
Learning Compact Parameterized Skills with a Single Regression

Freek Stulp1,2, Gennaro Raiola1,3, Antoine Hoarau1,2, Serena Ivaldi4, Olivier Sigaud4

Abstract— One of the long-term challenges of programming
by demonstration is achieving generality, i.e. automatically
adapting the reproduced behavior to novel situations. A com-
mon approach for achieving generality is to learn param-
eterizable skills from multiple demonstrations for different
situations. In this paper, we generalize recent approaches on
learning parameterizable skills based on dynamical movement
primitives (DMPs), such that task parameters are also passed
as inputs to the function approximator of the DMP. This
leads to a more general, flexible, and compact representation
of parameterizable skills, as demonstrated by our empirical
evaluation on the iCub and Meka humanoid robots.

I. INTRODUCTION

One of the main appeals of programming by demonstration

is that it provides an intuitive method – for experts and lay

people alike – to teach a robot new skills. This alleviates

the need to program such skills by hand, which is tedious

and error-prone, and requires expert knowledge. One of the

long-term challenges of programming by demonstration is

achieving generality, i.e. automatically adapting the repro-

duced behavior to novel situations [1]. Achieving generality

hinges on providing demonstrations for different situations.

Methods for trajectory-level skill encoding, the focus of this

paper, are able to leverage multiple demonstrated trajectories

to determine relevant movement constraints [2], generalize

across start states [3], [4], or for adaptation to varying task

parameters [5]–[9].

Fig. 1 illustrates the latter approach with one of the tasks

considered in our evaluation. The left image depicts a human

demonstrating a trajectory for grasping a box. Here, the task

parameter vector q represents the 3D pose of the box, which

is detected with a Kinect. Given K=30 such demonstrations

({τk,qk}
K
k=1

), a parameterizable skill is learned (π(x,q) 7→
a, with states x and actions a), which is able to generalize

and generate trajectories for novel box poses.

In recent years, dynamical movement primitives

(DMPs) [10] have become a common underlying skill

representation for learning parameterized skills [5]–[9]. In

most current approaches to parameterized skills, movement

generation is a two-step process: 1) determine the skill

parameters from the task parameters θ = m(q), 2) execute

the DMP with parameters θ.

Our key innovation is to merge these two steps into

one. We do so by generalizing the DMP formulation, such

1Robotics and Computer Vision, ENSTA-ParisTech, Paris, France
2FLOWERS Team, INRIA Bordeaux Sud-Ouest, Talence, France
3Pal Robotics S.L., Barcelona, Spain
4ISIR, Université Pierre Marie Curie CNRS UMR 7222, Paris, France
This work was supported by the French ANR program MACSi (ANR

2010 BLAN 0216 01), the INRIA/ADT project Carroman, and the European
Commission within the CoDyCo project (FP7-ICT-2011-9, No. 600716).

Fig. 1. Left: using kinesthetic teaching to demonstrate a trajectory τk for
grasping the box. The Meka humanoid robot detects the task parameters
qk – the 3D box pose 〈x, y, yaw〉 – with a Kinect. Right: overlay of 8 of
K=30 box poses for which a trajectory was demonstrated. This yields the
training set {τk,qk}

K
k=1

.

that task parameters are passed directly and on-line to

the DMP’s function approximator. Training a DMP from

multiple demonstrations is done with one single regression,

rather than current approaches which require two separate

regressions [5]–[8]. Some of the important features of this

reformulation are that: 1) Generality – it generalizes sev-

eral previous approaches [4]–[7]. 2) Flexibility – different

function approximator implementations may be used inter-

changeably. 3) Compactness – parameterizable skills can be

represented more compactly.

The rest of this paper is structured as follows. In the next

section, we present the DMP formulation and related work.

Our DMP reformulation with augmented function approx-

imators is presented in Section III. Section IV contains an

evaluation of our approach, and we conclude with Section V.

II. FOUNDATIONS AND RELATED WORK

In this section we present DMPs [10], on which our

method is based, and related work on parameterizable skills.

