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Abstract. In this paper, we tackle the problem of RGB-D semantic
segmentation of indoor images. We take advantage of deconvolutional
networks which can predict pixel-wise class labels, and develop a new
structure for deconvolution of multiple modalities. We propose a novel
feature transformation network to bridge the convolutional networks and
deconvolutional networks. In the feature transformation network, we cor-
relate the two modalities by discovering common features between them,
as well as characterize each modality by discovering modality specific fea-
tures. With the common features, we not only closely correlate the two
modalities, but also allow them to borrow features from each other to
enhance the representation of shared information. With specific features,
we capture the visual patterns that are only visible in one modality. The
proposed network achieves competitive segmentation accuracy on NYU
depth dataset V1 and V2.

Keywords: Semantic segmentation · Deep learning · Common feature ·
Specific feature

1 Introduction

Semantic segmentation of scenes is a fundamental task in image understanding.
It assigns a class label to each pixel of an image. Previously, most research
works focus on outdoor scenarios [1–6]. Recently, the semantic segmentation of
indoor images attracts increasing attention [3,7–15]. It is challenging due to
many reasons, including randomness of object distribution, poor illumination,
occlusion and so on. Figure 1 shows an example of indoor scene segmentation.

Thanks to the Kinect and other low-cost RGB-D cameras, we can obtain
not only the color images (Fig. 1(a)), but also the depth maps of indoor scenes
(Fig. 1(b)). The additional depth information is independent of illumination,
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Fig. 1. Example images from the NYU Depth Dataset V2 [7]. (a) shows an RGB
image captured in a homeoffice. (b) and (c) are the corresponding depth map and
groundtruth. (d-f) are the visualized RGB specific feature, depth specific feature, and
common feature (The method to obtain these features will be discussed in Sect. 5.2.).
RGB specific features encode the texture-rich visual patterns, such as the objects on
the desk (the red circle in (d)). The depth specific features encode the visual patterns
which are more obvious in the depth map, such as the chair (the green circle in (e)).
Common features encode the visual patterns that are visible in both modalities, such
as the edges (the yellow circles in (f)) (Color figure online)

which can significantly alleviate the challenges in semantic segmentation. With
the availability of RGB-D indoor scene datasets [7,8], many methods [3,9–14,16]
are proposed to tackle this problem. These methods can be divided into two
categories according to how they learn appropriate features to represent the
visual patterns. While the methods [7–10,14] rely on low level or hand-crafted
features to produce the label map, the works [3,11,13,17–20] learn deep features
based on CNN (convolutional neural networks).

To apply CNN-based method on two modalities (RGB and depth) semantic
segmentation, we can train two independent CNN models for RGB images and
depth maps, then simply combine them together by decision score fusion. How-
ever, this strategy ignores the correlation between these two modalities in feature
learning. To capture the correlation between different modalities, the previous
methods [3,11,13,18] concatenate the RGB image with the depth map to form
a four-channel signal and take them as the input. As pointed out in [21], these
methods can only capture the shallow correlations between two modalities. In
the learned network structure, most of the hidden units only have strong connec-
tions with a single modality. In addition, the modality specific features, which
are very useful to characterize one particular modality, are heavily suppressed.
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For example, to segment the objects on the desk in Fig. 1, we can learn discrim-
inative features only from the RGB image. If we concatenate the RGB image
and depth map, we are more likely to learn the common features that are visible
in both modalities, and lose the RGB specific features to encode textures.

