
Learning Complexity-Aware Cascades for Deep Pedestrian Detection

Zhaowei Cai

UC San Diego

zwcai@ucsd.edu

Mohammad Saberian

Yahoo Labs

saberian@yahoo-inc.com

Nuno Vasconcelos

UC San Diego

nuno@ucsd.edu

Abstract

The design of complexity-aware cascaded detectors,

combining features of very different complexities, is con-

sidered. A new cascade design procedure is introduced, by

formulating cascade learning as the Lagrangian optimiza-

tion of a risk that accounts for both accuracy and complex-

ity. A boosting algorithm, denoted as complexity aware cas-

cade training (CompACT), is then derived to solve this op-

timization. CompACT cascades are shown to seek an opti-

mal trade-off between accuracy and complexity by pushing

features of higher complexity to the later cascade stages,

where only a few difficult candidate patches remain to be

classified. This enables the use of features of vastly differ-

ent complexities in a single detector. In result, the feature

pool can be expanded to features previously impractical for

cascade design, such as the responses of a deep convolu-

tional neural network (CNN). This is demonstrated through

the design of a pedestrian detector with a pool of features

whose complexities span orders of magnitude. The result-

ing cascade generalizes the combination of a CNN with an

object proposal mechanism: rather than a pre-processing

stage, CompACT cascades seamlessly integrate CNNs in

their stages. This enables state of the art performance on

the Caltech and KITTI datasets, at fairly fast speeds.

1. Introduction

Pedestrian detection is an important problem in com-

puter vision. Many of its applications, e.g. smart vehicles

or surveillance, require real-time detection. Since, under

the popular sliding window paradigm, there are close to a

million windows per 640×480 pixel image, detection com-

plexity can easily become intractable. This is an imped-

iment to the deployment of sophisticated classifiers, such

as deep learning models, in the pedestrian detection arena.

The most popular architecture for real-time object detection

is the detector cascade of [32]. It exploits the fact that most

image patches can be assigned to the background class by

evaluation of a few simple cascade stages. This guarantees

computational efficiency without compromising accuracy,

since the few resulting false positives can be rejected by

more complex detectors, in the late cascade stages. Given

that these are rarely used, their complexity is not an imped-

iment to high detection speeds. In result, it is possible to

have both efficient and accurate detection.

While the cascade detection principle is intuitive, its im-

plementation is far from trivial. Early cascade designs re-

quired extensive heuristics to determine the cascade config-

uration [32, 35, 3], lacking the ability to explicitly optimize

the trade-off between detection accuracy and complexity. A

commonly used assumption is that all features have equiv-

alent complexity. This significantly simplifies the design,

which reduces to choosing the features that maximize de-

tection accuracy. In fact, popular methods [3, 4] simply use

a boosting algorithm (typically AdaBoost [8]) to design a

non-cascaded classifier and then transform it into a cascade,

by addition of thresholds. These approaches suffer from

two main problems. First, they do not aim to select features

that optimize the trade-off between detection accuracy and

complexity. Second, the “equivalent feature complexity”

hypothesis only produces sensible cascades when applied

to features that indeed have similar complexity. This con-

straint is, however, frequently violated [1, 23, 37].

In fact, it has been remarkably difficult to accommo-

date, in cascade learning, features significantly heavier than

those in common use. This problem is particularly pressing

given the recent success of deep learning in object recogni-

tion [17, 29]. The intractable computation of a deep learn-

ing model under the sliding window paradigm is usually ad-

dressed with recourse to object proposal mechanisms [31],

giving rise to a two-stage cascade that is far from optimal,

in terms of the trade-off between detection accuracy and

speed. For pedestrian detection, object proposals are fre-

quently implemented with weak pedestrian detectors, some-

times cascaded detectors themselves [15]. Due to the ad-

hoc nature of these solutions, deep learning models have

not been competitive for pedestrian detection, contradicting

their recognition and classification performance [17, 29].

In this work, we address these problems by seeking an al-

gorithm for optimal cascade learning under a criterion that

penalizes both detection errors and complexity. For the lat-

3361

ter, we introduce a measure of implementation complexity

that allows the definition of a complexity risk akin to the

empirical risk commonly used for classifier design. This

makes it possible to define quantities such as complexity

margins and complexity losses, and account for these in the

learning process. We do this with recourse to a Lagrangian

formulation, which optimizes for the usual classification

risk under a constraint in the complexity risk. A boosting

algorithm that minimizes this Lagrangian is then derived.

