
Learning Collaborative Information Filters

Daniel Billsus and Michael J. Pazzani

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
{dbillsus, pazzani}@ics.uci.edu

Abstract
Predicting items a user would like on the basis of other users’
ratings for these items has become a well-established strategy
adopted by many recommendation services on the Internet.
Although this can be seen as a classification problem, algo-
rithms proposed thus far do not draw on results from the ma-
chine learning literature. We propose a representation for
collaborative filtering tasks that allows the application of
virtually any machine learning algorithm. We identify the
shortcomings of current collaborative filtering techniques and
propose the use of learning algorithms paired with feature
extraction techniques that specifically address the limitations
of previous approaches. Our best-performing algorithm is
based on the singular value decomposition of an initial matrix
of user ratings, exploiting latent structure that essentially
eliminates the need for users to rate common items in order to
become predictors for one another's preferences. We evaluate
the proposed algorithm on a large database of user ratings for
motion pictures and find that our approach significantly out-
performs current collaborative filtering algorithms.

Introduction
Research on intelligent information agents in general, and
recommender systems in particular, has recently attracted
much attention. The reasons for this are twofold. First, the
amount of information available to individuals is growing
steadily. Second, the number of users accessing the Inter-
net is also growing, which opens up new possibilities to
organize and recommend information. The central idea
here is to base personalized recommendations for users on
information obtained from other, ideally like-minded, us-
ers. This is commonly known as collaborative filtering or
social filtering.

A variety of collaborative filtering algorithms have
previously been reported in the literature and their prom-
ising performance has been evaluated empirically (Shar-
danand and Maes, 1995; Resnick et al. 1994). However,
the reported algorithms are based on rather simple predic-
tive techniques. Although collaborative filtering can be
seen as a classification task, the problem has not received
much attention in the machine learning community. It
seems likely that predictive performance can be increased
through the development of special-purpose algorithms
that draw on results from the machine learning literature.

Collaborative Filtering Algorithms
Shardanand and Maes, 1995, discuss and evaluate a variety
of social filtering algorithms. These algorithms are based
on a simple intuition: predictions for a user should be
based on the similarity between the interest profile of that
user and those of other users. Suppose we have a database
of user ratings for items, where users indicate their interest
in an item on a numeric scale. It is now possible to define
similarity measures between two user profiles, U and J. A
measure proposed by Shardanand and Maes is the Pearson
correlation coefficient, rUJ. Once the similarity between
profiles has been quantified, it can be used to compute
personalized recommendations for users. All users whose
similarity is greater than a certain threshold t are identified
and predictions for an item are computed as the weighted
average of the ratings of those similar users for the item,
where the weight is the computed similarity. Resnick et al.,
1994, compute predictions according to the following
formula, where Ux is a rating to be predicted for User U on
item x and rUJ is the correlation between users U and J.

∑
∑

∈

∈

−
+=

xofRatersJ
UJ

xofRatersJ
UJx

x r

rJJ

UU

)(

While these correlation-based prediction schemes were
shown to perform well, they suffer from several limita-
tions. Here, we identify three specific problems: First, cor-
relation between two user profiles can only be computed
based on items that both users have rated, i.e. the summa-
tions and averages in the correlation formula are only
computed over those items that both users have rated. If
users can choose among thousands of items to rate, it is
likely that overlap of rated items between two users will be
small in many cases. Therefore, many of the computed
correlation coefficients are based on just a few observa-
tions, and thus the computed correlation cannot be re-
garded as a reliable measure of similarity. For example, a
correlation coefficient based on three observations has as
much influence on the final prediction as a coefficient
based on 30 observations. Second, the correlation approach
induces one global model of similarities between users,
rather than separate models for classes of ratings (e.g.
positive rating vs. negative rating). Current approaches
measure whether two user profiles are positively corre-

From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

lated, not correlated at all or negatively correlated. How-
ever, ratings given by one user can still be good predictors
for ratings of another user, even if the two user profiles are
not correlated. Consider the case where user A’s positive
ratings are a perfect predictor for a negative rating from
user B. However, user A’s negative ratings do not imply a
positive rating from user B, i.e. the correlation between the
two profiles could be close to zero, and thus potentially
useful information is lost. Third, and maybe most impor-
tantly, two users can only be similar if there is overlap
among the rated items, i.e. if users did not rate any com-
mon items, their user profiles cannot be correlated. Due to
the enormous number of items available to rate in many
domains, this seems to be a serious stumbling block for
many filtering services, especially during the startup phase.
However, just knowing that users did not rate the same
items does not necessarily mean that they are not like-
minded. Consider the following example: Users A and B
are highly correlated, as are users B and C. This relation-
ship provides information about the similarity between
users A and C as well. However, in case users A and C did
not rate any common items, a correlation-based similarity
measure could not detect any relation between the two us-
ers.

