)

helps in reducing the number model parameters

resulting in faster learning of embeddings. The re-

sults are also quite close to the ones obtained using

word2vec facilitated by Mikolov et al. (2013).

5.7 Comparison with Existing Work

For sentiment analysis, we compare our systems’s

accuracy (for both datasets 1 and 2) with Mishra

et al. (2016c)’s systems that rely on handcrafted

text and gaze features. For sarcasm detection, we

compare Mishra et al. (2016b)’s sarcasm classi-

fier with ours using dataset 1 (with available gold

standard labels for sarcasm). We follow the same

10-fold train-test configuration as these existing

works for consistency.
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Dataset1 Dataset2

Configuration P R F P R F

Traditional
systems based on

Näive Bayes 63.0 59.4 61.14 50.7 50.1 50.39
Multi-layered Perceptron 69.0 69.2 69.2 66.8 66.8 66.8

textual features SVM (Linear Kernel) 72.8 73.2 72.6 70.3 70.3 70.3

Systems by
Mishra et al. (2016c)

Gaze based (Best) 61.8 58.4 60.05 53.6 54.0 53.3
Text + Gaze (Best) 73.3 73.6 73.5 71.9 71.8 71.8

CNN with only
text input
(Kim, 2014)

STATICTEXT 63.85 61.26 62.22 55.46 55.02 55.24
NONSTATICTEXT 72.78 71.93 72.35 60.51 59.79 60.14
MULTICHANNELTEXT 72.17 70.91 71.53 60.51 59.66 60.08

CNN with only
gaze Input

FIXATION 60.79 58.34 59.54 53.95 50.29 52.06
SACCADE 64.19 60.56 62.32 51.6 50.65 51.12
MULTICHANNELGAZE 65.2 60.35 62.68 52.52 51.49 52

CNN with both
text and
gaze Input

STATICTEXT + FIXATION 61.52 60.86 61.19 54.61 54.32 54.46
STATICTEXT + SACCADE 65.99 63.49 64.71 58.39 56.09 57.21
STATICTEXT + MULTICHANNELGAZE 65.79 62.89 64.31 58.19 55.39 56.75
NONSTATICTEXT + FIXATION 73.01 70.81 71.9 61.45 59.78 60.60
NONSTATICTEXT + SACCADE 77.56 73.34 75.4 65.13 61.08 63.04
NONSTATICTEXT + MULTICHANNELGAZE 79.89 74.86 77.3 63.93 60.13 62
MULTICHANNELTEXT + FIXATION 74.44 72.31 73.36 60.72 58.47 59.57
MULTICHANNELTEXT + SACCADE 78.75 73.94 76.26 63.7 60.47 62.04
MULTICHANNELTEXT + MULTICHANNELGAZE 78.38 74.23 76.24 64.29 61.08 62.64

Table 1: Results for different traditional feature based systems and CNN model variants for the task of

sentiment analysis. Abbreviations (P,R,F)→ Precision, Recall, F-score. SVM→Support Vector Machine

6 Results

In this section, we discuss the results for different

model variants for sentiment polarity and sarcasm

detection tasks.

6.1 Results for Sentiment Analysis Task

Table 1 presents results for sentiment analysis

task. For dataset 1, different variants of our CNN

architecture outperform the best systems reported

by Mishra et al. (2016c), with a maximum F-score

improvement of 3.8%. This improvement is sta-

tistically significant of p < 0.05 as confirmed by

McNemar test. Moreover, we observe an F-score

improvement of around 5% for CNNs with both

gaze and text components as compared to CNNs

with only text components (similar to the system

by Kim (2014)), which is also statistically signifi-

cant (with p < 0.05).

For dataset 2, CNN based approaches do not

perform better than manual feature based ap-

proaches. However, variants with both text and

gaze components outperform the ones with only

text component (Kim, 2014), with a maximum F-

score improvement of 2.9%. We observe that for

dataset 2, training accuracy reaches 100 within

25 epochs with validation accuracy stable around

50%, indicating the possibility of overfitting.

Tuning the regularization parameters specific to

dataset 2 may help here. Even though CNN might

not be proving to be a choice as good as hand-

crafted features for dataset 2, the bottom line re-

mains that incorporation of gaze data into CNN

consistently improves the performance over only-

text-based CNN variants.

6.2 Results for Sarcasm Detection Task

For sarcasm detection, our CNN model variants

outperform traditional systems by a maximum

margin of 11.27% (Table 2). However, the im-

provement by adding the gaze component to the

CNN network is just 1.34%, which is statisti-

cally insignificant over CNN with text component.