This algorithm, denoted Complexity-Aware Cascade Train-

ing (CompACT), is shown to select inexpensive features in

the early cascade stages, pushing the more expensive ones

to the later stages. This enables the combination of features

of vastly different complexities in a single detector. These

properties are demonstrated by the successful application of

CompACT to the problem of pedestrian detection, using a

pool of features ranging from Haar wavelets to deep convo-

lutional neural networks (CNNs).

Overall, this work makes three major contributions.

First, it proposes a novel algorithm for learning a complex-

ity aware cascade, so as to achieve an optimal trade-off be-

tween accuracy and speed. To the best of our knowledge,

this is the first algorithm to explicitly account for variable

feature complexity in cascade learning, supporting weak

learners of widely different complexities. Second, Com-

pACT seamlessly integrates handcrafted and CNN features

in a unified detector. This generalizes the object proposal

architecture, guaranteeing the seamless integration of CNN

stages with stages of any other complexity. Finally, a Com-

PACT cascade for pedestrian detection is shown to achieve

state of the art results on both Caltech [6] and KITTI [11],

at faster speeds than the closest competitors.

2. Related Works

Detector cascades learned with boosting are commonly

used for detecting template-like objects, e.g. faces [32,

3, 35, 34], pedestrians [4, 25], or cars [26]. Early ap-

proaches used heuristics to find a cascade configuration of

good trade-off between classification accuracy and com-

plexity [32, 3, 35, 34]. More recently, optimization of the

accuracy-complexity trade-off has started to receive atten-

tion [19, 25, 26, 38]. [38] empirically added a complexity

term to the objective function of RealBoost. [19, 25, 26] in-

troduced the Lagrangian formulation that we adopt, but use

a single feature family throughout the cascade. Since early

cascades stages must be very efficient, this implies adopting

simple weak learners, e.g. decision stumps.

This has motivated extensive work on the design of effi-

cient features. For pedestrian detection, the integral chan-

nel features of [5] have recently become popular. They ex-

tend the Haar-like features of [32] into a set of color and

histogram-of-gradients (HOG) channels. More recently, a

computationally efficient version of [5], denoted the aggre-

gate channel features (ACF), has been introduced in [4].

[23] complemented ACF with local binary patterns (LBP)

and covariance features, for better detection accuracy.

Several works proposed alternative feature channels,

obtained by convolving different filters with the original

HOG+LUV channels [36, 37, 1, 21]. The SquaresChnFtrs

of [1] reduced the large number of features of [5, 32] to

16 box-like filters of various sizes. [21] extended the lo-

cally decorrelated features of [13] to ACF, learning four

5×5 PCA-like filters from each of the ACF channels. In-

stead of empirical filter design, Zhang et al [36] exploited

prior knowledge about pedestrian shape to design informed

filters. They later found, however, that such filters are ac-

tually not needed [37]. Instead, the number of filters ap-

pears to be the most important variable: features as simple

as checkerboard-like patterns, or purely random filters, can

achieve very good performance, as long as there are enough

of them. Although state-of-the-art performance has been

achieved [23, 37], they are relatively slow, due to the con-

volution computations with several hundred filters.

While deep convolutional learning classifiers have

achieved impressive results for general object detection

[12, 14], e.g. on VOC2007 or ImageNet, they have not ex-

celled on pedestrian detection [27, 22]. Benchmarks like

Caltech [6] are still dominated by classical handcrafted fea-

tures (see e.g. a recent comprehensive evaluation of pedes-

trian detectors by [2]). Recently, [15] transferred the R-

CNN framework to the pedestrian detection task, showing

some improvement over previous deep learning detectors

[27, 22]. However, the gap to the state of the art is still

significant. Deep models also tend to be too heavy for slid-

ing window detection. This is usually addressed with ob-

ject proposal mechanisms [12, 33, 15] that pre-select the

most promising image patches. This two-stage decompo-

sition (proposal generation and classification) is a simple

cascade mechanism. In this work, we consider the seamless

combination of these two stages into a cascade explicitly de-

signed to account for both accuracy and complexity, so as

to achieve detectors that are both highly accurate and fast.

3. Complexity-Aware Cascade Training

In this section we introduce the CompACT algorithm.