A. Dynamical Movement Primitives

DMPs combine a feedback controller with an open loop

forcing term consisting of a function approximator h [10]:

τ ẍt = α(β(xg − xt)− ẋt)
︸ ︷︷ ︸

feedback controller

+ st(x
g − x0)h(st)

︸ ︷︷ ︸

open loop controller

(1)

τ ṡt = −αsst canonical system (2)

When integrated over time, DMPs generate trajectories

[xt ẋt ẍt], which, for instance, are used as a desired joint

angle or desired end-effector coordinate. The main advantage

of DMPs is that the open loop controller is able to represent

arbitrary time-dependent movements, whereas the feedback

controller makes the resulting motion robust to perturbations

and ensures convergence towards the goal xg . This conver-

gence also depends on the multiplication of the output of h
with the movement phase st, which is 1 at the beginning

of the movement and decays exponentially towards 0. The

phase s is thus an alternative 1D representation of time.

The function approximator h takes the movement phase s
as an input, and is commonly implemented as a weighted

combination of B Gaussian basis functions with centers

cb=1:B and widths σb=1:B . The vector of weights wb=1:B

is thus also of length B. Since w determines the shape of

the movement between x0 and xg , we refer to them as the

‘shape parameters’. Since hw is linear in the parameters w,

it can easily be learned through linear regression.

hw(s) =

∑B

b=1
Ψb(s)[w]b

∑B

b=1
Ψb(s)

Function approx. (3)

Ψb(s) = exp

(
−(s− cb)

2

2σ2

b

)

Gaussian kernel (4)

Equation (1) describes the evolution of a 1-dimensional

variable x. Multi-dimensional DMPs, that represent for in-

stance the joint angles of a 7-DOF arm, or its 3-DOF end-

effector position, are acquired by coupling several systems

as in (1) with one canonical system (2).

Our key innovation is to also pass task parameters to the

function approximator of the DMP, which enables the DMP

to generalize to novel task parameterizations, for instance

previously unseen box poses. Whilst leaving the derivation

to Section III, we provide a preview of the resulting DMP

formulation in (5).

τ ẍt = α(β(xg − xt)− ẋt) + st(x
g − x0)h(st,qt) (5)

B. Parameterized Skills

For a classification of related work on parameterizable

skills, it is important to distinguish between three types of

skill parameters when DMPs are used as the underlying skill

representation: 1) DMP shape parameters are the weights w

associated with the basis function, cf. (3). 2) DMP meta-

parameters are all DMP parameters except for the weights,

i.e. xg , τ , α, etc. This term was introduced by Kober et

al. [9]. 3) External parameters are parameters of the skill

not specific to the DMP formulation. For instance, in a ball-

throwing task, da Silva et al. [7] specify λ as the time when

a robot lets go of the ball, and include this in the skill

parameter vector. The generic term for combinations of these

parameters is ‘skill parameter vector’, and is denoted θ.

As DMPs are not usually able to generalize to varying task

parameters q, recent approaches use multiple demonstrations

to learn parameterizable skills to achieve such generaliza-

tion [5]–[8]. Learning parameterizable skills is done by first

acquiring K DMPs – one for each of the task parameteri-

zations qk=1:K – with supervised learning [5], [6], or opti-

mization [7]. This yields a set of skill parameters associated

with the corresponding task parameters {θk,qk}k=1:K .

Then, a regression from task parameters to skill parameters

is learned, given the data in {θk,qk}k=1:K . For the shape

parameters w, this corresponds to B functions mb(q) that

map task parameters q to the bth weight [w]b:

[w]b = mb(q) (6)

Ude et al. [5] perform this second regression with a combi-

nation of Locally Weighted Regression (LWR) for the shape

parameters w, and Gaussian Process Regression (GPR) for

the other skill parameters. Forte et al. [6] build on [5] and

use GPR for w also. Da Silva et al. [7] use a combination

of ISOMAP and Support Vector Machines. An interesting

aspect of [7] is that different regressors are learned for

different parts of the parameter space, thus avoiding the

problem of averaging across multiple skill parameters that

achieve the same task. For instance, reaching around an

obstacle will succeed by going around it to the left or right,

but the average of these two motions will not succeed. The

method of da Silva et al. [7] may be readily combined

with [5], [6], [8], and also our work, to avoid such averaging.

Executing such a parameterized skill is a 2-step procedure:

1) compute the skill parameters θ from the task parameters

q with (6) 2) execute the DMP with parameters θ. For this

reason, we refer to them as “2-step” skills.