To learn informative features from both RGB image and depth map, we pro-
pose to correlate these two modalities by discovering their common features while
characterize each modality by exploiting its specific features. To achieve this,
we introduce a new network structure as an extension of deconvolutional net-
work [6] for RGB-D semantic segmentation. Figure 2 shows the overall structure
of the proposed model. The model has a convolutional network and deconvolu-
tional network for each modality, as well as a novel feature transformation network
to bridge them. Specifically, the convolutional networks extract features for each
modality. The feature transformation network disentangles common features and
modality-specific features from the top-layer covolutional features of each modal-
ity. The common features (Fig. 1(f)), which represent deep correlations between
two modalities, are expected to encode information shared by both modalities.
The specific features (Fig. 1(d) and (e)) are expected to encode information that
is visible in only one modality. A separate deconvolutional network is used to pre-
dict the decision score for each modality, which receives the common and specific
features of its corresponding modality and the common features borrowed from
the other modality. Finally, the label map is obtained by decision score fusion.

It is worth noting that we explicitly allow one modality to borrow com-
mon features learned from other modality to enhance the representation of their
shared information. Such a compensation is quite useful especially when the data
from one modality is not well captured.

The contribution of this work is mainly twofold. Firstly, we introduce decon-
volutional neural network for multimodal semantic segmentation. Secondly, we
develop a framework to model common and specific features to enhance the seg-
mentation accuracy. With the learned common feature, the two modalities can
help each other to generate robust deconvolutional features.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 presents our network architecture. Section 4 presents our training
method. Section 5 shows our experiments. Section 6 concludes this paper.

2 Related Work

Multi-modality feature learning is widely studied these days. Socher et al.
[1] introduce recursive neural networks (RNNs) for predicting recursive struc-
ture in two different modalities, i.e. the image and the natural language. The
proposed RNNs model can not only identify the items inside an image or a
sentence but also capture how they interact with each other. Farabet et al.
[3] introduce multi-scale convolutional neural networks to learn dense feature
extractors. The proposed multi-scale representations successfully capture shape
and texture information, as well as the contextual information. However, this
method cannot generate cleanly delineated predictions without post-processing.
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Ngiam et al. [21] propose bimodal deep auto-encoder to learn more represen-
tative shared features from multiple modalities. This work also demonstrates
that we can improve the feature learning of one modality if multiple modalities
are available at the training time. By introducing a domain classifier, Ganin
and Lempitsky [22] learn domain invariant features based on labeled data from
source domain and unlabeled data from target domain. In order to generate one
modality from the other, Sohn et al. [23] propose to use information variation as
the objective function in a multi-modal representation learning framework. To
learn transferable features in high layers of the neural network, Long et al. [24]
propose a deep adaption network to minimize the maximum mean discrepancy
of the features.

Thanks to the low-cost RGB-D camera, we can obtain not only RGB but also
depth information to tackle semantic segmentation of indoor images. Koppula et
al. [25] use graphical model to capture contextual relations of different features.
This method is computationally expensive as it relies on the 3D+RGB point
clouds. Ren et al. [9] propose to first model appearance (RGB) and shape (depth)
similarities using kernel descriptors, then capture the context using superpixel
Markov random field (MRF) and segmentation tree. Couprie et al. [11] extend
the multi-scale convolutional neural network [3] to learn multi-modality features
for semantic segmentation of indoor scene. Wang et al. [18] propose an unsuper-
vised learning framework that can jointly learn visual patterns from RGB and
depth information. Deng et al. [14] introduce mutex constraints in conditional
random field (CRF) formulation to eliminate the configurations that violate
common sense physics laws.

Long et al. [26] propose fully convolutional networks (FCN) that can produce
a label map which has the same size of the input image. FCN is an extension of
CNN [27] by interpreting the fully connected layers as convolutional layers with
large receptive fields. As FCN can be trained end-to-end, and pixels-to-pixels,
it can be directly used for the task of semantic segmentation. However, FCN
has two disadvantages: (1) it cannot handle various scales of semantics; (2) it
loses many detailed structure of the object. To overcome these limitations, Noh
et al. [6] propose to train deconvolutional neural networks based on VGG net
for semantic segmentation. Papandreou et al. [28] propose a method to learn
deconvolutional neural networks from weakly annotated training data. Hong et
al. [4] decouple the tasks of classification and segmentation by modeling them
with two different networks and a bridging layer to connect them. Deconvolu-
tional networks can be considered as the reverse process of the convolutional
network. It explicitly reconstructs the label map through a series of deconvolu-
tional and unpooling layers. It is suitable for generating dense and precise label
maps. Compared with the other CNN-based methods of semantic segmentation,
deconvolutional networks [6] are more efficient as they can directly produce the
label map.
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3 Approach

In the task of RGB-D indoor semantic segmentation, the inputs are the RGB
image and the corresponding depth map. The output is the semantic label map,
i.e. the class label of every pixel.

