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Abstract Collective behaviors characterize the intrinsic dy-

namics of the crowds. Automatically understanding collec-

tive crowd behaviors has important applications to video

surveillance, traffic management and crowd control, while it

is closely related to scientific fields such as statistical physics

and biology. In this paper, a new Mixture model of Dynamic

pedestrian-Agents (MDA) is proposed to learn the collec-

tive behavior patterns of pedestrians in crowded scenes from

video sequences. From agent-based modeling, each pedes-

trian in the crowd is driven by a dynamic pedestrian-agent,

which is a linear dynamic system with initial and termina-

tion states reflecting the pedestrian’s belief of the starting

point and the destination. The whole crowd is then modeled

as a mixture of dynamic pedestrian-agents. Once the model

parameters are learned from the trajectories extracted from

videos, MDA can simulate the crowd behaviors. It can also

infer the past behaviors and predict the future behaviors of

pedestrians given their partially observed trajectories, and

classify them different pedestrian behaviors. The effective-

ness of MDA and its applications are demonstrated by quali-

tative and quantitative experiments on various video surveil-

lance sequences.
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1 Introduction

Automatically understanding the behaviors of pedestrians in

crowd from video sequences is of great interest to the com-

puter vision community, and has drawn more and more at-

tentions in recent years (Zhou et al, 2010). It has important

applications to event recognition (Hospedales et al, 2011),

traffic flow estimation (Wang et al, 2008b), behavior predic-

tion (Antonini et al, 2006), abnormality detection (Mehran

et al, 2009), and crowd simulation (Treuille et al, 2006). For

example, in video surveillance, many places of security in-

terest, such as shopping malls, train stations, and street in-

tersections, are very crowded. Automatically detecting dan-

gerous and abnormal behaviors in such environments plays

an important role to ensure public safety. However, con-

ventional video surveillance systems do not work well in

crowded environments. In crowd control and traffic man-

agement, recognizing traffic patterns and estimating traffic

flows provide valuable information to avoid congestion and

to prevent potential crowd disasters (Moussaid et al, 2011).

In civil engineering, long-term statistical information from

crowd behavior analysis provides guidelines for planning

and designing crowded public areas to increase safety and to

optimize traffic capacity. One of the underlying challenges

of these problems is to model and analyze the collective dy-

namics of pedestrians in crowd. The collective behaviors of

crowds show striking analogies with some self-organization

phenomena observed in social science and natural sciences

such as physics and biology. Automatic crowd behavior anal-

ysis provides powerful tools for studying these related prob-

lems and leads to deep insight in these interdisciplinary fields.

Crowd behaviors have been studied in social science with

a long history. French sociologist Le Bon (1841∼1931) de-

scribed collective crowd behaviors in his book The Crowd:

A Study of the Popular Mind as, “the crowd, an agglomer-

ation of people, presents new characteristics very different
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Fig. 1 A) Marathon race at the street corner and traffic flow at the street intersection. B) Bidirectional traffic of pedestrians crossing the street.

Collective behaviors of forming lanes spontaneously emerge among the pedestrians. Black and gray arrows represent pedestrians walking in two

opposite directions. C) Crowd of pedestrians walking in a train station scene and the extracted trajectories of pedestrians. Since there are several

entry and exit regions, the collective behaviors of the crowd in this scene become complicated. Pedestrians have different beliefs of the starting

points and the destinations. These beliefs and other scene structures influence pedestrian behaviors. The shared beliefs and dynamics of movements

also generate several major collective dynamic patterns. Yellow arrows indicate the moving directions of some exemplar pedestrians. Trajectories

are highly fragmented because of frequent occlusions. D) Two collective dynamic patterns of the crowd learned with MDA from these fragmented

trajectories. The colored densities indicate the spatial distributions of the collective behaviors. Some pedestrians are simulated from MDA. Red

circles and yellow arrows represent the current positions of simulated pedestrians and their velocities.

from those of the individuals composing it, the sentiments

and ideas of all the persons in the gathering take one and the

same direction, and their conscious personality vanishes. ”

It leads to the motivation of this work: crowd has its intrinsic

collective dynamics. Although individuals in crowd might

not acquaint with each other, their shared movements and

destinations make them coordinate collectively and follow

the paths commonly taken by others.

Collective crowd behaviors are driven by both external

and self organization. In Figure 1A, the collective behav-

iors of crowds are regularized by scene structures, such as

athletic tracks, lane markers, and cross walks, while they

are also controlled by traffic signals. Differently, in Figure

1B, pedestrians are self-organized into several lanes sponta-

neously. These collective behaviors emerge without exter-

nal or centralized control (Moussaid et al, 2009). As the

scene structure becomes complicated, there will be a va-

riety of collective crowd behaviors happening at the same

time. As shown in Figure 1C, since the train station has

multiple entrances/exits and pedestrians have various des-

tinations to reach, and the crowd forms multiple collective

crowd behaviors with different dynamics and moving direc-

tions. The goal of this work is to statistically model and learn

the collective dynamics of the crowd from its observations.

This is a fundamental problem for understanding the collec-

tive crowd behaviors. It is quite challenging since detecting

and tracking pedestrians fails frequently in crowded envi-

ronments. Meanwhile, crowd behaviors involve a large num-

ber of objects, which increase the complexity of this prob-

lem.

In this paper, a new Mixture model of Dynamic pedestrian-

Agents (MDA) is proposed to learn the collective dynamics

of pedestrians from a large amount of observations with-

out supervision. MDA is an agent-based model (Bonabeau,

2002), which treats pedestrians as agents and models their

process of deciding next actions based on current states.

Therefore, MDA is suitable for simulating crowd behaviors

once learned from real videos. Observations are trajectories

of feature points on pedestrians obtained by a KLT tracker

(Tomasi and Kanade, 1991). Because of the frequent occlu-

sions in crowded scenes and the tracking failures, most tra-

jectories are highly fragmented with large portions of miss-

ing observations. The movement of a pedestrian is driven by

one of dynamic pedestrian-agents. Each dynamic pedestrian-

agent is modeled as a linear dynamic system with initial and

termination states reflecting pedestrians’ beliefs of the start-

ing point and the destination. The timings of pedestrians en-

tering the scene with different dynamic patterns are modeled

as Poisson processes. Thus, each dynamic pedestrian-agent

represents one type of collective crowd behaviors. The col-

lective dynamics of the whole crowd is further modeled as

a mixture of dynamic pedestrian-agents. The effectiveness

of MDA is demonstrated by multiple applications: simulat-

ing collective crowd behaviors, detecting semantic regions,

estimating transition probabilities of traffic flows between

entrance and exit regions, classifying collective behaviors,

detecting abnormal behaviors, and predicting pedestrian be-

haviors 1.

1 Datasets, demo videos and related materials are available from

http://mmlab.ie.cuhk.edu.hk/project/dynamicagent/
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The novelty and contributions of this work are summa-

rized as follows. 1) Although there exist approaches (Hospedales

et al, 2009; Wang et al, 2008b; Lin et al, 2009; Zhou et al,

2011) of learning motion patterns in crowded scenes, they

did not explicitly model the dynamics of pedestrians. Many

of them only took local location-velocity pairs as model in-

put, while discarding the temporal order of trajectories which

is important for both classification and simulation. Instead,

MDA takes trajectories as model input, and it further con-

siders the temporal generative process of trajectories. There-

fore, it is much more natural for MDA to simulate collective

crowd behaviors and to predict pedestrians’ future behav-

iors, after the model parameters are learned from the real

data. 2) Under MDA, pedestrians’ beliefs, which strongly

regularize their behaviors, are explicitly modeled and in-

ferred from observations. In order to be robust to tracking

failures, the states of missing observations on trajectories are

modeled and inferred. Because of these two facts, MDA can

well infer the past behaviors and predict the future behaviors

of pedestrians given their partially observed trajectories. It

also leads to better accuracy of recognizing the behaviors of

pedestrians. 3) MDA is the first agent-based model to learn

the global collective dynamics of crowd from videos. Based

on the conference version of this work (Zhou et al, 2012b),

more technical details on the model derivation, applications

and experimental evaluations on more crowded scenes, and

limitations of our model are provided in this paper. The ef-

fectiveness and limitation of our approach are evaluated on

three video sequences from different scenes: Grand Central

Train Station Scene (Zhou et al, 2012b), MIT Traffic Scene

(Wang et al, 2008b), and Marathon Race Scene (Ali and

Shah, 2007).