Collaborative Filtering as a Classification
Problem

Collaborative filtering can be seen as a classification task.
Based on a set of ratings from users for items, we are try-
ing to induce a model for each user that allows us to clas-
sify unseen items into two or more classes, for example
like and dislike. Alternatively, if our goal is to predict user
ratings on a continuous scale, we have to solve a regression
problem.

Our initial data exists in the form of a sparse matrix,
where rows correspond to users, columns correspond to
items and the matrix entries are ratings. Note that sparse in
this context means that most elements of the matrix are
empty, because every user typically rates only a very small
subset of all possible items. The prediction task can now be
seen as filling in the missing matrix values. Since we are
interested in learning personalized models for each user,
we associate one classifier (or regression model) with
every user. This model can be used to predict the missing
values for one row in our matrix.

Table 1: Exemplary User Ratings

I1 I2 I3 I4 I5

U1 4 3
U2 1 2
U3 3 4 2 4
U4 4 2 1 ?

With respect to Table 1, consider that we would like to
predict user 4’s rating for item 5. We can train a learning
algorithm with the information that we have about user 4’s

previous ratings. In this example user 4 has provided 3
ratings, which leads to 3 training examples: I1, I2, and I3.
These training examples can be directly represented as
feature vectors, where users correspond to features (U1, U2,
U3) and the matrix entries correspond to feature values.
User 4’s ratings for I1, I2 and I3 are the class labels of the
training examples. However, in this representation we
would have to address the problem of many missing fea-
ture values. If the learning algorithm to be used cannot
handle missing feature values, we can apply a simple trans-
formation. Every user can be represented by up to n Boo-
lean features, where n is the number of points on the scale
that is used for ratings. For example, if the full n-point
scale of ratings is used to represent ratings from m users,
the resulting Boolean features are of the form “User m's
rating was i”, where 0 < i ≤ n. We can now assign Boolean
feature values to all of these new features. If this represen-
tation leads to an excessive number of features that only
appear rarely throughout the data, the rating scale can be
further discretized, e.g. into the two classes like and dislike.
The resulting representation is simple and intuitive: a
training example E corresponds to an item that the user has
rated, the class label C is the user’s discretized rating for
that item, and items are represented as vectors of Boolean
features Fi.

After converting a data set of user ratings for items into
this format, we can draw on the machine learning literature
and apply virtually any supervised learning algorithm that,
through analysis of a labeled training sample T = {Ej, Cj},
can induce a function f : E→ C.

Reducing Dimensionality
Our goal is to construct or apply algorithms that address
the previously identified limitations of correlation-based
approaches. As mentioned earlier, the computation of cor-
relation coefficients can be based on too little information,
leading to inaccurate similarity estimates. When applying a
learning algorithm, we would like to avoid this problem. In
particular, we would like to discard information that we do
not consider informative for our classification task. Like-
wise, we would like to be able to take possible interaction
and dependencies among features into account, as we re-
gard this as an essential prerequisite for users to become
predictors for one another's preferences even without rating
common items. Both of these issues can be addressed
through the application of appropriate feature extraction
techniques. Furthermore, the need for dimensionality re-
duction is of particular importance if we represent our data
in the proposed learning framework. For large databases
containing many users we will end up with thousands of
features while our amount of training data is very limited.
This is, of course, not a problem unique to collaborative
filtering. Other domains with very similar requirements
include the classification of natural language text or, in
general, any information retrieval task. In these domains
the similarity among text documents needs to be measured.
Ideally, two text documents should be similar if they dis-
cuss the same subject or contain related information. How-

ever, it is often not sufficient to base similarity on the
overlap of words. Two documents can very well discuss
similar subjects, but use a somewhat different vocabulary.
A low number of common words should not imply that the
documents are not related. This is very similar to the
problem we are facing in collaborative filtering: the fact
that two users rated different items should not imply that
they are not like-minded. Researchers in information re-
trieval have proposed different solutions to the text version
of this problem. One of these approaches, Latent Semantic
Indexing (LSI) (Deerwester et al., 1990) is based on di-
mensionality reduction of the initial data through singular
value decomposition (SVD).