Instead of conducting segmentation based on the pixel values, we learn infor-
mative representations from regions of these two modalities. The benefit of using
multiple modalities is not limited to the fact that one modality can cover the
shortage of the other. As stated by Ngiam et al. [21], we can improve the fea-
ture extraction procedure of one modality with the help from data of another
modality. On one hand, as some visual patterns are visible in both modalities,
we expect to extract a set of similar features from the RGB image and the corre-
sponding depth map. On the other hand, as the RGB image mainly captures the
appearance information and the depth map mainly captures shape information,
we expect to extract some modality-specific features for each of them.

In this work, we explicitly learn common features and modality-specific fea-
tures for both modalities. By jointly maximizing similarities between shared
information and differences between modality-specific information, we learn to
disentangle features of each modality into common features and specific features
respectively. To achieve robust prediction, we explicitly allow one modality to
borrow common features learned from other modality to enhance the represen-
tation of their shared information. Such a mechanism is quite useful especially
when the data from one modality is not well captured. The final result is obtained
by fusing decision scores of the two modalities.

3.1 Network Structure

As shown in Fig. 2, our network has five components: RGB convolutional net-
work, depth convolutional network, feature transformation network, RGB decon-
volutional network, and depth deconvolutional network. Both of two convolu-
tional networks are designed based on the VGG16 net [22]. Specifically, each
convolutional network has 14 convolutional layers (with corresponding ReLU
and pooling layers between them). The two deconvolutional networks are mir-
rored versions of the convolution networks, each of which has multiple unpool-
ing, deconvolutional and ReLU layers. The feature transformation network lies
in-between the convolutional and deconvolutional networks, which consists of
several fully connected layers. Table 1 shows the detailed configurations of our
network. Note that we only show the networks for RGB modality.

Connecting the convolutional and deconvolutional networks is the feature
transformation network, which takes the convolutional features as input and
produces the deconvolutional features as output. In Table 1, the convolutional
layer conv 6 generates the RGB convolutional features xconv

rgb , which are trans-
formed into common feature crgb by fully connected layers fc1c

rgb and modality
specific feature srgb by layer fc1s

rgb.
We expect the common features from two different modalities to be similar

to each other while the specific features to be different to each other. Hence, we
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Fig. 2. Overall structure of the proposed network. The RGB and depth convolutional
network have the same structure, consisting of 14 convolutional layers and 5 pooling
layers. The deconvolutional networks are the mirrored version of the convolutional net-
works. The last layer of the convolutional network (i.e. conv 6 in Table 1) produce the
convolutional features xconv

rgb and xconv
d . Based on xconv

rgb and xconv
d , our feature trans-

formation network learns to extract common features crgb (or cd) by fully connected
layer fc1c

rgb (or fc1c
d), and modality specific features srgb (or sd) by fully connected

layer fc1s
rgb (or fc1s

d). To obtain robust deconvolutional features, the fully connected
layer fc2rgb takes three types of feature as input: RGB-based features (crgb and srgb),
as well as the borrowed common feature (cd) from depth modality. Similarly, the layer
fc2d also takes three features as input

propose to use multiple kernel maximum mean discrepancy (which will be dis-
cussed later in Sect. 3.2) to access these similarities and differences. To obtain
robust deconvolutional features, we allow one modality to borrow the common
features from the other. As shown in Fig. 2, the fully connected layer fc2rgb pro-
duces the RGB deconvolutional features by taking the RGB modality specific
feature srgb and both of the common features (crgb and cd) as inputs. Similarly,
the layer fc2d transform sd, cd, and crgb into depth deconvolutional features.