2 Related Works

2.1 Crowd Behavior Analysis in Other Fields

Crowd behavior analysis is an interdisciplinary subject. Un-

derstanding the collective behaviors of crowd is a funda-

mental problem in social science. Social psychology studies

(Le Bon, 1897; Forsyth, 2009) show that when an individ-

ual stays in crowd, he behaves differently to being alone.

That’s because other individuals in the crowd as well as the

environment have a huge influence on his cognition and ac-

tion. In biology, the collective behaviors of organisms such

as fish school, flocking birds, and swarming ants have long

attracted attentions over decades. People study the mecha-

nism underlying the collective organization of individuals

(Couzin, 2009), the evolutionary origin of animal aggrega-

tion (Parrish and Edelstein-Keshet, 1999) and the collective

information processing in crowds (Moussaid et al, 2009)

from both macroscopic and microscopic levels. Some im-

portant research topics such as self-organization, emergence,

and phase transition in statistical physics have close rela-

tions with crowd behavior analysis. They study the physical

laws governing the ways in which animals behave and orga-

nize themselves (Ball, 2004).

In computer graphics, a number of models are proposed

for crowd simulation. A compact survey could be found in

(Zhou et al, 2010). Some simulation models come from the

statistical fluid mechanics. For example, continuum-based

pedestrian models (Hughes, 2003; Treuille et al, 2006) treat

the crowd motion as fluid, while the navigation fields are

used to direct and control the virtual crowds (Patil et al,

2011). Another popular category is agent-based models (Bonabeau,

2002), such as the social force model (Helbing and Mol-

nar, 1995), self-driven particle model (Vicsek et al, 1995),

agent navigation model (Van den Berg et al, 2008), recipro-

cal velocity obstacles (Berg et al, 2008) and Couzin model

(Couzin et al, 2002). Those models treat pedestrians as au-

tonomous agents based on a set of defined rules and known

scene structures. They require manually inputting parame-

ters. Differently, under MDA the collective dynamics for

crowd behavior simulation are automatically learned from

the fragmented trajectories extracted from the real videos

without knowing scene structures and without manually set-

ting parameters.

2.2 Crowd Behavior Analysis in Computer Vision

In computer vision, a lot of work focuses on learning global

motion patterns(Ali and Shah, 2008; Lin et al, 2009, 2010;

Mehran et al, 2010; Wang et al, 2008b; Li et al, 2008; Hospedales

et al, 2009, 2011; Emonet et al, 2011; Loy et al, 2009; Yang

et al, 2009; Kuettel et al, 2010; Makris and Ellis, 2005;

Wang et al, 2008a, 2011; Kim et al, 2011; Zhou et al, 2011;

Zen and Ricci, 2011; Saleemi et al, 2010), modeling local

spatio-temporal variations (Mahadevan et al, 2010; Kratz

and Nishino, 2009; Rodriguez et al, 2009; Wu et al, 2010;

Saligrama and Chen, 2012), analyzing interactions among

individuals (Pellegrini et al, 2009; Mehran et al, 2009; Sco-

vanner and Tappen, 2009), and detecting group behaviors

(Zhou et al, 2012a; Ge et al, 2011; Moussaid et al, 2010;

Choi et al, 2011; Yamaguchi et al, 2011; Pellegrini et al,

2010; Lan et al, 2011, 2012). The learned models of crowd

behaviors are also used as priors to improve detection and

tracking (Rodriguez et al, 2011; Chang et al, 2011; Zhao

and Medioni, 2011; Yamaguchi et al, 2011). A brief review

is given below.

There has been significant amount of work on learning

the motion patterns of crowd. Ali et al. (Ali and Shah, 2007)

and Lin et al. (Lin et al, 2009, 2010) computed flow fields

and segmented crowd flows with Lagrangian coherent struc-

tures or Lie algebra. Mehran et al. (Mehran et al, 2010)

proposed a streakline representation for crowd flows. With

topic models, Wang et al. (Wang et al, 2008b) explored the
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co-occurrence of moving pixels without tracking objects to

learn the motion patterns in crowd. Topic models were aug-

mented by adding spatio-temporal dependency among mo-

tion patterns (Hospedales et al, 2009, 2011; Emonet et al,

2011) or supervision (Kuettel et al, 2010). These approaches

took the local location-velocity pairs as input while ignoring

the temporal order of observations in order to be robust to

tracking failures. The beliefs of pedestrians were not con-

sidered either. Some approaches (Makris and Ellis, 2005;

Hu et al, 2007; Wang et al, 2008a, 2011; Morris and Trvedi,

2011; Kim et al, 2011; Zhou et al, 2011) learn motion pat-

terns through clustering trajectories, and face the challenge

of fragmentation of trajectories in crowded scenes. Differ-

ent from MDA, none of the above methods used agent-based

models, which could model the process of pedestrians mak-

ing decisions based on the current states. It is also difficult

for them to simulate or predict collective crowd behaviors.

Detecting collective motions and abnormal behaviors in

crowd is of great interests for surveillance and crowd man-

agement. Zhou et al (Zhou et al, 2012a). proposed a graph-

based method to detect coherent motions from tracklets. Col-

lectivenss, defined as the the degree of individuals acting

as a union, was used to measure and detect collective mo-

tion patterns (Zhou et al, 2014, 2013). Some approaches

were proposed to model the local spatio-temporal variations

for abnormality detection with dynamic texture (Mahadevan

et al, 2010; Chan and Vasconcelos, 2008), HMM (Kratz and

Nishino, 2009), distributions of spatio-temporal oriented en-

ergy (Rodriguez et al, 2009), chaotic invariants (Wu et al,

2010), and local motion descriptors (Saligrama and Chen,

2012).

To analyze interactions among pedestrians, the social

force model, first proposed by Helbing et al. (Helbing and

Molnar, 1995; Helbing et al, 2000) for crowd simulation,

was introduced to the computer vision community recently

and was applied to multi-target tracking (Scovanner and Tap-

pen, 2009; Pellegrini et al, 2009), abnormality detection (Mehran

et al, 2009), and interaction analysis (Scovanner and Tap-

pen, 2009). It is also an agent-based model and assumes

that pedestrians’ movements for the next step are influenced

by their destinations, the states of neighbors, and the bor-

ders of buildings, streets, and obstacles. It is complementary

to MDA, since it models local interactive dynamics among

pedestrians but requires the scene structures and the beliefs

of pedestrians to be known in advance. MDA better mod-

els the global collective dynamics, automatically learns the

regularization added by scene structures, and infers the be-

liefs of pedestrians. Both MDA and the social force model

are agent-based models so that they have the potential to be

well combined. It would be very interesting to integrate both

collective dynamics and interactive dynamics which charac-

terize the crowd behaviors from different perspectives into

a single model in the future work. Some individuals with

Fig. 2 A) The behavior of a pedestrian in crowd is described with three

key components, the dynamics of movements, the belief of the start-

ing point and the destination, and the timing of entering the scene. B)

Graphical representation of MDA. The shadowed variables are partial

observations of the hidden states due to frequent tracking failures in

crowded environment.

closer relationships form social groups in crowd. They have

different interactions than individuals outside the groups. Ge

et al. (Ge et al, 2011) proposed a hierarchical clustering

method to detect groups and Chang et al. (Chang et al, 2011)

proposed a probabilistic strategy to softly assign individuals

into groups. Moussaid et al. (Moussaid et al, 2010) modified

the social force model to account for the influence of social

groups. Lan et al. (Lan et al, 2011, 2012) analyzed individ-

ual behaviors considering the context of social groups with

hierarchical models.

3 MDA Model

A crowd is an agglomeration of pedestrian. Collective crowd

behaviors would emerge when enough pedestrians’ behav-

iors are observed, because pedestrians in a specific scene

share the common dynamics and beliefs, while their behav-

iors are also regularized by the same scene structures. These

shared movement patterns could be abstracted as different

dynamic pedestrian-agents with various dynamics and be-

liefs. Each dynamic pedestrian agent represents one type

of collective crowd behaviors. In a complex scene, there

are multiple types of collective crowd behaviors happen-

ing simultaneously. Therefore, a mixture model of dynamic
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pedestrian-agents is needed. In our model, dynamics and

beliefs of pedestrians are modeled as two key modules D
and B in the agent system. Since pedestrians of each dy-

namic pedestrian-agent emerge from an entrance with a cer-

tain frequency, we augment a dynamic pedestrian-agent with

another module, timing of emerging. Thus, the crowd in a

scene is formulated as a mixture model of dynamic pedestrian-

agents as shown in Figure 2. In the following subsections,

each module will be explained in details.

