
Learning Complex Boolean Functions:

Algorithms and Applications

Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli

Dept. of EECS
UC Berkeley

Berkeley CA 94720

Abstract

The most commonly used neural network models are not well suited
to direct digital implementations because each node needs to per
form a large number of operations between floating point values.
Fortunately, the ability to learn from examples and to generalize is

not restricted to networks ofthis type. Indeed, networks where each

node implements a simple Boolean function (Boolean networks) can
be designed in such a way as to exhibit similar properties. Two
algorithms that generate Boolean networks from examples are pre

sented. The results show that these algorithms generalize very
well in a class of problems that accept compact Boolean network
descriptions. The techniques described are general and can be ap

plied to tasks that are not known to have that characteristic. Two
examples of applications are presented: image reconstruction and
hand-written character recognition.

1 Introduction

The main objective of this research is the design of algorithms for empirical learning
that generate networks suitable for digital implementations. Although threshold
gate networks can be implemented using standard digital technologies, for many

applications this approach is expensive and inefficient. Pulse stream modulation
[Murray and Smith, 1988] is one possible approach, but is limited to a relatively
small number of neurons and becomes slow if high precision is required. Dedicated

911

912 Oliveira and Sangiovanni-Vincentelli

boards based on DSP processors can achieve very high performance and are very
flexible but may be too expensive for some applications.

The algorithms described in this paper accept as input a training set and generate
networks where each node implements a relatively simple Boolean function. Such

networks will be called Boolean networks. Many applications can benefit from

such an approach because the speed and compactness of digital implementations
is still unmatched by its analog counterparts. Additionally, many alternatives are

available to designers that want to implement Boolean networks, from full-custom

design to field programmable gate arrays. This makes the digital alternative more
cost effective than solutions based on analog designs.

Occam's razor [Blumer et ai., 1987; Rissanen, 1986] provides the theoretical founda

tion for the development of algorithms that can be used to obtain Boolean networks
that generalize well. According to this paradigm, simpler explanations for the avail
able data have higher predictive power. The induction problem can therefore be

posed as an optimization problem: given a labeled training set, derive the
less complex Boolean network that is consistent I with the training set.

Occam's razor, however, doesn't help in the choice of the particular way of mea
suring complexity that should be used. In general, different types of problems may

require different complexity measures. The algorithms described in section 3.1 and

3.2 are greedy algorithms that aim at minimizing one specific complexity measure:
the size of the overall network. Although this particular way of measuring com

plexity may prove inappropriate in some cases, we believe the approach proposed

can be generalized and used with minor modifications in many other tasks. The
problem of finding the smallest Boolean network consistent with the training set is

NP-hard [Garey and Johnson, 1979] and cannot be solved exactly in most cases.
Heuristic approaches like the ones described are therefore required.

2 Definitions

We consider the problem of supervised learning in an attribute based description

language. The attributes (input variables) are assumed to be Boolean and every
exemplar in the training set is labeled with a value that describes its class. Both
algorithms try to maximize the mutual information between the network output

and these labels.

Let variable X take the values {Xl, X2, ... xn } with probabilities p(Xd,P(X2) ... P(xn).

The entropy of X is given by H(X) = - Lj p(Xj) logp(xj) and is a measure

of the uncertainty about the value of X. The uncertainty about the value

of X when the value of another variable Y is known is given by H(XIY) =
- Li p(Yi) Lj p(Xj Iyd logp(xj Iyd·

The amount by which the uncertainty of X is reduced when the value of variable Y

is known, I(Y, X) = H(X) - H(XIY) is called the mutual information between Y
and X. In this context, Y will be a variable defined by the output of one or more
nottes in the network and X will be the target value specified in the training set.

1 Up to some specified level.

Learning Complex Boolean Functions: Algorithms and Applications 913

3 Algorithms

3.1 Muesli - An algorithm for the design of multi-level logic networks

This algorithm derives the Boolean network by performing gradient descent in the
mutual information between a set of nodes and the target values specified by the
labels in the training set.