In this framework, the two modalities can boost each other with the learned
common features. It is helpful when the data of one modality is poorly captured
and loses some key information. As the data from different modalities is captured
using different mechanisms, one modality is expected to provide complementary
information to the other.

The RGB (depth) deconvolutional network is the mirrored version of the
RGB (depth) convolutional network. Each convolutional (pooling) layer in con-
volutional network has a corresponding deconvolutional (unpooling) layer. The
unpooling layers of the RGB (depth) deconvolutional network use the pooling
masks learned in RGB (depth) convolutional network. While the pooling lay-
ers gradually reduce the size of the feature map, the unpooling layers gradually
enlarge the feature maps to obtain precise label map.
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Table 1. Detailed configuration of the network. (a) shows the RGB convolutional
network. (b) shows the deconvolutional network. (c) shows the feature transforma-
tion network. We use conv (deconv) to denote convolutional (deconvolutional) layers,
and pool (unpool) to denote pooling (unpooling) layers. The layer conv 6 produces
the convolutional features. The fully connected layers fc1s

rgb, fc1c
rgb, fc2rgb respec-

tively produces the RGB modality specific features, RGB common features, and RGB
deconvolutional features

(a) Convolutional network

name kernel output size

image - 480 × 640

conv 1: 1-2 3 × 3 480 × 640 × 64
pool 1 2 × 2 240 × 320 × 64

conv 2: 1-2 3 × 3 240 × 320 × 128
pool 2 2 × 2 120 × 160 × 128

conv 3: 1-3 3 × 3 120 × 160 × 256
pool 3 2 × 2 60 × 80 × 256

conv 4: 1-3 3 × 3 60 × 80 × 512
pool 4 2 × 2 30 × 40 × 512

conv 5: 1-3 3 × 3 30 × 40 × 512
pool 5 2 × 2 15 × 20 × 512
conv 6 15 × 20 1 × 1 × 4096

(c) Transformation network

name kernel output size

fc1s
rgb 1 × 1 1 × 1 × 4096

fc1c
rgb 1 × 1 1 × 1 × 4096

fc2rgb 1 × 1 1 × 1 × 4096

(b) Deconvolutional network

name kernel output size

deconv 6 15 × 20 15 × 20 × 4096
unpool 5 2 × 2 30 × 40 × 512

deconv 5: 1-3 3 × 3 30 × 40 × 512

unpool 4 2 × 2 60 × 80 × 512
deconv 4: 1-2 3 × 3 60 × 80 × 512
deconv 4: 3 3 × 3 60 × 80 × 256

unpool 3 2 × 2 120 × 160 × 256
deconv 3: 1-2 3 × 3 120 × 160 × 256
deconv 3: 3 3 × 3 120 × 160 × 512

unpool 2 2 × 2 240 × 320 × 128
deconv 2: 1 3 × 3 240 × 320 × 128
deconv 2: 2 3 × 3 240 × 320 × 64

unpool 1 2 × 2 480 × 640 × 64
deconv 1: 1-2 3 × 3 480 × 640 × 64

label map 1 × 1 480 × 640 × 14

Unpooling can be considered as a reverse process of pooling. Pooling is a
strategy of sub-sampling by selecting the most responsive node in the region of
interest. Mathematically, pooling is an irreversible procedure. However, we can
record the location of the most responsive node by a mask and use this mask
to recover the activation to its right place in the unpooling layer. Note that the
RGB and depth deconvolutional network use different pooling masks learned by
their corresponding convolutional networks. The unpooling layer can produce a
sparse feature map representing the main structure.