3.1 Modeling Collective Dynamics

Trajectories are time-series observations of pedestrian dy-

namics. If we treat a pedestrian as a dynamic agent system

which actively senses the environment and makes decisions,

the trajectory is a set of observations of the hidden dynamic

states of this system. The dynamics of a pedestrian-agent is

modeled as a linear dynamic system:

xt = Axt−1 + vt, (1)

yt = Cxt + wt. (2)

xt = [x1
t , x

2
t , 1]⊤ is the current state of the agent and repre-

sents its position in homogeneous coordinates. yt ∈ Rm is

the observation of xt. A ∈ R3×3 is the state transition ma-

trix and C ∈ Rm×3 is observation matrix. vt is system noise

and wt is observation noise. Since observations are also po-

sitions of agents, m = 3 and C is a identity matrix. The

conditional distributions of states and observations are

p(xt|xt−1) = N (xt|Axt−1, Q), (3)

p(yt|xt) = N (yt|xt, R), (4)

where N is a 3-dimensional multivariate Gaussian distri-

bution, Q and R are covariance matrices. We denote D =
(A, Q,R) as the dynamics parameters to be learned.

Under homogeneous coordinates, A can be expressed as,

A =

[

M b

0 1

]

, (5)

and x̂t = Mx̂t−1 + b, where x̂t = [x1
t , x

2
t ]

⊤, M is a linear

transformation matrix, and b is a translation vector. There-

fore, A is an affine transformation matrix and the dynamics

of a dynamic pedestrian-agent is modeled as an affine trans-

form. An important advantage of using homogeneous coor-

dinates is that the multiplication of any two affine transform

matrices is also an affine transform matrix. Work (Schnei-

der and Eberly, 2003) shows that many important 2D geo-

metric transforms such as translation, geometric contraction,

expansion, dilation, rotation, shear, and their combinations

are all affine transforms. Thus, A in Eq (1) has good gen-

eralization capability of learning complex affine transforms

from real data.

3.2 Modeling Pedestrian Beliefs

A pedestrian normally has a belief of the starting point and

the destination when walking in a scene. This belief is a key

factor driving the overall behavior of the pedestrian, while it

is also considered as the source and sink of the scene (Stauf-

fer, 2003; Zhou et al, 2011). We model it as the initial state

xs and the termination state xe of the agent system. For a

trajectory k, the joint distribution of the system states and

observations is

p(yk, xk, xk
e , tk

s , tk
e ) =p(tk

s )p(tk
e )p(xk

s )p(xk
1 |x

k
s )p(xk

e |x
k
T k )

T k

∏

t=2

p(xk
t |x

k
t−1)

τk

∏

t=1

p(yk
t |x

k
tk

s
+t). (6)

xk =
(

{xk
t }

T k

t=1, xk
s , xk

e

)

and yk = {yk
t }

τk

t=1. yk are the par-

tial observations of the whole set of states xk. In crowd,

the trajectories of objects are highly fragmented due to oc-

clusions. Therefore, most trajectories are only partially ob-

served. We assume that trajectory k is only observed from

step tks +1 to tks +τk. tks is the number of steps with missing

observations between the initial state xk
s and xk

tk
s+1

, and tke
is the number of steps with missing observations between

xk
tk
s+τk

and the termination state xk
e (T k = tke + tks + τk).

If tks = 0 and tke = 0, the complete trajectory is observed.

Here we assume the priors of p(tks) and p(tke) are uniform

distributions over [0, H], where H is the upper bound of tks
and tke to make their priors proper. Section 4 shows that the

choice of H does not affect the learning and inference of

MDA as long as it is large enough (e.g. H = 10, 000). We do

not adopt other priors such as truncated Gaussian or expo-

nential distributions, because of lack knowledge on typical

distributions of tks and tke .

The initial state is sampled from a Gaussian distribution,

p(xk
s) = N (xk

s |µs, Φs), (7)

where µs and Φs are the mean and covariance matrix of the

entry region. The termination state xe conditioned on its pre-

vious state xk
T k is sampled from

p(xk
e |x

k
T k) ≡p(xk

e , yk
e = µe|x

k
T k)

=p(xk
e |Axk

T k)p(yk
e = µe|x

k
T k)

=N (xk
e |Axk

T k , Q)N (xk
e |µe, Φe) (8)

where µe and Φe are the mean and covariance matrix of the

exit region, and p(yk
e |x

k
T k) ≡ N (yk

e |xe, Φe). Here to con-

strain the termination state we introduce a dummy variable

yk
e and let yk

e = µe. p(xk
e |x

k
T k) is then the product of two

Gaussian distributions, which is also a Gaussian distribu-

tion. Thus the sampling of the termination state is regular-

ized by xk
T k and also the center of the exit region. We de-

note B = (µs, Φs, µe, Φe) as the belief parameters. Other
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conditional distributions such as p(xk
1 |x

k
s), p(xk

t |x
k
t−1), and

p(yk
t |x

k
tk
s+t

) are given by Eq (3) and (4). xk, tks and tke are

all hidden variables, to be inferred from the model. The ini-

tial/termination states and the states of missing observations

have to be estimated from the model.

3.3 Mixture of Dynamic Pedestrian-Agents

Numerous pedestrians in a scene have various dynamics and
beliefs. To model the diversity, we extend the single agent
system described above to a mixture system with M possi-
ble dynamics and beliefs (D1, B1), ..., (DM , BM ). A hid-

den variable zk = 1, . . . ,M indicates the pedestrian-agent

from which a trajectory k is sampled. The prior p(zk) is
a discrete distribution parameterized by (π1, . . . , πM ), i.e.

p(zk = m) = πm. The joint distribution is

p(xk, yk, tk
s , tk

e , zk)

=p(zk)p(tk
s )p(tk

e )p(xk
s |z

k)p(xk
1 |x

k
s , zk)p(xk

e |x
k
T k , zk)

T k

∏

t=2

p(xk
t |x

k
t−1, zk)

τk

∏

t=1

p(yk
t |x

k
tk

s
+t, z

k). (9)

3.4 Discussion

Linear Dynamic Systems (LDS) (Doretto and Chiuso, 2003;

Oh et al, 2005) and mixture of LDS (Chan and Vasconcelos,

2008) have been successfully used to solve computer vision

problems in literature. We are inspired by these works and

apply mixture of LDS as an agent-based model for pedes-

trian behavior analysis. Besides the major difference on the

targeting problems, our model is different than existing LDS

in several other aspects. 1) {yk} are only partially observed

in MDA, but fully observed in other LDS. 2) The temporal

length is known in other LDS, while it is a hidden variable

in MDA. 3) We model entry and exit regions which add reg-

ularization on the initial and termination states.

4 Model Learning and Inference

Given trajectories {yk}K
k=1, we learn the model parameters

Θ = {(D1, B1, π1), ..., (DM , BM , πM )} by maximizing the

likelihood of observations,

Θ∗ = arg max
Θ

K
∑

k=1

log p(yk;Θ). (10)

There are three types of hidden variables: 1) the index zk of

assigning a trajectory k to a mixture component; 2) the com-

plete sequence of states xk that produce the partial observa-

tion yk; and 3) the numbers of steps with missing observa-

tions, i.e. tks and tke . We apply the EM algorithm to estimate

parameters. Each iteration of EM consists of

E-step:Q(Θ; Θ̂) = E
X,T,Z|Y;Θ̂(log p(X, Y, T, Z;Θ)),

M-step:Θ̂∗ = arg max
Θ

Q(Θ; Θ̂).

p(X, Y, T, Z;Θ) is the complete-data likelihood of the par-

tial observations Y, complete hidden states X (including the

initial and termination states), the numbers of steps with

missing observations T, and hidden assignment variables Z.

4.1 Initialization

To initialize the estimation of parameters, we roughly draw

the boundaries of entry/exit regions in a scene as shown in

Figure 4A. For every agent component m, its entry/exit re-

gion is randomly chosen from these regions (entry and exit

regions cannot be the same). For initialization, we let points

y of trajectories which start/end within the source/sink re-

gions of component m be equal to their hidden states x, and

then use x to estimate the dynamics parameters Am and Qm

with maximum likelihood estimation. Rm is initialized as

[0.1 0 0; 0 0.1 0; 0 0 0]. The starting/ending points of trajec-

tories which start/end within the entry/exit regions are used

to initialize the estimation of belief parameters (µs
m, Φs

m, µe
m, Φe

m).