It is important to realize that learning [w]b = mb(q) in

the second step will work only if the number (and locations)

of basis functions B resulting from the first step is consistent

for each of the K task instances. For example, if the DMP

for the first demonstration k=1 has Bk=10 weights, and the

second one k=2 has Bk=12 weights, we cannot learn the

mapping [w]b = mb(q) because there is an inconsistency

in what the index b refers to. For this reason, the number

of basis functions (and also their centers and widths) re-

sulting from the first step must be fixed. This precludes the

use of for instance Locally Weighted Projection Regression

(LWPR) [12] for the first step, because LWPR determines

these parameters itself from the data. Rather, in the first step

of the 2-step approach one is obliged to use representations

and function approximators where these parameters are fixed

(e.g. LWR, used to implement the first step in [5], [6]).

As we will see in Section III, our reformulation does not

enforce such constraints, and other function approximator

implementations (e.g. LWPR and GPR) may readily be used.

C. Further Related Work

Our approach is a generalization of [5], [6] discussed

above, but also generalizes other works. Parlaktuna et al. [4]

consider the special case where task parameters q are

considered to be the time-varying state of the DMP q =
〈x ẋ〉. Matsubara et al. [8] also pass task parameters q

(which they call ‘style parameter’) to function approxima-

tor h, and consider the special case where hw(s,q) =
∑B

b=1
Ψb(s)[w]b[q]b/

∑B

b=1
Ψb(s). Our approach general-

izes this by allowing arbitrary implementations for h(s,q).
An interesting aspect of [8] is that task parameters are not

provided, but rather extracted from the data itself through

principal components analysis. We trivially generalize the

standard DMP formulation in [10], where q = ∅.

Kober et al. [9] present an altogether different approach

for learning to map task parameters to DMP meta-parameters

based on cost-regularized kernel regression. They consider

the shape parameters w to be fixed, and learn only the

meta-parameters. Kupcsik et al. [11] apply policy search

to parameterized skills, where the first and second step are

called the upper-level and lower-level policy respectively.

DMPs represent a trajectory-based approach to motion

generation. The parameterizable skills in this paper extend

this by enabling the DMP to be adapted to different task

parameters. This is different from state-based approaches

to motion generation [3], [4], which extend trajectory-based

methods by adapting the motion to a time-varying state input.

III. PARAMETERIZABLE SKILLS WITH

AUGMENTED FUNCTION APPROXIMATORS

Before introducing our approach, let us briefly return

to the 2-step methods [5]–[7] presented in Section II-B,

which compute the weight parameters in a separate step with

[w]b = mb(q). In particular, let us consider [5], where the

mapping m is computed as a sum of basis functions (7), in

the same way as the function approximator h of the DMP

((8), repeated from (3)). For the mapping m, each function

mb uses its own parameter vector vb to compute the DMP

basis function weight [w]b.

[w]b = mb(q) =

∑Bq

d=1
Φd(q)[v

b]d
∑Bq

d=1
Φd(q)

Step 1 (7)

hw(s) =

∑Bs

b=1
Ψb(s)[w]b

∑Bs

b=1
Ψb(s)

Step 2 (uses w) (8)

The 2-step procedure of first computing weights w from q,

and then executing the DMP with w is visualized in Fig. 2.

Fig. 2. Visualization of the two-step procedure for parameterized skills.

If the set of parameter vectors {v}Bb=1
are of equal length,

as in [5], we may write it as a matrix W with B rows:

[w]b = mb(q) =

∑Bq

d=1
Φd(q)[W]b,d

∑Bq

d=1
Φd(q)

(9)

The first step in our new formulation for parameterizable

skills with augmented function approximators is to plug (9)

into (8):

hW(s, q) =

∑Bs

b=1

∑Bq

d=1
Ψb(s)Φd(q)[W]b,d

∑Bs

b=1

∑Bq

d=1
Ψb(s)Φd(q)

. (10)

The second step is to expand the basis functions into a

higher-dimensional space. To do so, we use Gaussian kernels

for Φd(q), i.e. Φd(q) = Ψd(q). Ude et al. [5] use tricube

kernels, but note that this selection “is rarely critical for

the performance of LWR”. We then exploit the fact that

multiplying two 1D Gaussians yields a 2D Gaussian.