In the pseudo code description of the algorithm given in figure 1, the function 'L (S)
computes the mutual information between the nodes in S (viewed as a multi-valued
variable) and the target output.

muesli(nlist) {

}

nlist ;- sorLnlisLby1(nlist,1);
sup;- 2;

while (noLdone(nlist) /\ sup < max_sup) {

act ;- 0;

}

do {

act + +;
success;- improvLmi(act, nlist, sup);

} while (success = FALSE /\ act < max_act);

if (success = TRUE) {
sup;- 2;

while (success = TRUE)
success;- improve_mi(act, nlist, sup);

}
else sup + +;

improVLmi(act, nlist, sup) {

}

nlist;- sorLnlisLby1(nlist, act);

1;- besLlunction(nlist, act, sup);
if (I(nlist[l:act-l] U f) > I(nlist[l:act])) {

nlist ;- nlist U I;
return(TRUE);

}
else return(F ALSE) j

Figure 1: Pseudo-code for the Muesli algorithm.

The algorithm works by keeping a list of candidate nodes, nlist, that initially con
tains only the primary inputs. The act variable selects which node in nl ist is active.
Initially, act is set to 1 and the node that provides more information about the out
put is selected as the active node. Function imp1'ove_miO tries to combine the
active node with other nodes as to increase the mutual information.

Except for very simple functions, a point will be reached where no further improve-

914 Oliveira and Sangiovanni-Vincentelli

ments can be made for the single most informative node. The value of act is then
increased (up to a pre-specified maximum) and improve_mi is again called to select
auxiliary features using other nodes in ntist as the active node. If this fails, the
value of sup (size of the support of each selected function) is increased until no
further improvements are possible or the target is reached.

The function sorLnlisLbyJ(nlist, act) sorts the first act nodes in the list by de
creasing value of the information they provide about the labels. More explicitly, the

first node in the sorted list is the one that provides maximal information about the
labels. The second node is the one that will provide more additional information
after the first has been selected and so on.

Function improve_miO calls besLfunction(nlist, act, sup) to select the Boolean
function f that takes as inputs node nlist[act] plus s'up-1 other nodes and maximizes

I(nlist[l : act -1] U f). When sup is larger than 2 it is unfeasible to search all 22 s UP

possible functions to select the desired one. However, given sup input variables,
finding such a function is equivalent to selecting a partition2 of the 28UP points in
the input space that maximizes a specific cost function. This partition is found using
the Kernighan-Lin algorithm [Kernighan and Lin, 1970] for graph-partitioning.

Figure 2 exemplifies how the algorithm works when learning the simple Boolean
function f = ab + cde from a complete training set. In this example, the value of
sup is always at 2. Therefore, only 2 input Boolean functions are generated.

mi([]) = 0.0

Selecty = cd

a -
nlist = [a,b,c,d,e]

act = 1

mi([a]) = 0.16

nlist = [x,y,e,a,b,c,d]

act = 2

mi([x,y]) = 0.74

Select x = ab

nlist = [x,c,d,e,a,b]

act = 1

mi([xD = 0.52

Select w = ye

nlist = [x,y,e,a,b,c,d]

act = 2

mi([x,w]) = 0.93

Fails to fmd f(x,?) with mi([f]) > 0.52

Set act = 2;

nlist = [x,c,d,e,a,b]

act = 2

mi([x,c]) = 0.63

Fails to find f(w,?) with mi([x,f]) > 0.93

Set act = 0; Select Z = x+w

nlist = [z,x,y,a,b,c,d,e]

act = 1

mi([z]) = 0.93

Figure 2: The muesli algorithm, illustrated

2 A single output Boolean function is equivalent to a partition of the input space in two

sets.

Learning Complex Boolean Functions: Algorithms and Applications 915

3.2 Fulfringe - a network generation algorithm based on decision trees

This algorithm uses binary decision trees [Quinlan, 1986] as the basic underlying
representation. A binary decision tree is a rooted, directed, acyclic graph, where
each terminal node (a node with no outgoing edges) is labeled with one of the
possible output labels and each non-terminal node has exactly two outgoing edges

labeled 0 and 1. Each non-terminal node is also labeled with the name of the
attribute that is tested at that node. A decision tree can be used to classify a
particular example by starting at the root node and taking, until a terminal is

reached, the edge labeled with the value of the attribute tested at the current node.