While inspecting the sarcasm dataset, we observe

a clear difference between the vocabulary of sar-

casm and non-sarcasm classes in our dataset. This,

perhaps, was captured well by the text component,

especially the variant with only non-static embed-

dings.

7 Discussion

In this section, some important observations from

our experiments are discussed.

7.1 Effect of Embedding Dimension

Variation

Embedding dimension has proven to have a deep

impact on the performance of neural systems (dos

Santos and Gatti, 2014; Collobert et al., 2011).
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Configuration P R F

Traditional systems
based on

Näive Bayes 69.1 60.1 60.5
Multi-layered Perceptron 69.7 70.4 69.9

textual features SVM (Linear Kernel) 72.1 71.9 72

Systems by
Riloff et al. (2013)

Text based (Ordered) 49 46 47
Text + Gaze (Unordered) 46 41 42

System by
Joshi et al. (2015)

Text based (best) 70.7 69.8 64.2

Systems by
Mishra et al. (2016b)

Gaze based (Best) 73 73.8 73.1
Text based (Best) 72.1 71.9 72
Text + Gaze (Best) 76.5 75.3 75.7

CNN with only
text input (Kim, 2014)

STATICTEXT 67.17 66.38 66.77
NONSTATICTEXT 84.19 87.03 85.59
MULTICHANNELTEXT 84.28 87.03 85.63

CNN with only
gaze input

FIXATION 74.39 69.62 71.93
SACCADE 68.58 68.23 68.40
MULTICHANNELGAZE 67.93 67.72 67.82

CNN with both
text and
gaze Input

STATICTEXT + FIXATION 72.38 71.93 72.15
STATICTEXT + SACCADE 73.12 72.14 72.63
STATICTEXT + MULTICHANNELGAZE 71.41 71.03 71.22
NONSTATICTEXT + FIXATION 87.42 85.2 86.30
NONSTATICTEXT + SACCADE 84.84 82.68 83.75
NONSTATICTEXT + MULTICHANNELGAZE 84.98 82.79 83.87
MULTICHANNELTEXT + FIXATION 87.03 86.92 86.97
MULTICHANNELTEXT + SACCADE 81.98 81.08 81.53
MULTICHANNELTEXT + MULTICHANNELGAZE 83.11 81.69 82.39

Table 2: Results for different traditional feature based systems and CNN model variants for the task of

sarcasm detection on dataset 1. Abbreviations (P,R,F)→ Precision, Recall, F-score

We repeated our experiments by varying the em-

bedding dimensions in the range of [50-300]5 and

observed that reducing embedding dimension im-

proves the F-scores by a little margin. Small

embedding dimensions are probably reducing the

chances of over-fitting when the data size is small.

We also observe that for different embedding di-

mensions, performance of CNN with both gaze

and text components is consistently better than

that with only text component.

7.2 Effect of Static / Non-static Text Channels

Non-static embedding channel has a major role

in tuning embeddings for sentiment analysis by

bringing adjectives expressing similar sentiment

close to each other (e.g, good and nice), where as

static channel seems to prevent over-tuning of em-

beddings (over-tuning often brings verbs like love

closer to the pronoun I in embedding space, purely

due to higher co-occurrence of these two words in

sarcastic examples).

7.3 Effect of Fixation / Saccade Channels

For sentiment detection, saccade channel seems to

be handing text having semantic incongruity (due

5a standard range (Liu et al., 2015; Melamud et al., 2016)

to the presence of irony / sarcasm) better. Fixa-

tion channel does not help much, may be because

of higher variance in fixation duration. For sar-

casm detection, fixation and saccade channels per-

form with similar accuracy when employed sep-

arately. Accuracy reduces with gaze multichan-

nel, may be because of higher variation of both

fixations and saccades across sarcastic and non-

sarcastic classes, as opposed to sentiment classes.

7.4 Effectiveness of the CNN-learned

Features

To examine how good the features learned by the

CNN are, we analyzed the features for a few ex-

ample cases. Figure 4 presents some of the ex-

ample test cases for the task of sarcasm detection.