Ψb(s)Ψd(q) = exp

(

−(s− cb)
2

2σ2

b

)

exp

(

−(q − cd)
2

2σ2

d

)

(11)

= exp

(

−

1

2

[

s−cb
q−cd

]⊺
[

σ2

b 0

0 σ2

d

]

−1
[

s−cb
q−cd

]

)

= exp

(

−

1

2
([sq]− cb,d)

⊺
Σb,d ([

s
q]− cb,d)

)

= Ψb,d(s, q) (12)

Thus, the multiplication of the two univariate Gaussians

kernels Ψb(s)Ψd(q) has been simplified into one multivari-

ate Gaussian with expanded kernels Ψb,d(s, q). Plugging the

expanded basis functions (12) into the function approximator

(10) yields:

hW(s,q) =

∑Bs

b=1

∑Bq

d=1
Ψb,d(s,q)[W]b,d

∑Bs

b=1

∑Bq

d=1
Ψb,d(s,q)

. (13)

These expanded basis functions are visualized in Fig. 3,

where the x-axis represents time, and the y-axis a 1D task

parameter q. The weighted activation of one basis function

is acquired by directly computing the activation Ψb,d(s,q)
in the augmented space, and multiplying it with [W]b,d.

In previous approaches depicted in Fig. 2, this is done by

computing the activation Ψb(s) in phase space only, and

multiplying it with a weight [w]b that depends on q with

[w]b = mb(q).

Fig. 3. Expanding the basis functions, such that they are defined in a
space with dimensionality dim(q)+1. Here, q is 1-dimensional for ease of
visualization.

Before performing the final step of the derivation, let us

briefly describe some features that this intermediate represen-

tation of the function approximator has. 1) It combines all

the functions mb=1:B into one function h, and demonstrates

that the function approximator may be computed directly

in one step, rather than computing [w]b = mb(q) as an

intermediate representation. 2) The function approximator no

longer depends only on s, but also on q. 3) Our derivation

has used a 1D task parameter q for brevity. The multi-

variate Gaussian kernels may be readily expanded for multi-

dimensional task parameter vectors q. In this case, the

kernels are defined in a dim(q)+1 dimensional space. 4) The

parameters are all stored together in the matrix W, rather

than distributed in the separate vectors {v}Bb=1
.

The main advantages of our approach arise from applying

the third and final step of the derivation. In [5]–[7], the

number of basis functions Bb and their centers must be fixed

across task parameters in order to learn [w]b = mb(q). This

is because the phase space and task parameter space are

orthogonal, and considered in different steps. This constraint

is inherited by the expanded basis functions; the indices b and

d in Ψb,d(s,q) imply that the basis functions are organized

on a grid, as Fig. 3 also makes obvious. However, we may

overcome this limitation by organizing the Bs ×Bq grid of

basis functions as a 1D list of length Be = Bs ·Bq with index

e = (b × d), as in (14). This reorganization is not possible

with [5]–[7], as phase space and task space are considered

in different steps, cf. Fig. 2.

hu(s,q) =

∑Be

e=1
Ψe(s,q)[u]e

∑Be

e=1
Ψe(s,q)

. (14)

The main consequence of this reorganization of basis func-

tion weights in a vector u instead of a matrix W is that

the centers of the kernels must not necessarily be organized

on a grid anymore, and can be placed anywhere in the

multi-dimensional space, as illustrated in Fig. 4. Thus, task

parameters for which high-frequency movement are required

may be assigned more basis functions in phase space than

task parameters that require very smooth movement. Al-

gorithms such as LWPR [12] are able to determine such

varying requirements automatically, and place and tune the

basis function accordingly.

Fig. 4. Expanded basis functions with arbitrary centers, not necessarily on
a grid as in Fig. 3

The automatic placement of basis functions at arbitrary

locations has several advantages: 5) Alleviates the user from

specifying the number of basis functions and their parameters

by hand. 6) Leads to more compact representations than

simply generating a grid of basis functions, because kernels

are only placed where they are needed, as we demonstrate in

the evaluation. 7) In fact, the function approximator h need

not be based on basis functions at all. It may just as well

be represented with for instance a Gaussian Process, as we

demonstrate in Section IV. One of the main advantages of

our approach is that different implementations for h may be

used interchangeably.