3.1. AdaBoost

A decision rule ℎ(�) = ����[� (�)] of predictor � (�)
maps a feature vector � ∈ � to a class label � ∈ � =
{−1, 1}. Boosting learns a strong decision rule by combin-

ing a set of weaker learners ��(�),

� (�) =
∑

�

��(�), (1)

using functional gradient descent on a classification risk

[9, 20]. AdaBoost [8] is based on the exponential loss

3362

�(�� (�)) = �−�� (�), minimizing the empirical risk

ℛ� [�] ≃
1

∣��∣

∑

�

�−��� (��), (2)

on training samples �� = {(��, ��)}. Boosting iterations

compute the functional derivative of (2) along the direction

of weak learner �(�) at the location of the current predictor

� (�),

< �ℛ� [�], � > =
�

��
ℛ� [� + ��]

∣

∣

�=0

=
1

∣��∣

∑

�

[�

��
�−��(� (��)+��(��))

]∣

∣

∣

�=0

= −
1

∣��∣

∑

�

�����(��), (3)

where �� = �(��) = �−��� (��). The predictor is updated

by selecting the steepest descent direction within a weak

learner pool G = {�1(�), ⋅ ⋅ ⋅ , ��(�)},

�∗(�) = argmax
�∈G

< −�ℛ� [�], � >

= argmax
�∈G

1

∣��∣

∑

�

�����(��). (4)

The optimal step size for the update is

�∗ = argmin
�

ℛ� [� + ��∗]. (5)

For binary �∗(�), this has a closed form solution

�∗ =
1

2
log

∑

�∣��=�∗(�) �
�
�

∑

�∣�� ∕=�∗(�) �
�
�

. (6)

Otherwise, the optimal step size is found by line search.

3.2. Complexity-Aware Learning

Complexity-aware learning aims for the best trade-off

between classification accuracy and complexity. This can

be formulated as a constrained optimization problem, where

classification risk is minimized under a bound on a com-

plexity risk �� [�],

� ∗(�) = argmin
�
�� [�] �.�. �� [�] < �, (7)

and is identical to the minimization of the Lagrangian

ℒ[�] = ℛ� [�] + �ℛ� [�], (8)

where � is a Lagrange multiplier that only depends on �. To

define a complexity risk, we note that (2) can be written as

ℛ� [�] ≃
1

∣��∣

∑

�

�[�(��, � (��))], (9)

with �(�) = �−� and �(�, � (�)) = �� (�). The function

�(.) is the margin of example � under predictor � (.) and

measures the confidence of the classification. Large posi-

tive margins indicate that � is correctly classified with high

confidence, large negative margins the same for incorrect

classification, and a margin zero that the example is on the

classification boundary. The loss �(.) is usually monoton-

ically decreasing, penalizing all examples with less than a

small positive margin. This forces the learning algorithm

to concentrate on these examples, so as to produce as few

negative margins as possible. The exponential loss of Ad-

aBoost makes the penalty exponential on the confidence of

incorrectly classified examples.

In this work, we consider complexity risks of a similar

form

ℛ� [�] ≃
1

∣��∣

∑

�

� [�(��, � (��))], (10)

where �[�, � (�)] is a measure of complexity for the clas-

sification of example � under � (.) and �(.) a non-negative

loss function that penalizes complexity. Drawing inspira-

tion from the classification risk, we measure complexity

with the complexity margin

�[�, � (�)] = �Ω(� (�)), (11)

where Ω(� (�)) is a function of the time required to evaluate

� (�), e.g. a number of machine operations or some other

empirical measure of complexity. The complexity margin

of (11) assigns positive (negative) complexity to positive

(negative) examples, reflecting the fact that the computa-

tion spent on negative examples is “wasted” or “negative”

while that spent on positives is “justified” or “positive”.

While positives have to survive all cascade stages, negatives

should be rejected with little computation. The complexity

loss �(�) then determines the complexity-aware behavior

of learning algorithms. For example, a decreasing �(�) for

� < 0, penalizes negative examples of large complexity.

This encourages classifiers that reject negatives with as little

computation as possible. On the other hand, an increasing

�(�) for � > 0 penalizes positives of large complexity.

3.3. Embedded Cascade

A cascaded classifier is implemented as a sequence of

classification stages ℎ�(�) = ���[��(�)+��], where �� is a

threshold. A popular architecture is the embedded cascade,

whose predictor has the embedded structure,

��(�) = ��−1(�) + ��(�) =
�

∑

�=1

��(�). (12)

In this paper, the cascade complexity is measured by the

average per stage complexity,

Ω(� (�)) =
1

�

�
∑

�=1

��(�)Ω(��(�)), (13)

3363

where, using �[⋅] to denote the Heaviside step function,

��(�) =
�−1
∏

�=1

�
[

��(�) + ��
]

, (14)

is an indicator of examples that survive all stages prior to �,

i.e. ��(�) = 1 if ��(�) + �� > 0, ∀� < �, and ��(�) = 0
otherwise. Since the average complexity is bounded by the

largest weak learner complexity, it leads to a more balanced

Lagrangian in (8) than the total complexity.