Example 1 contains sarcasm while examples 2, 3
and 4 are non-sarcastic. To see if there is any dif-

ference in the automatically learned features be-

tween text-only and combined text and gaze vari-

ants, we examine the feature vector (of dimen-

sion 150) for the examples obtained from different

model variants. Output of the hidden layer after

merge layer is considered as features learned by

the network. We plot the features, in the form of

color-bars, following Li et al. (2016) - denser col-
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1. I would like to live in Manchester, England. The transition between Manchester and death would 

be unnoticeable. (Sarcastic, Negative Sentiment)

2. We really did not like this camp. After a disappointing summer, we switched to another camp, 

and all of us much happier on all fronts! (Non Sarcastic, Negative Sentiment)

3. Helped me a lot with my panics attack I take 6 mg a day for almost 20 years can't stop of 

course but make me feel very comfortable (Non Sarcastic, Positive Sentiment)

4. Howard is the King and always will be, all others are weak clones. (Non Sarcastic, Positive Sentiment)

(a) MultichannelText + MultichannelGaze (b) MultichannelText

Figure 4: Visualization of representations learned by two variants of the network for sarcasm detection

task. The output of the Merge layer (of dimension 150) are plotted in the form of colour-bars. Plots with

thick red borders correspond to wrongly predicted examples.

ors representing feature with higher magnitude. In

Figure 4, we show only two representative model

variants viz., MULTICHANNELTEXT and MUL-

TICHANNELTEXT+ MULTICHANNELGAZE. As

one can see, addition of gaze information helps

to generate features with more subtle differences

(marked by blue rectangular boxes) for sarcastic

and non-sarcastic texts. It is also interesting to

note that in the marked region, features for the

sarcastic texts exhibit more intensity than the non-

sarcastic ones - perhaps capturing the notion that

sarcasm typically conveys an intensified negative

opinion. This difference is not clear in feature vec-

tors learned by text-only systems for instances like

example 2, which has been incorrectly classified

by MULTICHANNELTEXT. Example 4 is incor-

rectly classified by both the systems, perhaps due

to lack of context. In cases like this, addition of

gaze information does not help much in learning

more distinctive features, as it becomes difficult

for even humans to classify such texts.

8 Related Work

Sentiment and sarcasm classification are two im-

portant problems in NLP and have been the focus

of research for many communities for quite some

time. Popular sentiment and sarcasm detection

systems are feature based and are based on uni-

grams, bigrams etc. (Dave et al., 2003; Ng et al.,

2006), syntactic properties (Martineau and Finin,

2009; Nakagawa et al., 2010), semantic properties

(Balamurali et al., 2011). For sarcasm detection,

supervised approaches rely on (a) Unigrams and

Pragmatic features (González-Ibánez et al., 2011;

Barbieri et al., 2014; Joshi et al., 2015) (b) Stylis-

tic patterns (Davidov et al., 2010) and patterns re-

lated to situational disparity (Riloff et al., 2013)

and (c) Hastag interpretations (Liebrecht et al.,

2013; Maynard and Greenwood, 2014). Recent

systems are based on variants of deep neural net-

work built on the top of embeddings. A few rep-

resentative works in this direction for sentiment

analysis are based on CNNs (dos Santos and Gatti,

2014; Kim, 2014; Tang et al., 2014), RNNs (Dong

et al., 2014; Liu et al., 2015) and combined archi-
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tecture (Wang et al., 2016). Few works exist on

using deep neural networks for sarcasm detection,

one of which is by (Ghosh and Veale, 2016) that

uses a combination of RNNs and CNNs.

Eye-tracking technology is a relatively new

NLP, with very few systems directly making use

of gaze data in prediction frameworks. Klerke

et al. (2016) present a novel multi-task learning

approach for sentence compression using labeled

data, while, Barrett and Søgaard (2015) discrim-

inate between grammatical functions using gaze

features. The closest works to ours are by Mishra

et al. (2016b) and Mishra et al. (2016c) that in-

troduce feature engineering based on both gaze

and text data for sentiment and sarcasm detection

tasks. These recent advancements motivate us to

explore the cognitive NLP paradigm.

9 Conclusion and Future Directions

In this work, we proposed a multimodal ensemble

of features, automatically learned using variants of

CNNs from text and readers’ eye-movement data,

for the tasks of sentiment and sarcasm classifica-

tion. On multiple published datasets for which

gaze information is available, our systems could

often achieve significant performance improve-

ments over (a) systems that rely on handcrafted

gaze and textual features and (b) CNN based sys-

tems that rely on text input alone. An analysis

of the learned features confirms that the combi-

nation of automatically learned features is indeed

capable of representing deep linguistic subtleties

in text that pose challenges to sentiment and sar-

casm classifiers. Our future agenda includes: (a)

optimizing the CNN framework hyper-parameters

(e.g., filter width, dropout, embedding dimen-

sions, etc.) to obtain better results, (b) exploring

the applicability of our technique for document-

level sentiment analysis and (c) applying our

framework to related problems, such as emo-

tion analysis, text summarization, and question-

answering, where considering textual clues alone

may not prove to be sufficient.
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