A disadvantage is that expanding the basis functions to

higher-dimensional spaces leads to the curse of dimen-

sionality. Note however that q is not the state; it is the

high dimensionality of the state that makes it a curse for

reinforcement learning. Rather, q has the dimensionality of

the task parameterization, which is determined by the user.

In previous work dim(q) is 1 or 2 [5]–[8].

IV. EXPERIMENTAL EVALUATION

The aim of this evaluation is to compare the 1-Step

approach with augmented function approximators over the

2-Step approach. In particular, on three different tasks, we

1) evaluate the compactness of learned parameterized skills;

2) compare different function approximators implementa-

tions and parameterizations; 3) evaluate our approach for

robot control on two humanoid robot platforms.

For the 2-Step method, we use locally weighted regression

(LWR) [5], [6], [10]. To emphasize the two steps, we denote

it LWR2S. For the 1-Step method, we use LWPR and GPR in

the expanded space1. We denote these LWPR1S and GPR1S.

We would again like to emphasize that training the DMP

parameters in the first step of the 2-Step method can only be

done with a method using a fixed number of basis functions

like LWR (the center of these basis functions being usually

chosen to be on a grid).

A. Task 1: Viapoint Task

The aim of the first task is to pass through a viapoint in 2D

Cartesian space. This first low-dimensional simulated task is

used to gather statistics over many experiments, and facilitate

visual interpretation of the results, especially relevant to

highlighting the compactness of the learned skills.

Training trajectories are minimum-jerk movements of du-

ration 0.5s, from the initial state x0 to the goal state xg that

pass through the viapoint q. Although q is 2-dimensional,

viapoints are constrained to lie on a 1D manifold, as depicted

in Fig. 5 in the inset labeled “20 training trajectories”.

Parameterizable skills were learned for an increasing

number of training trajectories k = 1, 2, . . . 20. The cost

of reproduced movements is the distance to the viapoint

at t=0.2s of 20 separate test trajectories. Each training

session was run 10 times with different test/train trajectories

for randomly generated viapoints. LWR2S is trained with a

varying total number of basis functions (32, 108, 256, 500,

864, 1372), and LWPR1S with varying regularization penalty

terms (1.0, 0.1, 0.01, 0.001), where higher penalties lead

to smoother functions, and therefore indirectly to models

with less basis functions. No GPR1S parameter needed to be

varied. The results of training these function approximators

with 1, 4 and 20 training trajectories are depicted in Fig. 5.

From Fig. 5 we draw the following conclusions. 1) not

surprisingly, more training trajectories (left to right graph)

lead to lower costs. For LWPR1S the cost converges after 4

trajectories, and for LWR2S and GPR1S after 8 (not shown

1Unless stated otherwise LWPR parameters are set as follows: init-D=10;
w-gen=0.3; w-prune=0.7; init-alpha=0.05; diag-only=0; meta=0. GPR uses
the covariance function of the Matérn form with isotropic distance measure.

Fig. 5. Results of the viapoint tasks, after providing 1 (left), 4 (center)
and 20 (right) training trajectories. Example trajectories are visualized in the
insets at the top or bottom of the graphs. Each graph plots the average cost
over 20 separate test trials (y-axis) against the number of basis functions in

the skill (x-axis, logarithmic scale), for the function approximators LWR2S

(red, with 32, 108, 256, 500, 864, 1372 basis functions), LWPR1S (blue,
with penalty 1.0, 0.1, 0.01, 0.001), and GPR1S (cyan, where GPR1S lies
on the y-axis, because the number of basis functions is not defined for
this function approximator). Standard deviations over 10 separate training
sessions are depicted as error bars in x and y direction. 20 different training
and test trajectories are generated for each of the training sessions.

here). 2) LWPR1S (with penalty 0.01) always achieves a

lower cost than the best LWR2S skill. For 20 trajectories,

GPR1S performs similarly to LWPR1S in terms of cost.

3) LWPR1S is always able to achieve the same or lower

cost with less basis functions than LWR2S (please note

the logarithmic x-axis), and therefore has a more compact

representation than LWR2S.

The reason for this last point is visualized in Fig. 6.