Collaborative Filtering and the SVD
We start our analysis based on a rectangular matrix con-
taining Boolean values that indicate user ratings for items.
This matrix is typically very sparse, where sparse means
that most elements are zero, because each item is only
rated by a small subset of all users. Furthermore, many
features appear infrequently or do not appear at all
throughout this matrix. However, features will only affect
the SVD if they appear at least twice. Therefore, we apply
a first preprocessing step and remove all features that ap-
pear less than twice in our training data. The result of this
preprocessing step is a matrix A containing zeros and ones,
with at least two ones in every row. Using the SVD, the
initial matrix A with r rows, c columns and rank m can be
decomposed into the product of three matrices:

TVUA ∑=
where the columns of U and V are orthonormal vectors that
define the left and right singular vectors of A, and Σ is a
diagonal matrix containing corresponding singular values.
U is an m × c matrix and the singular vectors correspond to
columns of the original matrix. V is an r × m matrix and the
singular vectors correspond to rows of the original matrix.
The singular values quantify the amount of variance in the
original data captured by the singular vectors. This repre-
sentation provides an ideal framework for dimensionality
reduction, because one can now quantify the amount of
information that is lost if singular values and their corre-
sponding singular vector elements are discarded. The
smallest singular values are set to zero, reducing the di-
mensionality of the new data representation. The underly-
ing intuition is that the n largest singular values together
with their corresponding singular vector elements capture
the important "latent" structure of the initial matrix,
whereas random fluctuations are eliminated. The useful-
ness of the SVD for our task can be further explained by its
geometric interpretation. If we choose to retain the k larg-
est singular values, we can interpret the singular vectors,
scaled by the singular values, as coordinates of points rep-
resenting the rows and columns of the original matrix in k
dimensions. In our context, the goal of this transformation
is to find a spatial configuration such that items and user
ratings are represented by points in k-dimensional space,
where every item is placed at the centroid of every user

rating that it received and every user rating is placed at the
centroid of all the items that it was assigned to. While the
position of vectors in this k-dimensional space is deter-
mined through the assignment of ratings to items, items
can still be close in this space even without containing any
common ratings.

Using Singular Vectors as Training Examples
Our training data is a set of rated items, represented as
Boolean feature vectors. We compute the SVD of the
training data and discard the n smallest singular values,
reducing the dimensionality to k. Currently, we set k to
0.9 ⋅ m, where m is the rank of the initial matrix. This value
was chosen because it resulted in the best classification
performance (evaluated using a tuning set). The singular
vectors of matrix U scaled by the remaining singular val-
ues represent rated items in k dimensions. These vectors
become our new training examples. Since we compute the
SVD of the training data, resulting in real-valued feature
vectors of size k, we need to specify how we transform
examples to be classified into this format. We compute a k-
dimensional vector for an item, so that with appropriate
rescaling of the axes by the singular values, it is placed at
the centroid of all the user ratings that it contains.

At this point we need to pick a suitable learning algo-
rithm that takes real-valued feature vectors as its input and
learns a function that either predicts class membership or
computes a score a user would assign to an item. Ideally,
we would like to use a learning paradigm that allows for
maximum flexibility in evaluating this task as either a re-
gression or classification problem. Therefore, we selected
artificial neural networks as the method of choice for our
purposes (Rumelhart and McLelland, 1986). We ran vari-
ous experiments on a tuning set of the data available to us,
to determine a network topology and learning paradigm
that resulted in good performance. The winning approach
was a feed-forward neural network with k input units, 2
hidden units and 1 output unit. The hidden units use sig-
moid functions, while the output unit is linear. Weights are
learned with backpropagation. Although the task at hand
might suggest using a user’s rating as the function value to
predict, we found that a slightly different approach resulted
in better performance. We determined the average rating
for an item and trained the network on the difference be-
tween a user's rating and the average rating. In order to
predict scores for items, the output of the network needs to
be added to the mean of the item. We then used a threshold
t (depending on the rating scale of the domain) to convert
the predicted rating to a binary class label.