Taking a single activation as input, the filters in a deconvolutional layer
produce multiple outputs. Based on the sparse un-pooled feature map, deconvo-
lutional layers reconstruct the details of the label map through convolution-like
operations but in a reverse manner. A series of deconvolutional layers hierarchi-
cally capture different level of the shape information. Higher layer corresponds
to more detailed shape structure.
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3.2 Multiple Kernel Maximum Mean Discrepancy (MK-MMD)

This section introduces the measurement to assess the similarity between com-
mon features and modality specific features. To obtain similar RGB and depth
common feature, we may simply minimize their Euclidean distance. However,
Euclidean distance is sensitive to outliers which don’t share very similar common
features. We can overcome this limitation by considering the common (specific)
features of two modalities as samples from two distributions and calculating the
distance between the distributions. We aim to obtain two similar distributions
for common features and different distributions for specific features. If most of
RGB common features and depth common features are similar, we may conclude
that their distributions are similar, even if they are significantly different for a
few noisy outliers.

Hence, we do not expect the common features cd and crgb (output of the
layer fc1c

d and fc1c
rgb in Fig. 2) of two different modalities to be the same indi-

vidually. Instead, we adopt the MK-MMD to assess the similarity between their
distributions.

Given a set of independent observations from two distributions p and q,
two-sample testing accepts or rejects the null hypothesis H0 : p = q, i.e. the
distributions that generate these two sets of observations are the same. The
acceptance or rejection is made based a certain test statistic.

There are many existing techniques to calculate the similarity between distri-
butions, such as entropy, mutual information, or KL divergence. However, these
information theoretic approaches rely on the density estimation, or sophisti-
cated space-partitioning/bias-correction strategies which are typically infeasible
for high-dimensional data.

The kernel embedding allows us to represent a probability distribution as
an element of a reproducing kernel Hilbert space. Let the kernel function k

define a reproducing kernel Hilbert space Fk in a topological space X. The
mean embedding of distribution p in Hilbert space Fk is a unique element µk(p)
such that [29]:

Ex∼pf(x) =< f(x), µk(p) >Hφ
, ∀f ∈ Hk. (1)

As stated by Riesz representation theorem, the mean embedding µk exists if the
kernel function k is Borel-measurable and Ex∼pk

1/2(x, x) < ∞.
As a popular test statistic in two-sample testing, MMD (maximum mean

discrepancy) calculates the norm of the difference between embeddings of two
different distributions p and q, as follows

MMD(p, q) = ‖µk(p) − µk(q)‖2
Fk

. (2)

In theory, MMD equals to the upper bound of the difference in expectations
between two probability distributions, i.e.

MMD(p, q) = sup
‖f‖H≤1

‖Ep[f(p)] − Eq[f(q)]‖. (3)
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MMD is heavily dependent on the choice of kernel function k. In other words,
we may obtain contradictory results using two different kernel functions. Gretton
et al. [30] propose MK-MMD (multiple kernel maximum mean discrepancy) in
two-sample testing, which can minimize the Type II error (false accept p = q)
given an upper bound on Type I error (false reject p = q). By generating a
kernel function based on a family of kernels, MK-MMD can improve the test
power and is successfully applied to domain adaption [24]. The kernel function
k in MK-MMD is a linear combination of positive definite functions {ku}, i.e.

k := {k =

d∑

u=1

βuku|

d∑

u=1

βu = D > 0;βu ≥ 0,∀u}. (4)

The distance between two distributions calculated based on MK-MMD can
be formulated as follows

d(p, q) = ‖µk(p) − µk(q)‖2
Fk

=
d∑

u=1

βudu(p, q). (5)

where du(p, q) is the MMD for the kernel function ku.
In the training stage, we use the following function to calculate the unbiased

estimation of MK-MMD between the common features

d(crgb, cd) =
2

n

n/2∑

i=1

η(ui).