The LWR2S that achieves lowest cost uses 64=8×4×4 basis

functions (BFs) for one transformation system (there are

two transformation systems, hence the total number of 128

in Fig. 5a), because the BFs must be organized on a grid.

LWPR1S on the other hand places BFs only on the manifold

in which task parameters actually arise (q1 = q2) allowing

for a much more compact representation with only 14 BFs.

Furthermore, these BFs may have arbitrary orientations, also

enabling more compact representations.

a) LWR b) LWPR c) LWPR (side view)

Fig. 6. Learned models for one of the two transformation systems,

after 20 training trials. a) LWR2S with 128 basis functions. b/c) LWPR1S

with penalty 0.1, leading to 14 basis functions. These models lead to
approximately the same cost.

Conclusion. In the expanded basis function space of the

1-step approach, the positions and orientations of the basis

functions may be freely chosen. This may lead to more

compact models when algorithms such as LWPR are used.

B. Task 2: Object Transport

In this experiment we reproduce the results described by

Matsubara et al. [8, Section 4.1.2]. The iCub humanoid

robot transports an object from one place to another, over

an obstacle of varying height, cf. Fig. 7. The obstacle

is a children’s toy, consisting of a pile of 10 stackable

hemispherical items; each item has an increasing diameter

(8-12cm) and variable height (4-8cm); by stacking the items

the obstacle height ranges from 8 to 25cm, cf. Fig. 7.

Fig. 7. Transport task: iCub brings its hand from a starting position
(indicated by the red ring on the table) to a final position (green ring)
avoiding an obstacle of variable height.

To acquire training trajectories, a human teacher manu-

ally guides the end-effector of the robot to demonstrate 5

trajectories for each of the 11 obstacle sizes. A zero-torque

controller is used to gently move the robot upper-body,

exploiting the force/torque sensors of the robot limbs [14].

The video attachment shows the acquisition of several of

these 55 demonstrated trajectories. Due to the variation in

the movements, we take the average of the 5 trajectories

for one obstacle height. More sophisticated methods may be

used to model this variation [2], but this is beyond the scope

of this paper. A 3D parameterizable DMP is then trained with

6 of the 11 averaged 3D trajectories of the end-effector. The

remaining 5 trajectories are used to test generalization.

In the execution phase, the parameterizable DMP gener-

ates a 3D Cartesian trajectory for the robot’s end-effector. An

inverse kinematics controller maps the Cartesian velocities

to the joint velocities of the torso (3 DOF), and arms

(7 DOF each). An optimization routine takes into account

the redundancy of arm and torso, as well as the physical

constraints of the platform. The hand posture is fixed during

the movement.

The video attachment also shows the resulting gener-

ated motions for obstacle heights observed during training

(6 examples), and also for those not previously observed.

LWPR1S uses only 41% of the number of kernels that LWR2S

does (311 vs. 750). Fig. 8 summarizes the aim of learning

parameterized skills: being able to adapt motions to different

task parameterizations with a single, compact representation.

Conclusion. In this experiment, our 1-step approach is

able to learn more compact models than the 2-step approach.

C. Task 3: Object Grasping

In this experiment, visualized in Fig. 1, the Meka hu-

manoid robot learns a parameterizable skill for grasping

Fig. 8. Parameterized skill for object transport. Depending on the height of
the obstacle, the robot adapts its motion. Here, the task parameters are set
to 8 equidistant values, none of which have been observed during training.
The obstacle serves as a color bar.

a box from trajectories demonstrated through kinesthetic

teaching. 30 such trajectories are demonstrated (see video

supplement for sample demonstrations). The robot automati-

cally extracts the 3D box pose q = 〈x, y, yaw〉 with a Kinect.

A 6D DMP (3D end-effector position and yaw/pitch/roll

orientation) is then trained with these trajectories to learn

the shape parameters w. Based on a visual inspection of

the reproduced trajectories, appropriate parameters for the

algorithms are determined. An LWR2S with a total number

of 5250=6×875 basis functions was trained, and for LWPR1S

the penalty parameter is 0.1, which leads to a far more

compact skill with only 559 basis functions. The same GPR1S

parameters as for the viapoint task are used.