πm is initialized as 1/M .

4.2 Expectation Step

The posterior probabilities and the expectation of complete-

data likelihood under current estimated parameters Θ̂ are,

Q =E
X,T,Z|Y;Θ̂

(log p(X, Y, T, Z; Θ))

=E
Z,T|Y;Θ̂

(E
X|Y,Z,T;Θ̂

(log p(X, Y, T, Z; Θ)))

=
∑

k,m,g,h

γk(m, g, h)Exk|yk,zk=m,tk
s
=g,tk

e
=h(log p(xk, yk, tk

s , tk
e , zk))

where γk(m, g, h) is defined as

γk(m, g, h) =p(zk = m, tk
s = g, tk

e = h | yk)

=
πmp(yk|zk = m, tk

s = g, tk
e = h)

∑

M
m′=1

∑

g′,h′ πm′p(yk|zk = m′, tk
s = g′, tk

e = h′)
.

(11)

The priors of p(tks) and p(tke) are uniform. The likelihood of

observations p(yk|zk = m, tks = g, tke = h) is computed

with the modified Kalman smoothing filter in Section 4.4.

γk(m, g, h) has three discrete variables. It is time con-

suming to compute all their possible combinations in the

range of [1, M ] × [0, H]2. For most (g, h), γk(m, g, h) are

approximately 0. We first estimate the most plausible ĝ and

ĥ for fragmented trajectory k by optimization,
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Fig. 3 Estimate the most possible ĝ and ĥ from Eq (12) as the numbers

of steps generating the nearest points ŷk
s and ŷk

e to µs and µe respec-

tively. The black curve is a fragmented trajectory, the dashed curves

are the estimation of missing states.

ĥ = arg min
t

‖ µm
e − At

myk
τ ‖,

ĝ = arg min
t

‖ µm
s − A−t

m yk
1 ‖, (12)

where yk
τ and yk

1 are the last and first points of yk and At

refer to t matrix power of A. Eq. (12) is to find a candidate

ĝ (ĥ), the starting point ŷ
k
s (ending point ŷ

k
e ) predicted ac-

cording to which is closest to the source center µm
s (sink

center µm
e ). Since a starting (ending) point is regularized by

the source (sink) with a Gaussian distribution, when g (h) is

largely different from ĝ (ĥ), the predicted starting (ending)

point is far away from µm
s (µm

e ). Then γk(m, g, h) is close

to zero and can be ignored. The one-dimensional discrete

search problems in Eq (12) can be solved efficiently. The

illustration of this optimization is shown in Figure 3, we ex-

tend the trajectory and search the nearest points to the mean

of initial state and termination state. Then we limit the plau-

sible set of tsk as [ĝ−∆, ĝ−∆+1, ..., ĝ, ..., ĝ+∆−1, ĝ+∆],
and the plausible set of tek as [ĥ−∆, ĥ−∆+1, ..., ĥ, ..., ĥ+

∆− 1, ĥ + ∆], where ∆ is an integer and empirically deter-

mined. When it is out of the plausible range, γk(m, g, h) is

approximated as 0. So there are (2∆ + 1)2 combinations of

(tks , tke).

4.3 Maximization Step

New parameters Θ∗ are estimated by maximizing Q. We

first recursively estimate the expectations of hidden states

and their products, i.e.

x̂
k =Exk|yk,zk=m,tk

s=g,tk
e=h(xk), (13)

P k
t,t =Exk|yk,zk=m,tk

s=g,tk
e=h(xk

t xk⊤
t ), (14)

P k
t,t−1 =Exk|yk,zk=m,tk

s=g,tk
e=h(xk

t xk⊤
t−1), (15)

from partial observations with the modified Kalman smooth-

ing filter (Palma, 2007; Shumway and Stoffer, 1982), whose

details are summarized in Section 4.4. The values of x̂
k
, P k

t,t

and P k
t,t−1 depend on the choice of m, g, and h. We do not

include the indices of m, g and h in notations to simplify the

equations here and in Section 4.4. Then Θ∗ are updated are

as follows,

A∗
m =(

∑

k,g,h

γk(m, g, h)

T k+1
∑

t=1

P k
t,t−1)(

∑

k,g,h

γk(m, g, h)

T k+1
∑

t=1

P k
t−1,t−1)−1,

(16)

Q∗
m =

∑

k,g,h
γk(m, g, h)(

∑T k+1
t=1 P k

t,t − A∗
m

∑T k+1
t=1 P k

t,t−1)
∑

k,g,h
γk(m, g, h)(T k + 1)

,

(17)

R∗
m =

∑

k,g,h
γk(m, g, h)

∑

τk

t=1
(yk

t yk⊤
t − x̂k

t yk⊤
t − ykx̂k⊤

t + P k
t,t)

∑

k,g,h
γk(m, g, h)τk

,

(18)

µm∗
s =

∑

k,g,h
γk(m, g, h)x̂k

s
∑

k,g,h
γk(m, g, h)

, (19)

Φm∗
s =

∑

k,g,h
γk(m, g, h)(x̂k

s − µm
s )(x̂k

s − µm
s )⊤

∑

k,g,h
γk(m, g, h)

, (20)

µm∗
e =

∑

k,g,h
γk(m, g, h)x̂k

e
∑

k,g,h
γk(m, g, h)

, (21)

Φm∗
e =

∑

k,g,h
γk(m, g, h)(x̂k

e − µm
e )(x̂k

e − µm
e )⊤

∑

k,g,h
γk(m, g, h)

, (22)

π∗
m =

∑

k,g,h
γk(m, g, h)

∑

M
m′=1

∑

k,g,h
γk(m′, g, h)

. (23)

4.4 Modified Kalman Smoothing Filter

Kalman smoothing filter (Shumway and Stoffer, 1982; Palma,

2007) is used to estimate the means and covariances (in Eq

(13)-(15)) of the states x of a LDS conditioned on the obser-

vations {yt}
T
t=1 (T = ts + te + τ ). It is assumed that yt is

observed at steps ts + 1 to ts + τ and missed at steps 1 to ts
and ts + τ + 1 to T . Kalman filter is also used to compute

the likelihood of observations in Eq (11). Detailed discus-

sion and proof on the modifications on the Kalman filter in

order to account for the missing observations can be found

in (Palma, 2007).

Denote the expectations conditioned on the observed se-

quence y1, ..., yn as

xn
t =Ex|y1,...,yn

(xt), (24)

V n
t =Ex|y1,...,yn

((xt − xn
t )(xt − xn

t )⊤), (25)

V n
t,t−1 =Ex|y1,...,yn

((xt − xn
t )(xt−1 − xn

t−1)⊤). (26)
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For t = 1, ..., T , we obtain the Kalman forward recursions:

x
t−1
t =Ax

t−1
t−1,

V t−1
t =AV t−1

t−1 A⊤ + Q,

Kt =V t−1
t (V t−1

t + R)−1,

xt
t =

{

x
t−1
t + Kt(yt − x

t−1
t ) if yt observed,

x
t−1
t if yt missed,

V t
t =V t−1

t − KtV
t−1

t ,

where x0
1 = µs and V 0

1 = Φs. When t = T+1, it reaches

termination state, one more Kalman forward recursion with

the constraint of exit region distribution is

x
T+1

T =AxT
T ,

V T+1

T =AV T
T A⊤ + Q,

KT+1 =V T
T+1(V T

T+1 + Φe)−1,

x
T+1

T+1 =x
T+1

T + KT+1(µe − xT
T+1),

V T+1

T+1 =V T+1

T − KT+1V T
T+1.

Then x̂e = xT+1
T+1. To further compute x̂t ≡ xT+1

t and

Pt,t ≡ V T+1
t + xT+1

t xT+1⊤
t , we perform backward recur-

sions from t = T + 1, ..., 1 using

Jt−1 =V t−1
t−1 A⊤(V t−1

t )−1,

x
T+1
t−1 =x

t−1
t−1 + Jt−1(x

T+1
t − Ax

t−1
t−1),

V T+1
t−1 =V t−1

t−1 + Jt−1(V T+1
t − V t−1

t )J⊤
t−1.