Decision trees are usually built in a greedy way. At each step, the algorithm greedily
selects the attribute to be tested as the one that provides maximal information about
the label of the examples that reached that node in the decision tree. It then recurs
after splitting these examples according to the value of the tested attribute.

Fulfringe works by identifying patterns near the fringes of the decision tree and
using them to build new features. The idea was first proposed in [Pagallo and
Haussler, 1990].

N
A

1\0
+ 0

!A o + "A + 0
p&-g -p&-g p&g -p&g

A A
~+ 1\

+

A
+~

A
+1\

+ + + +

p+g -p+g p+-g -p+-g

MMMM
+ + + +

+ + + +

p(t)g

Figure 3: Fringe patterns identified by fuifringe

Figure 3 shows the patterns that fulfringe identifies . Dcfringe, proposed in [Yang
et al., 1991], identifies the patterns shown in the first two rows. These patterns
correspond to 8 Boolean functions of 2 variables . Since there are only 10 distinct
Boolean functions that depend on two variables3 , it is natural to add the patterns
in the third row and identify all possible functions of 2 variables. As in dcftinge

and fringe, these new composite features are added (if they have not yet been
generated) to the list of available features and a new decision tree is built. The

3The remaining 6 functions of 2 variables depend on only one or none of the variables.

916 Oliveira and Sangiovanni-Vincentelli

process is iterated until a decision tree with only one decision node is built. The
attribute tested at this node is a complex feature and can be viewed as the output

of a Boolean network that matches the training set data.

3.3 Encoding multivalued outputs

Both muesli and Julfringe generate Boolean networks with a single binary valued

output. When the target label can have more than 2 values, some encoding must be

used. The prefered solution is to encode the outputs using an error correcting code

[Dietterich and Bakiri, 1991] . This approach preserves most of the compactness of

a digital encoding while beeing much less sensitive to errors in one of the output
variables. Additionally, the Hamming distance between an observed output and the

closest valid codeword gives a measure of the certainty of the classification. This

can be used to our advantage in problems where a failure to classify is less serious

than the output of a wrong classification.

4 Performance evaluation

To evaluate the algorithms, we selected a set of 11 functions of variable complexity.

A complete description of these functions can be found in [Oliveira, 1994]. The first

6 functions were proposed as test cases in [Pagallo and Haussler, 1990] and accept
compact disjoint normal form descriptions. The remaining ones accept compact

multi-level representations but have large two level descriptions. The algorithms

described in sections 3.1 and 3.2 were compared with the cascade-correlation algo
rithm [Fahlman and Lebiere, 1990] and a standard decision t.ree algorithm analog

to ID3 [Quinlan, 1986]. As in [Pagallo and Haussler, 1990], the number of examples

in the training set was selected to be equal to ~ times the description length of the
function under a fixed encoding scheme, where f was set equal to 0.1. For each

function, 5 training sets were randomly selected. The average accuracy for the 5
runs in an independent set of 4000 examples is listed in table 1.

Table 1: Accuracy of the four algorithms.

Function # inputs # examples Accuracy

muesli fulfringe ID3 CasCor

dnfl 80 3292 99.91 99.98 82.09 75.38

dnf2 40 2185 99.28 98.89 88.84 73.11

dnf3 32 1650 99.94 100.00 89.98 79 .19

dnf4 64 2640 100.00 100.00 72.61 58.41

xor4_16 16 1200 98.35 100.00 75.20 99.91

xor5_32 32 4000 60.16 100.00 51.41 99.97

sm12 12 1540 99.90 lUO.OO 99.81 98.98

sm18 18 2720 100.00 99.92 91.48 91.30

str18 18 2720 100.00 100.00 94.55 92.57

str27 27 4160 98.64 99.35 94.24 93.90

carry8 16 2017 99.50 98.71 96.70 99.22

Average 95.97 99.71 85.35 87.45

The results show that the performance of muesli and fulfringe is consistently su-

Learning Complex Boolean Functions: Algorithms and Applications 917

perior to the other two algorithms. Muesli performs poorly in examples that have
many xor functions, due the greedy nature of the algorithm. In particular, muesli
failed to find a solution in the alloted time for 4 of the 5 runs of xor5_32 and found
the exact solution in only one of the runs.