η(ui) =k(c2i−1
rgb , c2i

rgb) − k(c2i−1
rgb , c2i

d )

+k(c2i−1
d , c2i

d ) − k(c2i−1
d , c2i

rgb). (6)

where n is the batch size, ci
rgb and ci

d (1 ≤ i ≤ n) are the RGB common
feature and depth common feature respectively produced by layer fc1c

rgb and
fc1c

d. Also, similar to Eq. 6, we can calculate the similarity between the RGB
modality specific feature srgb (produced by fc1s

rgb) and depth specific feature sd

(produced by fc1s
d).

In our framework, the common features crgb and cd are expected to be similar
to each other as much as possible. The modality specific features srgb and sd

are expected to different from each other. Thus, we try to minimize d(crgb, cd)
and simultaneously maximize d(srgb, sd). The loss function of our network is as
follows

L = αrgblrgb + αdld + αcd(crgb, cd) − αsd(srgb, sd). (7)

where lrgb and ld are the pixel-wise losses between the label map and the outputs
of the deconvolutional network. We use the parameters αrgb, αd, αc, and αs to
balance the four terms. In the back propagation, the gradient of the common
and modality specific features are calculated from two different sources: the
deconvolutional features and the MK-MMD distances.
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4 Training

Following the work [6], we adopt a two-stage method to train our network. In
the first stage, we train our network using image patches containing a single
object, and learn how to segment an object from its surroundings. In the second
stage, we generate patches based on bounding box proposals [31]. The generated
patches contain two or more objects. In this stage, we train the network to learn
how to segment two or more neighboring objects.

The kernel function in Eq. 6 is a linear combination of d different Gaussian
kernels (i.e. ku(x, y) = e−‖x−y‖2/σu). In our experiment, we use 11 kernel func-
tions, i.e. d = 11 in Eq. 6. The σu is set to be 2u−6(u = 1, . . . , 11). We observe
that 11 kernel functions are sufficient to disentangle common features and specific
features in our task. The parameter β in Eq. 5 is learned based on the method
proposed in Gretton [30], and the values are [2,3,9,12,14,15,15,14,10,5,1]*1e-2.
We learn the four parameters in Eq. 7 by cross-validation.

We implement our network based on caffe [32] and the deconvolutional net-
work [6]. We employ the standard stochastic gradient descent with momentum
for optimization. In the training stage, while the convolutional networks are ini-
tialized using the VGG 16-layer net [33] pre-trained on ILSVRC dataset [34],
the deconvolutional networks are initialized randomly. We set the learning rate,
weight decay and momentum respectively to be 0.01, 0.0005 and 0.9.

In this work, we decompose the deconvolutional network into five compo-
nents based on the size of feature map and train one component after another.
Following [35], we train the network by predicting a coarse output for each com-
ponent. For example, we train the first component (from deconv 6 to deconv
5-3) to predict the downsampled (30 by 40) label map.

5 Experiments

Two popular RGB-D datasets for semantic segmentation of indoor scene images
are NYU Depth dataset V1 [8] and NYU Depth dataset V2 [7]. The 2,347 RGB-
D images in dataset V1 are captured in 64 different indoor scenes. As in the
work [8], we group the 1,518 different names into 13 categories, i.e. bed, blind,

book, cabinet, ceiling, floor, picture, sofa, table, tv, wall, window,others. The
1,449 RGB-D images in dataset V2 are captured in 464 different indoor scenes.
Following [7], we group the 894 different names into 13 categories, i.e. bed, objects,

chair, furniture, ceiling, floor, decorate, sofa, table, wall, window, books, and TV.