Here x̂s = xT+1
0 . To compute Pt,t−1 ≡ V T+1

t,t−1+xT+1
t xT+1⊤

t−1 ,

one performs the backward recursions from t = T + 1, ..., 2

V T+1
t−1,t−2 = V t−1

t−1 J⊤
t−2 + Jt−1(V T+1

t,t−1 − AV t−1
t−1 )J⊤

t−2,

with initial condition V T+1
T+1,T = (I − KT+1)AV T

T .

To compute the log-likelihood of observation y, we use
the innovations form (Shumway and Stoffer, 1982),

log p(y) =

τ
∑

t=1

log p(yt | y
t−1
1 )

=

τ
∑

t=1

logN (yt|x̂
t−1
t , V t−1

t + R). (27)

Then γ(m, g, h) can be computed from p(y|z = m, ts =

g, te = h) in Eq (11).

5 Simulation and Prediction

5.1 Crowd Behavior Simulation

To simulate crowd behaviors by sampling trajectories, we

also model the frequency of new pedestrians entering the

scene over time, and integrate this module into MDA.

Algorithm 1 Model sampling

INPUT: time length L, resampling number N , pedestrian-agent m.

OUTPUT: simulated trajectories.

01:sample temporal order δ1−H from PoissonP (λm)
02:for ω = 1 : L

03: if δω == 1

04: for n = 1 : N

05: sample xn
s from pm(xn

s )
07: T n = arg mint ‖ µe

m − At
mxn

s ‖.

08: generate trajectory yn = {yn
t }

T n

t=1 by sequentially

sampling pm(xn
t |x

n
t−1) and pm(yn

t |x
n
t ).

sample xn
e from pm(xn

e |x
n
T n), then compute ln = pm(xn

e ).

09: end for

10: resample one trajectory y out of the N simulated trajectories

{yn} according to normalized distribution {l1, . . . , lN}.

11: end if

12:end for

We assume the timings of pedestrians emerging in an

entrance region follows a homogeneous Poisson process,

whose underlying distribution is a Poisson distribution

p(N(t + ∆t) − N(t) = n) =
(λ∆t)ne−λ∆t

n!
, (28)

where n is the number of emerging pedestrians during time

interval (t, t + ∆t). λ is the rate parameter and indicates the

expected number of emerging pedestrians per time interval.

After {(D1, B1), ..., (DM , BM )} are learned, every tra-

jectory k has the most likely zk, and its emerging time can

also be estimated. Thus we can count the number of emerg-

ing pedestrians in each time interval ∆t (here ∆t is 5 sec-

onds), and estimate λ for each dynamic pedestrian-agent by

maximum likelihood estimation. Since a pedestrian may be

lost and found again during the tracking process, it causes

the multiple counting problem. Therefore a trajectory k is

counted only if its first observation yi
1 is within the source

region, which is an ellipse specified by (µzk

s , 4Φzk

s ), such

that the bias can be reduced to some extent.

Once MDA is learned, crowd behaviors can be simulated

as follows: firstly obtaining the temporal order of emerging

by sampling from the Poisson process, and then at each time

step of emerging generating the trajectory by sequentially

sampling from the linear dynamic system with an initial

state and a termination state. Since constraint on termination

state is not considered during sequentially sampling, there is

a resampling step in the end. The procedure of sampling one

trajectory from a pedestrian-agent is listed in Algorithm 1.

5.2 Pedestrian Behavior Prediction

After MDA is learned, given a fragmented trajectory of a

pedestrian, our model can fit it to the optimal pedestrian-

agent z∗ and predict the pedestrian’s past and future paths

with the corresponding state transition matrix Az∗ , as well
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Algorithm 2 Model fitting

INPUT: trajectory k from any tracker.

OUTPUT: the optimal fitted z∗.

01: for m = 1 : M do

02: compute γ(zk = m) =
∑

g,h
γk(m, g, h)

03: end for

04:z∗ = arg maxm γ(zk = m)
05:compute the future states or past states with Az∗ ;

predict the belief with Bz∗ .
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Fig. 4 A) Extracted trajectories and entry/exit regions indicated by yel-

low ellipses. The colors of trajectories are randomly assigned. B) His-

togram of the trajectory lengths. Most of the trajectories are short and

fragmented.

as the the starting point and the destination with the corre-

sponding belief parameters Bz∗ . The procedure of fitting a

pedestrian-agent is listed in Algorithm 2.

6 Experiments and Applications

Most experimental results are reported on a 15-minutes video

collected from the New York Grand Central Station at 24fps

with a resolution of 480×720. A KLT keypoint tracker (Tomasi

and Kanade, 1991) is used to extract trajectories. Tracking

terminates when ambiguities caused by occlusions and clut-

ters arise, and new tracks are initialized later. After filtering

short and stationary trajectories, around 20,000 trajectories

are extracted and shown in Figure 4A. The histogram of tra-

jectory lengths in Figure 4B shows that most trajectories are

highly fragmented and short. More experimental results on

the MIT traffic dataset (Wang et al, 2008b) and the marathon

race video (Ali and Shah, 2007) are reported in Section 6.8

and 6.9.

6.1 Model Learning

To initialize the parameters of MDA, we first roughly label

8 entry/exit regions with ellipses indexed by 1-8 in Figure

4A. Parameters are initialized according to Section 4.1. It

takes around one hour for EM to converge, running on a

computer with 3GHz Core Quad CPU and 4GB RAM with

Matlab implementation. Totally M = 20 agent components

are learned. In this work, M is chosen empirically, but it

also could be estimated with Dirichlet process (Wang et al,

2008b). The model learning is not sensitive to initialization.

Figure 5A illustrates ten representative dynamic pedestrian-

agents. Trajectories are sampled from each pedestrian-agent

using Algorithm 1. Results show that the learned dynamic

pedestrian-agents have different dynamics, beliefs and tim-

ings of emerging, so that they characterize various types of

collective behaviors. The learned distributions of initial/termination

sates are more accurate than the initialized entry/exit re-

gions. For example, region 8 in Figure 4A corresponds to

multiple smaller initial/termination state distributions in Fig-

ure 5. The entry and exit regions of a dynamic pedestrian-

agent are randomly selected in initialization. However, if

there is no commonly taken path between them, the dy-

namic pedestrian-agent will diminish and switch to other

entry/exit regions during EM learning. For example, there is

no path connecting regions 8 and 7, regions 2 and 3 among

the learned dynamic pedestrian-agents. Some paths are de-

formed by the information booth at the center of the scene.

By densely sampling, MDA can also estimate the velocity

flow field for each pedestrian-agent as shown in Figure 5B.

For comparison, the representative flow fields by LAB-FM

(Lin et al, 2009), which learned motion patterns using Lie

algebra, are shown in Figure 5C. MDA performs better in

terms of capturing long-range collective behaviors and sep-

arating different collective behaviors. For example, some

flow fields learned with LAB-FM are locally distributed,

without covering the complete paths. The upper parts of the

first two flow fields in Figure 5B, which represent two differ-

ent collective behaviors, are merged by LAB-FM as shown

in the first flow field in Figure 5C. This is due to the facts

that 1) MDA better models the shared beliefs of pedestri-

ans and states of missing observations, and takes the whole

trajectories instead of local position-velocity pairs as input,

and 2) LAB-FM assumes that the spatial distributions of the

flow fields are Gaussian (indicated by cyan ellipses).

6.2 Collective Crowd Behavior Simulation

Compared with other approaches (Hospedales et al, 2009;

Wang et al, 2008b; Zhou et al, 2011) of modeling global

motion patterns in crowded scenes, a distinctive feature of

MDA is to simulate collective crowd behaviors once the

model parameters are learned from observations. According

to the superposition property of Poisson process (Kingman,

1993), the timings of overall pedestrians emerging in the

scene also follow a Poisson process with λ =
∑M

m=1 λm.

To simulate the overall crowd, we first sample the tempo-

ral order series from the Poisson process with λ. Then for

each newly emerging pedestrian, its pedestrian-agent index

is first sampled from the discrete distribution (π1, ..., πM ),

then its trajectory is sampled from the dynamic pedestrian-

agent using Algorithm 1.
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Fig. 5 A) Ten representative dynamic pedestrian-agents with their simulated pedestrians. Green and red circles indicate the learned distributions

of initial/termination states for each pedestrian-agent. Yellow circles indicate the current positions of the simulated pedestrians along with their

trajectories, and red arrows indicate current velocities. The timings of pedestrians entering the scene sampled from the Poisson process are shown

below. One impulse indicates a new pedestrian entering the scene, who is driven by the corresponding dynamic pedestrian-agent. B) Flow fields

generated from dynamic pedestrian-agents. C) Flow fields learned by LAB-FM (Lin et al, 2009).
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Frame No. 1752: Current pedestrian number=221

Fig. 6 Four exemplar frames from the crowd behavior simulation.