ID3 was the fastest of the algorithms and Cascade-Correlation the slowest. Fulfringe

and muesli exhibited similar running times for these tasks. 'rVe observed, however,
that for larger problems the runtime for fulfringe becomes prohibitively high and

muesli is comparatively much faster.

5 Applications

To evaluate the techniques described in real problems, experiments were performed
in two domains: noisy image reconstruction and handwritten character recognition.

The main objective was to investigate whether the approach is applicable to prob
lems that are not known to accept a compact Boolean network representation. The

outputs were encoded using a 15 bit Hadamard error correcting code.

5.1 Image reconstruction

The speed required by applications in image processing makes it a very interesting
field for this type of approach. In this experiment, 16 level gray scale images were
corrupted by random noise by switching each bit with 5% probability. Samples of

this image were used to train a network in the reconstruction of the original image.

The training set consisted of .5x5 pixel regions of corrupted images (100 binary
variables per sample) labeled with the value of the center pixel. Figure 4 shows a

detail of the reconstruction performed in an independent test image by the network
obtained using fulfringe.

Original image

corrupted image

Reconstructed image

Figure 4: Image reconstruction experiment

5.2 Handwritten character recognition

The NIST database of handwritten characters was used for this task. Individually
segmented digits were normalized to a 16 by 16 binary grid. A set of 53629 digits
was used for training and the resulting network was tested in a different set of 52467

918 Oliveira and Sangiovanni-Vincentelli

digits. Training was performed using muesli. The algorithm was stopped after a pre
specified time (48 hours on a DECstation 5000/260) ellapsed. The resulting network

was placed and routed using the TimberWolf [Sechen and Sangiovanni-Vincentelli,
1986] package and occupies an area of 78.8 sq. mm. using 0.8fl technology.

The accuracy on the test set was 93.9%. This value compares well with the per
formance obtained by alternative approaches that use a similarly sized training set
and little domain knowledge, but falls short of the best results published so far.
Ongoing research on this problem is concentrated on the use of domain knowledge

to restrict the search for compact networks and speed up the training.

Acknowledgements

This work was supported by Joint Services Electronics Program grant F49620-93-C-0014.

References

[Blumer et al., 1987] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's

razor. Information Processing Letters, 24:377-380, 1987.

[Dietterich and Bakiri, 1991] T. G. Dietterich and G. Bakiri. Error-correcting output

codes: A general method for improving multiclass inductive learning programs. In Pro
ceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), pages

572-577. AAAI Press, 1991.

[Fahlman and Lebiere, 1990] S.E. Fahlman and C. Lebiere. The cascade-correlation learn

ing architecture. In D.S. Touretzky, editor, Advances in Neural Information Processing

Systems, volume 2, pages 524-532, San Mateo, 1990. Morgan Kaufmann.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. Freeman, New York. 1979.

[Kernighan and Lin, 1970] B. W. Kernighan and S. Lin. An efficient heuristic procedure

for partitioning graphs. The Bell System Technical Journal, pages 291-307, February
1970.

[Murray and Smith, 1988] Alan F. Murray and Anthony V. W. Smith. Asynchronous vlsi
neural networks using pulse-stream arithmetic. IEEE Journal of Solid-State Circuits,

23:3:688-697, 1988.

[Oliveira, 1994] Arlindo L. Oliveira. Inductive Learning by Selection of Minimal Repre

sentations. PhD thesis, UC Berkeley, 1994. In preparation.

[Pagallo and Haussler, 1990] G. Pagallo and D. Haussler. Boolean feature discovery in
empirical learning. Machine Learning, 1, 1990.

[Quinlan, 1986] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,

1986.

[Rissanen, 1986) J. Rissanen. Stochastic complexity and modeling. Annals of Statistics,
14:1080-1100, 1986.

[Sechen and Sangiovanni-Vincentelli , 1986J

Carl Sechen and Alberto Sangiovanni-Vincentelli. TimberWolf3.2: A new standard cell
placement and global routing package. In Proceedings of the 23rd Design Automation

Conference, pages 432-439, 1986.

[Yang et al., 1991] D. S. Yang, L. Rendell, and G. Blix. Fringe-like feature construction:

A comparative study and a unifying scheme. In Proceedings of the Eight International
Conference in Machine Learning, pages 223-227, San Mateo, 1991. Morgan Kaufmann.