5.1 Baselines

To show the effectiveness of the proposed method, we compare it with five base-
lines. In the first baseline (B-DN), we train two deconvolutional networks inde-
pendently, each takes the convolutional features of one modality as the input.
The final segmentation results are obtained by decision score fusion. In the sec-
ond baseline (S-DN), we have two convolutional networks and one deconvolu-
tional network. The deconvolutional features are transformed directly from the
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concatenation of convolutional features from two modalities. The previous two
baselines do not consider the correlations between these two modalities explicitly.
By comparing our method with these two baselines, we can prove that learning
common features and modality specific features can improve the segmentation
accuracy. In the third baseline (C-DN), we train a deconvolutional network that
takes the four-channel RGB+depth as the input. By comparing our method
with this baseline, we can show that explicitly disentangling the common and
specific features can improve the segmentation accuracy. In the fourth baseline
(E-DN), we use the proposed network structure and Euclidean distance to assess
the similarity between common (or modality specific) features individually. By
comparing our method with this baseline, we can prove that MK-MMD is bet-
ter than Euclidean distance, as a measurement to assess the similarity between
feature distributions. The fifth baseline (U-DN) is the unregularized version of
our framework. In this baseline, the loss function only has the first two terms of
Eq. 7, and the last two terms are removed.

5.2 Testing

For a testing image, we first generate 100 patches or bounding boxes [31], each
of them corresponding to a potential object. Then, we segment these patches
individually using the learned network. Finally, we combine the segmentation
results of these patches by decision score fusion to obtain the final label map.

We first visualize the segmentation results, as well as the learned common and
specific features in Fig. 3. In this figure, we also show the segmentation results
of FCN and the baseline C-DN (that takes the concatenated RGB-D as input).
Both of these comparison methods can not segment the table correctly. However,
using in our method, the RGB specific and common features can characterize the
table correctly. The second row of Fig. 3 show the feature maps of deconvolutional
layers. For visualization of RGB specific features, we only take the srgb as the
input of layer fc2rgb and ignore the common features. The depth specific features
are visualized in the similar way. To show the common feature, we drop the
specific feature and only take the common features crgb and cd as the input of
the layer fc2rgb. The features in Fig. 3 are the feature maps of layer deconv 2-2.
While the RGB specific features mainly characterize the texture-rich regions,
the depth specific features characterize the edges of objects.

Table 2 lists the class average accuracies of different methods on the NYU
depth dataset V1. We compare our method with five baselines and five different
works [8,9,18,36,37]. The methods proposed in [8,9] use hand-craft features. Pei
et al. [36] use a one-layer network and Wang et al. [18] use a two-layer network
to learn representations. Our deep network can achieve higher accuracy than
their methods. It indicates that deep features can perform better than shallow
features.

Table 3 lists the accuracies of the proposed method and four baselines, as
well as the methods proposed in [11,18] on the dataset NYU V2. We can see
from Table 3 that the proposed method outperforms the previous state-of-the-
art [18] by 6.3%. Notably, in the classes of objects, furniture and decorate,
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Fig. 3. An example image from NYU depth dataset V2 [7]. The The first row shows
(a) RGB image, (b) depth map, and the (c) ground truth. The second row shows
the learned (d) RGB specific features, (e) depth specific features, and (f) common
features. The third rows shows the segmentation results of two based lines ((g) FCN
and (h) C-DN) and (i) our method

Table 2. The average 13-class segmentation accuracy of different methods on the NYU
depth dataset V1 (KDES represents kernel descriptor)

Method Acc Method Acc

Silberman and Fergus [8] 53.0 % Pei et al. [36] 50.5 %

Wang et al. [18] 72.9 % Hermans [37] 59.5 %

KDES-RGB [9] 66.2 % KDES-depth [9] 63.4 %

KDES RGB-D [9] 71.4 % KDES Treepath [9] 74.6 %

KDES MRF [9] 74.6 % KDES Tree+MRF [9] 76.1 %

B-DN 76.5 % S-DN 72.1 %

C-DN 70.3 % E-DN 71.4 %

U-DN 69.9 % Ours 78.8 %
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Table 3. The 13-class segmentation accuracy of different methods on NYU depth
dataset V2. B-DN trains two independent deconvolutional networks. S-DN contains
a single deconvolutional network and two convolutional networks. C-DN trains one
convolutional and one deconvolutional network with 4-channel RGBD as input. E-DN
uses the Euclidean distance to assess the difference between features in the proposed
network