EXPERIMENTAL EVALUATION
We ran experiments using data from the EachMovie col-
laborative filtering service. The EachMovie service was
part of a research project at the Systems Research Center
of Digital Equipment Corporation. The database contains
ratings from 72,916 users for 1,628 movies. User ratings
were recorded on a numeric six-point scale (0.0, 0.2, 0.4,

0.6, 0.8, 1.0). Although data from 72,916 users is available,
we restrict our analysis to the first 2,000 users in the data-
base. These 2,000 users provided ratings for 1,410 differ-
ent movies. We restricted the number of users considered,
because we are interested in the performance of the algo-
rithm under conditions where the ratio of users to items is
low. This is a situation that every collaborative filtering
service has to go through in its startup-phase, and in many
domains we cannot expect to have significantly more users
than items. We also believe that the deficiencies of corre-
lation-based approaches will be more noticeable under
these conditions, because it is less likely to find users with
considerable overlap of rated items.

Performance Measures
We defined two classes, hot and cold, that were used to
label movies. When transforming movies to training exam-
ples for a particular user, we labeled movies as hot if the
rating for the movie was 0.8 or 1.0, or cold otherwise. We
classify items as hot if the predicted rating exceeds the
threshold 0.7. Not only does assigning class labels allow us
to measure classification accuracy, we can also apply ad-
ditional performance measures, such as precision and re-
call, commonly used for information retrieval tasks.

It is important to evaluate precision and recall in con-
junction, because it is easy to optimize either one sepa-
rately. In order to do this, (Lewis and Gale, 1994) proposed
the F-measure, a weighted combination of precision and
recall that produces scores ranging from 0 to 1. Here we
assign equal importance to precision and recall, i.e. F =
(2⋅precision⋅recall) / (precision + recall). Since we see the
F-measure as a useful construct to compare classifiers, but
think that it is not an intuitive measure to indicate a user’s
perception of the usefulness of an actual system, we use an
additional measure: precision at the top n ranked items
(here, we report scores for n = 3 and n = 10).

Experimental Methodology
Since we are interested in the performance of the algo-
rithms with respect to the number of ratings provided by
users, we report learning curves where we vary the number
of rated items from 10 to 50. For each user we ran a total
of 30 paired trials for each algorithm. For an individual
trial of an experiment, we randomly selected 50 rated items
to use as a training set, and 30 as a test set. We then started
training with 10 examples out of the set of 50 and in-
creased the training set incrementally in steps of 10, meas-
uring the algorithms’ performance on the test set for each
training set size. Final results for one user are then aver-
aged over all trials. We repeated this for 20 users and the
final curves reported here are averaged over those 20 users.

We determined parameters for our algorithms using a
tuning set of 20 randomly selected users. The results re-
ported here are averaged over 20 different users. We se-

lected users randomly, but with the following constraints.
First, only users whose prior probability of liking a movie
is below 0.75 are considered. Otherwise, scores that indi-
cate high precision of our algorithms might be biased by
the fact that there are some users in the database who either
like everything or just gave ratings for movies they liked.
Second, only users that rated at least 80 movies were se-
lected, so that we could use the same number of training
and test examples for all users.