Simulated trajectories are colored according to the indices of their dy-

namic pedestrian-agents. The middle plots the population of pedestri-

ans over time.

Figure 6 shows four exemplar frames of the simulated

crowd behaviors. At the first frame pedestrians begin to enter

the empty scene. After 1500 frames the crowd reaches the

equilibrium population with around 200 pedestrians.

Figure 7A plots all the simulated trajectories over 4500

frames. Figure 7B shows the numbers of new pedestrians

Fig. 7 A) All the simulated trajectories. Colors of trajectories are

assigned according to pedestrian-agent indices. B) The numbers of

pedestrians entering the scene at different frames. C) The population

of the scene with λ = 0.5λ0, λ0, 1.5λ0, 2λ0 in simulation, where

λ0 is the value learned from data. D) Relative population density map

computed from the crowd simulation. It is normalized to the perspec-

tive distortion labeled by the orange polygon.

entering the scene over time. The crowd simulation with

MDA can provide valuable information about the dynam-

ics of the crowd. For example, in Figure 7C, we investigate

the relationship between the different rate parameter λ and

the population of the scene, where pedestrians begin and

stop to enter the scene at the Frame 1 and 6000 respectively.

As pedestrians keep entering the scene with a constant birth

rate, the scene reaches its equilibrium state. When λ = λ0,
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which is learned from data, the system reaches its equilib-

rium state after 1500 frames with around 200 pedestrians in

the scene. And the equilibrium state changes with different

birth rates. In Figure 7D we compute the averaged popu-

lation density map when λ = λ0. In this scene, the cross-

ing regions of multiple paths and the entrance/exit regions

have higher population density. These crowded areas de-

serve more attention of security since accidents would most

likely happen there when panic or abnormal event strikes.

These types of information are very useful for crowd man-

agement and public facility optimization.

6.3 Flow Transitions between Sources and Sinks

11
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Fig. 8 The transition ratios of pedestrian flows from entries 2 and 3 to

other exits.

We can compute the transition ratios of pedestrian flows

from the simulation data. Figure 8 shows the transition prob-

abilities from regions 2 and 3 to the other exits. We can ob-

serve that the pedestrian flow from source 2 goes roughly

equally to the other five exit regions; but differently 41%

pedestrians from region 3 go to region 7. Explaining the

difference requires knowledge on the infrastructure and the

transportation schedule of the train station. These statistics

of the pedestrian flow provide useful information for crowd

control and management.

6.4 Collective Behavior Classification

MDA can be used to cluster trajectories of pedestrians into

different collective motion patterns. Here we simply take the

inferred zk from Algorithm 2 as the cluster index of that tra-

jectory. A lot of works have been done on trajectory clus-

tering (Hu et al, 2004; Morris and Trivedi, 2008). This prob-

lem is especially challenging in crowded scenes because tra-

jectories are highly fragmented with many missing obser-

vations. Generally speaking, existing approaches are in two

categories: distance-based (Wang et al, 2006; Hu et al, 2007)

and model-based (Wang et al, 2008a; Morris and Trvedi,

2011). We choose one representative approach from each

category for comparison: Hausdorff distance-based spectral

clustering (Wang et al, 2006) and hierarchical Dirichlet pro-

cesses (HDP) (Wang et al, 2008a). Figure 9A shows some

representative clusters obtained by MDA. Even though most

trajectories are fragmented and are far away from each other

in space, they are still well grouped into one cluster because

they share the same collective dynamics. Figure 9B and Fig-

ure 9C show the representative clusters obtained by spectral

clustering (Wang et al, 2006) and HDP (Wang et al, 2008a).

They are all in short spatial range and it is hard to interpret

their semantic meanings, because they cannot well handle

fragmentation of trajectories.

We use correctness and completeness introduced in (Moberts

et al, 2005) to measure clustering accuracy. Correctness is

the accuracy that two trajectories, which belong to differ-

ent collective behaviors based on the ground truth, are also

grouped into different clusters by the algorithm. Complete-

ness is the accuracy that two trajectories, which belong to

the same collective behavior, are also grouped into the same

cluster by the algorithm. If all the trajectories are grouped

into one cluster, the completeness is 100% while the correct-

ness is 0%; if every trajectories is put into a different clus-

ter, the completeness is 0% while the correctness is 100%.

A good clustering algorithm should have both high correct-

ness and high completeness. Rand index (Rand, 1971) is an-

other commonly used measure of similarity between clus-

tering results, and can be viewed as a linear combination of

correctness and completeness. We choose to report both cor-

rectness and completeness scores, such that readers can have

a comprehensive understanding of clustering quality.

To measure correctness (completeness), we manually la-

bel 2000 (1500) pairs of trajectories and each pair of trajec-

tories belong to different (the same) collective behavior cate-

gories (category) as ground truth. The accuracies of correct-

ness and completeness for MDA, HDP (Wang et al, 2008a)

and spectral clustering (Wang et al, 2006) are reported in Ta-

ble 1. MDA achieves the best performance in terms of both

correctness and completeness when the cluster number is

chosen as 20, and outperforms HDP and spectral clustering.

Note that the correctness is low when the cluster number

is 2, since many trajectories of different collective behav-

iors have to be put into one cluster. The completeness is low

when the cluster number is large, since trajectories of the

same collective behaviors are divided into different clusters.

6.5 Abnormality Detection

We detect abnormal behaviors by measuring the likelihoods

of trajectories with MDA, which are normalized by the lengths

of trajectories. Figure 10A displays the top 50 abnormal tra-

jectories with low normalized likelihoods. Two concrete ex-

amples of the detected abnormal behaviors are shown in Fig-

ure 10B in zoom-in views. Their starting and ending points
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A) B) C)

Fig. 9 Representative clusters of trajectories obtained with A)MDA, B)Spectral Clustering (Wang et al, 2006) and C)HDP (Wang et al, 2008a).

Table 1 Completeness and correctness of MDA, and Spectral Clustering(Spectral) (Wang et al, 2006), with different numbers of clusters. The

result of HDP(Wang et al, 2008a) is also shown. HDP automatically finds the number of clusters from data as 22.

Cluster Number 2 5 8 11 14 17 20 25 30

MDA
Completeness 0.82 0.71 0.73 0.52 0.51 0.61 0.70 0.62 0.59

Correctness 0.21 0.75 0.80 0.92 0.92 0.91 0.92 0.95 0.97

Spectral
Completeness 0.83 0.60 0.50 0.43 0.42 0.39 0.36 0.27 0.26

Correctness 0.51 0.80 0.87 0.89 0.90 0.91 0.91 0.92 0.95

HDP
Completeness 0.45(cluster number is 22)

Correctness 0.82(cluster number is 22)

top 1-25 top 26-50

Abnormal: sudden turning Abnormal: running

A)

++

++

+

B)

+
+

Fig. 10 A) Top 50 abnormal trajectories. B) Examples of abnormal

behaviors in zoom-in views. Left: a pedestrian changes his mind and

moves towards a different destination than his original plan. Right: a

pedestrian is running, with dynamics quite different with other walking

pedestrians.

are marked with red and blue crosses in Figure 10A. The de-

tected abnormal trajectories are mainly in two categories. 1)

Pedestrians change their destinations in the middle way or

loiter, such that their trajectories globally deviate from typ-

ical paths. 2) Pedestrians have abnormal speed. Our model

has tolerance on the change of moving directions and speed

in local regions, since linear dynamic systems allow Gaus-

sian noise, whose covariance matrices are learned from data.

Abnormality is detected only when significant global devia-

tion happens. The abnormality detection results are reason-

able given the proposed MDA. MDA does not model the

interactions among pedestrians, therefore the abnormal be-

haviors caused by interactions cannot be detected. On the

other hand, the approaches (Pellegrini et al, 2009; Saligrama

and Chen, 2012) of only modeling interactions of pedestri-

ans cannot detect global abnormal behaviors. It is an inter-

esting topic to integrate both types of models. Evaluating the

abnormality detection results also depends on applications

scenarios.