Couprie [11] Wang [18] B-DN S-DN C-DN E-DN Ours

bed 38.1 47.6 27.4 19.6 19.2 25.3 31.6

objects 8.7 12.4 40.7 43.8 40.1 36.9 61.5

chair 34.1 23.5 43.5 39.2 42.8 39.3 43.6

furniture 42.4 16.7 37.2 36.3 35.7 35.2 49.8

ceiling 62.6 68.1 52.2 56.2 55.9 55.1 58.7

floor 87.3 84.1 82.9 86.5 84.7 90.5 89.0

decorate 40.4 26.4 55.8 56.9 54.6 60.4 68.9

sofa 24.6 39.1 36.7 31.3 28.3 35.7 30.8

table 10.2 35.4 36.4 50.3 50.5 42.7 49.3

wall 86.1 65.9 41.4 32.2 33.3 34.3 44.9

window 15.9 52.2 81.7 87.4 88.9 78.1 83.9

books 13.7 45.0 28.8 23.1 22.5 29.9 39.9

TV 6.0 32.4 53.7 29.4 29.7 35.27 32.8

AVE 36.2 42.2 47.6 45.6 45.1 46.1 52.7

our method significantly outperforms [18]. In Table 4, we compare our method
with the previous works on the 4-class, 13-class, and 40-class segmentation task.
The proposed method outperforms all of them in segmentation accuracy.

Based on Tables 2 and 3, we can conclude that MK-MMD is a better measure-
ment than Euclidean distance to learn common features and modality specific
features in this task. The proposed method outperforms the baseline E-DN by
7.4 % and 6.6 % in dataset V1 and V2, respectively. This is mainly because, the
Euclidean distance is heavily effected by the outliers.

In both B-DN and the proposed network, we use a linear combination to
conduct decision score fusion. Compared with the baseline B-DN, the proposed
network is 2.3 % higher on dataset V1 and 5.1 % higher on dataset V2. It indicates
that we should correlate the two modalities in the feature learning stage instead
of only fusing them at the decision score level. The baseline B-DN is not robust.
Its segmentation accuracy varies a lot as the parameter (for linear combination
of decision score fusion) changes. By contrast, our network is much more robust
and varies slightly as the parameter changes. In our network, the deconvolutional
results from two modalities are much more similar than those in B-DN. The
reason is that, by borrowing common features from other modality, our method
will produce similar decisions scores for the two modalities, which makes fusing
result robust to the linear combination parameter.
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Table 4. The per-class accuracy of 4, 13, and 40-class segmentation on NYU depth
dataset V2

4-class 13-class 40-class

Couprie [11] 63.5 % Couprie [11] 36.2 % Gupta’13 [10] 28.4 %

Khan [12] 65.6 % Wang [18] 42.2 % Gupta’14 [13] 35.1 %

Stuckler [38] 67.0 % Khan [12] 45.1 % Long [26] 46.1 %

Muller [39] 71.9 % Hermans [37] 48.0 % Eigen [35] 45.1 %

U-DN 71.8 % U-DN 49.2 % U-DN 41.7 %

Ours 74.7 % Ours 52.7 % Ours 47.3 %

6 Conclusion

In this paper, we propose a new network structure for RGB-D semantic segmen-
tation. The proposed network has a convolutional network and a deconvolutional
network for each of the modality. We bridge the convolutional networks and the
deconvolutional networks using a feature transformation network. In the feature
transformation network, we transform the convolutional features into common
features and modality-specific features. Instead of using a one-vs-one strategy to
measure the similarity between features, we adopt MK-MMD to calculate the sim-
ilarity between their distributions. To learn robust deconvolutional features, we
allow one modality to borrow the common features from the other modality. Our
method achieves competitive performance on NYU depth dataset V1 and V2.
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