Summary of Results
Figure 1 summarizes the performance of three different
algorithms. The algorithm labeled Correlation uses the
prediction formula as described in (Resnick et al. 1994).
The algorithm labeled SVD/ANN is our dimensionality
reduction approach coupled with a neural network. Since
this algorithm is a combination of a feature extraction
technique (SVD) and a learning algorithm (ANN), the ob-
served performance does not allow us to infer anything
about the relative importance of each technique individu-
ally. Therefore, we report the performance of a third algo-
rithm, labeled InfoGain/ANN, in order to quantify the im-
portance of our proposed feature extraction technique. In-
foGain/ANN uses the same neural network setup as
SVD/ANN, but applies a different feature selection algo-
rithm. Here, we compute the expected information gain
(Quinlan, 1986) of all the initial features and then select
the n most informative features, where n is equivalent to
the number of features used by SVD/ANN for each training
set size. Since expected information gain cannot detect
interaction and dependencies among features, the differ-
ence between SVD/ANN and InfoGain/ANN allows us to
quantify the utility of the SVD for this task. The results
show that both SVD/ANN, as well as InfoGain/ANN, per-
formed better than the correlation approach. In addition,
SVD/ANN is more accurate and substantially more precise
than InfoGain/ANN. At 50 training examples Correlation
reaches a classification accuracy of 64.4%, vs. 67.9% for
SVD/ANN. While predictive accuracy below 70% might
initially seem disappointing, we need to keep in mind that
our goal is not the perfect classification of all movies. We
would like to have a system that identifies many interesting
items and does this with high precision. This ability is
measured by the F-measure and we can see that SVD/ANN
has a significant advantage over the correlation approach
(at 50 examples 54.2% for Correlation vs. 68.8% for
SVD/ANN). Finally, if we restrict our analysis to the top 3
or top 10 suggestions of each algorithm, we can see that
SVD/ANN is much more precise than the other two algo-
rithms. At 50 training examples Correlation reaches a pre-
cision of 72.6% at the top 3 suggestions, InfoGain/ANN’s
precision is 78.3% and SVD/ANN reaches 83.9%.

SUMMARY AND CONCLUSIONS
In this paper we have identified the shortcomings of cor-
relation-based collaborative filtering techniques and shown
how these problems can be addressed through the applica-
tion of classification algorithms. The contributions of this
paper are twofold. First, we have presented a representa-
tion for collaborative filtering tasks that allows the use of
virtually any machine learning algorithm. We hope that
this will pave the way for further analysis of the suitability
of learning algorithms for this task. Second, we have
shown that exploiting latent structure in matrices of user
ratings can lead to improved predictive performance. In a
set of experiments with a database of ratings for movies,
we used the singular value decomposition to project user
ratings and rated items into a lower dimensional space.
This allows users to become predictors for one another’s
preferences even without any overlap of rated items.

References

Deerwester, D., Dumais, S. T., Landauer, T. K., and Fur-
nas, G.W., and Harshman, R.A. (1990). "Indexing by latent
semantic analysis." Journal of the Society for Information
Science, 41(6), 391-407.

Lewis, D. and Gale, W. A. (1994). A sequential algorithm
for training text classifiers. In Proceedings of the Seven-
teenth Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval, 3-12,
London, Springer-Verlag.

Pazzani M., and Billsus, D. (1997). Learning and Revising
User Profiles: The identification of interesting web sites.
Machine Learning 27, 313-331.

Quinlan, J.R. (1986). Induction of decision trees. Machine
Learning, 1:81–106.

Resnick, P., Neophytos, I., Mitesh, S. Bergstrom, P. and
Riedl, J. (1994) GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
CSCW94: Conference on Computer Supported Coopera-
tive Work, 175-186, Chapel Hill, Addison-Wesley.

Rumelhart, D. E. and McClelland, J. L. (eds) (1986) Par-
allel Distributed Processing: Explorations in the Micro-
structure of Cognition. Volume 1: Foundations. Cam-
bridge, MA: The MIT Press.

Shardanand, U. and Maes, P. Social Information Filtering:
Algorithms for Automating ’Word of Mouth’, In Proceed-
ings of CHI95, 210-217, Denver, CO, ACM Press.

Precision at top 3

60

65

70

75

80

85

0 10 20 30 40 50 60

Training Examples (rated items)

P
re

ci
si

on
 a

t
to

p
3

Precision at top 10

60

65

70

75

0 10 20 30 40 50 60
Training Examples

P
re

ci
si

o
n

 a
t

to
p

 1
0

Classification Accuracy

60

62

64

66

68

70

0 10 20 30 40 50 60

Training Examples (rated items)

A
cc

ur
ac

y

Correlation SVD / ANN InfoGain / ANN

F-Measure

50

55

60

65

70

0 10 20 30 40 50 60

Training Examples (rated items)

F
-M

ea
su

re

Figure 1: Learning Curves