6.6 Semantic Region Generation

In video surveillance, there are a lot of works on learning se-

mantic regions (Wang et al, 2008a; Makris and Ellis, 2005;

Wang et al, 2008b; Zhou et al, 2011). Semantic regions cor-

respond to paths commonly taken by objects, thus activities

observed in the same semantic region have similar semantic

interpretation. Semantic regions could be used to improve

object detection, classification and tracking (Kaucic et al,

2005; Wang and Wang, 2011). From the perspective of be-

havior analysis, semantic regions can be interpreted as the

temporal and spatial accumulation of trajectories generated

by objects with shared belief and common movement dynam-

ics in the scene. MDA well describes the generative process

of semantic regions. Figure 11 shows the density distribu-

tions of ten semantic regions estimated from 1000 trajec-

tories sampled from the corresponding dynamic pedestrian-

agents respectively. The distributions of paths converge and

become denser towards the entry/exit regions in the back
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Fig. 11 Density distributions of ten exemplar semantic regions estimated from trajectories sampled from MDA.
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Fig. 12 A) An example of predicting behaviors with different methods.

B) The averaged prediction errors with different methods tested on 30
trajectories.

of the scene. They reflect the perspective distortion of the

scene.

6.7 Behavior Prediction

MDA can predict pedestrians’ behaviors given that their tra-

jectories are only partially observed. We manually label 30

trajectories of pedestrians as ground-truth. For each ground-

truth trajectory, we use the observations of the first 20 frames

to estimate its pedestrian-agent index z using the Algorithm

2. Then, the model of the selected pedestrian-agent is used

to recursively generate the following states as the predicted

future trajectory. The performance is measured by the av-

eraged prediction error, i.e. the mean deviation between the

predicted trajectories and the ground-truth trajectories. Two

baseline methods are used for comparison. In the first com-

parison method (referred as ConVelocity), a constant ve-

locity which is estimated as the averaged velocity of the

past observations, is used to predict future positions. In the

second comparison method LAB-FM (Lin et al, 2009), the

learned flow field which best fit the first 20 frame observa-

tions, is used to predict future positions. Figure 12 show that

MDA has better prediction performance.
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Fig. 13 A) MIT Traffic Dataset. B) Histogram of trajectory lengths. C)

Extracted trajectories and initialized entry/exit regions. D) Trajectories

simulated from 7 agent models learned from fragmented trajectories.

6.8 Results on the MIT Traffic Dataset

We further test MDA on the MIT traffic Dataset (Wang et al,

2008b). The 25 minutes long video is 25 fps with a resolu-

tion of 480 × 720. 43, 389 trajectories are extracted by the

KLT tracker. Since majority of moving objects in the scene

are vehicles, dynamic agents are vehicles moving on dif-

ferent roads in different directions. As shown in Figure 13B

and C, most trajectories are short and highly fragmented due

to occlusion and scene clutters. In Figure 13C, we label 5

entry/exit regions for initialization. Seven agent models are

learned from data. Figure 13D shows trajectories simulated

from the 7 agent components. They represent dominant mo-

tion patterns of vehicles. Figure 14A shows semantic regions

estimated from MDA. Figure 14BCD show representative

clusters obtained by MDA, spectral clustering (Wang et al,

2006), and HDP (Wang et al, 2008a). The clusters obtained

by MDA better reflects the collective motion patterns in the

scene.

MDA has some robustness to the initialization for en-

try/exit regions. In Figure 15A we label 3 instead of 5 re-

gions: regions 2 and 3 in Figure 15A are the superset of re-
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A)

B) C) D)

Fig. 14 A) Density distributions of five semantic regions estimated from the learned MDA model. Representative clusters of trajectories obtained

with B)MDA model, C)Spectral Clustering (Wang et al, 2006) and D)HDP (Wang et al, 2008a).

gions 2, 3 and regions 4, 5 in Figure 13C respectively. MDA

can reasonably cluster trajectories into different dynamics

as shown in the first two clusters of Figure 15A. However,

rough labeling of entry/exit regions may also lead to merg-

ing similar motion patterns. The last cluster in Figure 15A

shows that trajectories from two dynamic agents are clus-

tered together by MDA.

6.9 Limitation and Extension of MDA

MDA assumes affine transform. Although it can represent

many important geometric transforms as discussed in Sec-

tion 3.1, MDA does have difficulty on some complex shapes

such as u-turn or s-turn. In Figure 15B, we learn a single dy-

namic pedestrian-agent from the trajectories of a marathon

race video (Ali and Shah, 2007). The trajectories simulated

from the learned MDA cannot well fit the real motion pattern

indicated by the red trace, since this u-turn shape is not an

affine motion. One possible extension is to decompose the

complex motion pattern into multiple connected linear dy-

namic systems with different affine motions. In Figure 15C,

we label 4 entry/exit regions, and 3 dynamic pedestrian-

agent components are learned with shared starting and ter-

minating locations. The simulated trajectories from the three

connected agent components well fit the real motion of Marathon

race, if they can be connected. However, in order to use mul-

tiple agents to generate one trajectory, significant modifi-

cation on MDA has to be made. This extension is related

to switching linear dynamic models (Pavlovic et al, 1999),

where multiple state transition parameters (A and Q) are se-

lected via a separate Markovian switching variable as time

progresses in a single dynamic system. In our future work

1 2 1

2 3

4

A)

B)

1
2

3

C)

Fig. 15 A) With only 3 initialized entry/exit regions in the MIT traffic

scene, MDA still can reasonably cluster trajectories. Three representa-

tive clusters are shown. B) A single dynamic pedestrian-agent cannot

well fit the real complex motion in the scene due to the limitation of

affine transformation. C) 3 connected dynamic pedestrian-agents with

different dynamics and shared starting and termination locations can

well fit the real motion. Simulated trajectories from the same agent

model are in the same color, and red trace indicates the real motion

pattern.
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we would extend MDA to switching linear systems to model

more complex motion patterns.

The number of agent components are empirically de-

cided by the result in Table 1. We can also consider the num-

ber of agent components as one of the model parameters so

that it can be automatically decided in the model inference.

One way is to model the number of mixture as Dirichlet pro-

cess then the joint distribution becomes the non-parametric

bayesian model. The most likely mixture number could be

inferred by Markov Chain Monte Carlo or variational infer-

ence (Wang et al, 2008b, 2011; Hospedales et al, 2009).

MDA does not model local interactive dynamics among

pedestrians, which is also an essential component of de-

scribing behaviors in crowd. MDA can be integrated with

the social force models (Helbing and Molnar, 1995; Pel-

legrini et al, 2009) to characterize both the collective dy-

namics and interactive dynamics of crowd behaviors at both

macroscopic and microscopic levels, since both are agent-

based models. The local interactions from neighbors can be

added to the dynamic state transition process in Eq (1). It

could lead to better accuracies on object tracking, behavior

classification, simulation, and prediction.

MDA assumes that a pedestrian has a clear belief. Some

pedestrians in the New York Grand Central Station simply

wait or loiter in the scene without clear destination. Those

behaviors cannot be well modeled with MDA.

7 Conclusion

In this paper, we propose a Mixture model of Dynamic Pedestrian-

Agent to learn the collective dynamics from video sequences

in crowded scenes. The collective dynamics of pedestrians

are modeled as linear dynamic systems to capture long range

moving patterns. Through modeling the beliefs of pedestri-

ans and the missing states of observations, MDA can be well

learned from highly fragmented trajectories caused by fre-

quent tracking failures. Therefore, it is suitable for behavior

analysis in crowded environments. By modeling the process

of pedestrians making decisions on actions, it can not only

classify collective behaviors, but also simulate and predict

collective crowd behaviors. Various statistics valuable for

traffic management and crowd control, such as flow fields,

population density maps, flow transitions between sources

and sinks, and semantic regions can be well estimated from

simulation results of the learned MDA.

MDA has more potential applications and extensions to

be explored. In this work, we did not study the application of

MDA to object tracking in crowd. Since MDA has the capa-

bility to predict future behaviors of objects based on partial

observations, it can be used as prior for object tracking. In-

stead of being fixed, the dynamics parameters D and belief

parameters B can also be dynamically updated over time

by modeling their temporal dependency. Meanwhile, as the

variation of crowd density influences crowd behaviors, it is

interesting to investigate how the dynamic and belief param-

eters change with crowd density.

Acknowledgements This work is partially supported by the General

Research Fund sponsored by the Research Grants Council of Hong

Kong (Project No. CUHK417110, CUHK417011, and CUHK 429412).