Since the end-point of the movement represents that grasp

posture, adapting the DMP goal xg is essential for successful

task completion. In fact, we have chosen this task because it

requires both adaptation of the goal (the final grasp) and the

trajectory towards this goal (the more the object is turned

away, the more you need to reach around it). Because the

goal must be adapted, we also learn a mapping xg = m(q)
for each transformation system, as suggested by [5]. For

this simple mapping and LWPR, LWR and GP perform

essentially equal, and their parameterization is not critical.

The task parameter dependent duration of the movement

could also be learned in this way, as in [5], [7], but we

have kept it constant in this work.

During testing, we execute the parameterized skill for 25

task parameterizations, i.e. different poses of the box on

the table. An execution is deemed successful if the robot

is able to lift the object after grasping it; also see the

video supplement. The success rates for LWR2S and GPR1S

are 0.72 and 0.92. respectively. The two failure cases for

GPR occur when the box is close to the robot, as shown

in the video. LWR2S does not perform well because it is

difficult to find a number of basis functions that generalize

well, whilst also capturing the local variations required to

generate the right trajectory shape. GPR1S achieves better

performance because it generalizes well across the entire 3D

space. However, GPR1S trajectories must be generated off-

line due to its high computational complexity.

Conclusion. With the augmented function approximator,

different function approximator implementations may be

used interchangeably. In this experiment, exchanging LWR

with GPR substantially increases the success rate of the

parameterizable skill (0.72→0.92). Our main point here is

not as much to compare such implementations, which has

been extensively done elsewhere [13], but rather to show

that we may use and compare different implementations in

the first place, which is not possible in the first step of 2-step

approaches.

V. CONCLUSION

Learning parameterizable skills from multiple demonstra-

tions enables robots to generalize their motions to novel task

parameterizations. We propose a novel DMP formulation

for parameterized skills, based on additionally passing task

parameters to the DMP function approximator. This general-

izes previous approaches, in particular those which train and

execute parameterized skills with two separate regressions.

Learning the function approximator with one regression in

the full space of phase and tasks parameters allows for more

compact models, and the flexible use of different function

approximator implementations such as LWPR and GPR, as

we demonstrate on the Meka and iCub humanoids robots.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Springer Hand-

book of Robotics. Springer, 2008, ch. 59. Robot programming by
demonstration.

[2] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on

Systems, Man and Cybernetics, vol. 37, no. 2, pp. 286–298, 2007.
[3] S. M. Khansari-Zadeh and A. Billard, “Learning stable non-linear

dynamical systems with gaussian mixture models,” IEEE Transactions

on Robotics, 2011.
[4] M. Parlaktuna, D. Tunaoglu, E. Sahin, and E. Ugur, “Closed-loop

primitives: A method to generate and recognize reaching actions from
demonstration,” in ICRA, 2012, pp. 2015–2020.

[5] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE

Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.
[6] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion

synthesis and adaptation using a trajectory database,” Robotics and

Autonomous Systems, vol. 60, no. 10, pp. 1327–1339, 2012.
[7] B. da Silva, G. Konidaris, and A. G. Barto, “Learning parameterized

skills,” in ICML, 2012, pp. 1679–1686.
[8] T. Matsubara, S. Hyon, and J. Morimoto, “Learning parametric dy-

namic movement primitives from multiple demonstrations,” Neural

Networks, vol. 24, no. 5, pp. 493–500, 2011.
[9] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust

robot movements to new situations,” in R:SS, 2010.
[10] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,

“Dynamical Movement Primitives: Learning attractor models for
motor behaviors,” Neural Computation, vol. 25, no. 2, 2013.

[11] A. Kupcsik, M. Deisenroth, J. Peters, and G. Neumann, “Data-efficient
generalization of robot skills with contextual policy search,” in AAAI,
2013.

[12] S. Vijayakumar and S. Schaal, “Locally Weighted Projection
Regression,” in ICML, 2000.

[13] A. Droniou, S. Ivaldi, V. Padois, O. Sigaud, et al., “Autonomous online
learning of velocity kinematics on the icub: a comparative study,” in
IROS, 2012.

[14] S. Ivaldi et al., “Computing robot internal/external wrenches by means
of inertial, tactile and F/T sensors: theory and implementation on the
iCub”, in IEEE-RAS Int’l Conference on Humanoid Robots, 2011.