References

Ali S, Shah M (2007) A lagrangian particle dynamics ap-

proach for crowd flow segmentation and stability analy-

sis. In: Proc.CVPR

Ali S, Shah M (2008) Floor fields for tracking in high den-

sity crowd scenes. In: Proc. ECCV

Antonini G, Martinez S, Bierlaire M, Thiran J (2006) Be-

havioral priors for detection and tracking of pedestrians

in video sequences. Int’l Journal of Computer Vision

Ball P (2004) Critical mass: How one thing leads to another.

Farrar Straus & Giroux

Van den Berg J, Lin M, Manocha D (2008) Reciprocal ve-

locity obstacles for real-time multi-agent navigation. In:

Proc. ICRA

Berg J, Lin M, Manocha D (2008) Reciprocal velocity obsta-

cles for real-time multi-agent navigation. In: Proc. IEEE

Int’l Conf. Robotics and Automation

Bonabeau E (2002) Agent-based modeling: Methods and

techniques for simulating human systems. PNAS

Chan AB, Vasconcelos N (2008) Modeling, clustering, and

segmenting video with mixtures of dynamic textures.

IEEE Trans on PAMI 30:909–926

Chang M, Krahnstoever N, Ge W (2011) Probabilistic

group-level motion analysis and scenario recognition. In:

Proc. ICCV

Choi W, Shahid K, Savarese S (2011) Learning context for

collective activity recognition. In: Proc.CVPR

Couzin I (2009) Collective cognition in animal groups.

Trends in cognitive sciences

Couzin I, Krause J, James R, Ruxton G, Franks N (2002)

Collective memory and spatial sorting in animal groups.

Journal of theoretical biology

Doretto G, Chiuso A (2003) Dynamic textures. Int’l Journal

of Computer Vision 51:91–109

Emonet R, Varadarajan J, Odobez J (2011) Extracting and

locating temporal motifs in video scenes using a hierar-

chical non parametric bayesian model. In: Proc.CVPR

Forsyth D (2009) Group dynamics. Wadsworth Pub Co

Ge W, Collins R, Ruback R (2011) Vision-based analysis of

small groups in pedestrian crowds. IEEE Trans on PAMI

Helbing D, Molnar P (1995) Social force model for pedes-

trian dynamics. Physical review E



16 Bolei Zhou et al.

Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical

features of escape panic. Nature

Hospedales T, Gong S, Xiang T (2009) A markov cluster-

ing topic model for mining behaviour in video. In: Proc.

ICCV

Hospedales T, Li J, Gong S, Xiang T (2011) Identifying rare

and subtle behaviours: A weakly supervised joint topic

model. IEEE Trans on PAMI

Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual

surveillance of object motion and behaviors. IEEE Trans

on SMC - Part C

Hu W, Xie D, Fu Z, Zeng W, Maybank S (2007) Semantic-

based surveillance video retrieval. IEEE Trans on Image

Processing

Hughes R (2003) The flow of human crowds. Annual Re-

view of Fluid Mechanics

Kaucic R, Perera A, Brooksby G, Kaufhold J, Hoogs A

(2005) A unified framework for tracking through occlu-

sions and across sensor gaps. In: Proc.CVPR

Kim K, Lee D, Essa I (2011) Gaussian process regression

flow for analysis of motion trajectories. In: Proc. ICCV

Kingman J (1993) Poisson processes. Oxford University

Press

Kratz L, Nishino K (2009) Anomaly detection in extremely

crowded scenes using spatio-temporal motion pattern

models. In: Proc.CVPR

Kuettel D, Breitenstein M, Van Gool L, Ferrari V (2010)

What’s going on? discovering spatio-temporal dependen-

cies in dynamic scenes. In: Proc.CVPR

Lan T, Wang Y, Yang W, Robinovitch SN, Mori G (2011)

Discriminative latent models for recognizing contextual

group activities. IEEE Trans on PAMI

Lan T, Sigal L, Mori G (2012) Social roles in hierarchical

models for human activity recognition. In: Proc.CVPR

Le Bon G (1897) The crowd: A study of the popular mind.

The Macmillan Co New York

Li J, Gong S, Xiang T (2008) Scene segmentation for be-

haviour correlation. In: Proc. ECCV

Lin D, Grimson E, Fisher J (2009) Learning visual flows: A

Lie algebraic approach. In: Proc.CVPR

Lin D, Grimson E, Fisher J (2010) Modeling and estimating

persistent motion with geometric flows. In: Proc.CVPR

Loy C, Xiang T, Gong S (2009) Multi-camera activity cor-

relation analysis. In: Proc.CVPR

Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010)

Anomaly detection in crowded scenes. In: Proc.CVPR

Makris D, Ellis T (2005) Learning semantic scene models

from observing activity in visual surveillance. IEEE Trans

on SMC - Part B

Mehran R, Oyama A, Shah M (2009) Abnormal crowd be-

havior detection using social force model. In: Proc.CVPR

Mehran R, Moore B, Shah M (2010) A streakline represen-

tation of flow in crowded scenes. In: Proc. ECCV

Moberts B, Vilanova A, Jake JW (2005) Evaluation of fiber

clustering methods for diffusion tensor imaging. In: Pro-

ceedings of IEEE Visualization

Morris BT, Trivedi MM (2008) A survey of vision-based tra-

jectory learning and analysis for surveillance. IEEE Trans

on CSVT 18:1114–1127

Morris TB, Trvedi MM (2011) Trajectory learning for ac-

tivity understanding: Unsupervised, multilevel, and long-

term adaptive approach. IEEE Trans on PAMI 33:2287–

2301

Moussaid M, Garnier S, Theraulaz G, Helbing D (2009)

Collective information processing and pattern formation

in swarms, flocks, and crowds. Topics in Cognitive Sci-

ence

Moussaid M, Perozo N, Garnier S, Helbing D, Theraulaz G

(2010) The walking behaviour of pedestrian social groups

and its impact on crowd dynamics. PLoS One

Moussaid M, Helbing D, Theraulaz G (2011) How simple

rules determine pedestrian behavior and crowd disasters.

PNAS 108:6884–6888

Oh SM, Rehg JM, Balch T, Dellaert F (2005) Learning and

inference in parametric switching linear synamic systems.

In: Proc. ICCV

Palma W (2007) Long-memory time series: theory and

methods. Wiley-Blackwell

Parrish J, Edelstein-Keshet L (1999) Complexity, pattern,

and evolutionary trade-offs in animal aggregation. Sci-

ence

Patil S, Van Den Berg J, Curtis S, Lin MC, Manocha

D (2011) Directing crowd simulations using navigation

fields. IEEE Transactions on Visualization and Computer

Graphics

Pavlovic V, Frey B, Huang T (1999) Time-series classifi-

cation using mixed-state dynamic bayesian networks. In:

Proc.CVPR

Pellegrini S, Ess A, Schindler K, Van Gool L (2009) You’ll

never walk alone: Modeling social behavior for multi-

target tracking. In: Proc. ICCV

Pellegrini S, Ess A, Van Gool L (2010) Improving data as-

sociation by joint modeling of pedestrian trajectories and

groupings. In: Proc. ECCV

Rand WM (1971) Objective criteria for the evaluation of

clustering methods. Journal of the American Statistical

Association

Rodriguez M, Ali S, Kanade T (2009) Tracking in unstruc-

tured crowded scenes. In: Proc. ICCV

Rodriguez M, Sivic J, Laptev I, Audibert J (2011) Data-

driven crowd analysis in videos. In: Proc. ICCV

Saleemi I, Hartung L, Shah M (2010) Scene understanding

by statistical modeling of motion patterns. In: Proc.CVPR

Saligrama V, Chen Z (2012) Video anomaly detection based

on local statistical aggregates. In: Proc.CVPR



Learning Collective Crowd Behaviors with Dynamic Pedestrian-Agents 17

Schneider P, Eberly DH (2003) Geometric Tools for Com-

puter Graphics. Morgan Kaufmann

Scovanner P, Tappen M (2009) Learning pedestrian dynam-

ics from the real world. In: Proc. ICCV

Shumway R, Stoffer D (1982) An approach to time series

smoothing and forecasting using the EM algorithm. Jour-

nal of time series analysis

Stauffer C (2003) Estimating tracking sources and sinks. In:

Proc.CVPR Workshop

Tomasi C, Kanade T (1991) Detection and Tracking of Point

Features. In: Int’l Journal of Computer Vision

Treuille A, Cooper S, Popović Z (2006) Continuum crowds.
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