3.4. Cascade Boosting

The minimization of (8) requires the functional deriva-

tive of the Lagrangian along the direction of weak learner

�(�) at the location of the current predictor � (�),

< �ℒ[�], � >=< �ℛ� [�], � > +� < �ℛ� [�], � >,
(15)

where < �ℛ� [�], � > is as in (3). To compute the deriva-

tive of the complexity risk we define �(�) as �(�) = 1 for

� > 0 and �(�) = 0 otherwise, and write

Ω(� (�) + ��(�))

= Ω(� (�)) + �(�)
[

Ω(� (�) + �(�))− Ω(� (�))
]

= Ω(� (�))[1− �(�)] + �(�)Ω(� (�) + �(�))

= Ω(� (�))[1− �(�)]

+
�(�)

�+ 1

[

�
∑

�=1

��(�)Ω(��(�)) + ��+1(�)Ω(�(�))
]

= Ω(� (�))

[

1− �(�) +
�

�+ 1
�(�)

]

+
�(�)

�+ 1
��+1(�)Ω(�(�))

= Ω(� (�))[1− �(�)��] + �(�)
��+1(�)

�+ 1
Ω(�(�)),

where �� = 1− �
�+1 and we have used (13). Since �(�) is

not differentiable, it is approximated by �(�) ≈ �(�), where

�(�) is a differentiable function with �(0) = 0, leading to

< �ℛ� [�], � > (16)

=
1

∣��∣

∑

�

[

�

��
�
[

��Ω
(

� (��) + ��(��)
)]

]∣

∣

∣

∣

�=0

=−
1

∣��∣

∑

�

���(��, ��)

[

��+1(��)

�+ 1
Ω(�(��))− ��Ω(� (��))

]

,

where

�(��, ��) = −� ′ [��Ω(� (��))]�
′(0). (17)

Each boosting iteration updates � (�) with a step along

the steepest descent direction of (15) within the weak

learner learner pool G,

�∗(�) = argmax
�∈G

< −�ℒ[�], � > . (18)

Combining (3), (15), and (16) and denoting �� = ��+1(��),
�� = �(��, ��), �� = �(��), and �� = �(��, ��), this is the

direction that maximizes

�[�] =
1

∣��∣

∑

�

��

[

���� +
�����Ω(��)

�+ 1

]

. (19)

Note that the term ��Ω(� (��)) of (16) does not depend on

� and plays no role in the optimization. The optimal step

size for the update is

�∗ = argmin
�

ℒ[� + ��∗]. (20)

The cascade predictor is finally updated with

����(�) = � (�) + �∗�∗(�). (21)

Note that, from (17), �′(0) is a constant that rescales all ��
equally. Hence, in (19), it can be absorbed into �. Without

loss of generality, we assume that �′(0) = 1. This boosting

algorithm is denoted the complexity aware cascade training

(CompACT) boosting algorithm.

3.5. Properties

CompACT has a number of interesting properties. First,

the contribution of each training example to the complex-

ity term in (19) is multiplied by ��. Hence, only examples

that survive the current cascade � contribute to the com-

plexity term. We refer to the �� such that �� = 1 as ac-

tive examples. Note that, given the set of active examples,

��(�) = {(��, ��) ∈ ��∣�� = 1}, associated with � , (19)

can be replaced by

�[�] =
1

∣��∣

⎛

⎝

∑

�

������ +
∑

�∣��=1

��
���Ω(��)

�+ 1

⎞

⎠ . (22)

This complies with the intuition that examples which do not

reach stage � + 1 during the cascade operation should not

affect the complexity term for that stage.

Second, most implementations of cascaded classifiers

use weak learners of example-independent complexity, i.e.

Ω(�(��)) = Ω�, ∀�. While this does not hold for the cascade

in general (different examples can be rejected at different

stages), it holds for the examples in ��, i.e. Ω(� (��)) =
Ω� , ∀�� ∈ ��. In this case, the complexity weights only

depend on the label ��. Defining �+ = −� ′[Ω�] (�− =
−� ′[−Ω�]) as the value of �� for positive (negative) exam-

ples, and �−� (�+�) as the percentage of negative (positive)

active examples, (19) reduces to

�[�] =
1

∣��∣

∑

�

�����(��)−
�

�+ 1

∣��∣

∣��∣
��Ω�, (23)

with �� = �−� �
−
� − �+��

+
� . Since ∣��∣ decreases with cas-

cade length, the rescaling of � by
∣��∣
∣��∣

gradually weakens

3364

Figure 1. Eight 2×2 checkerboard-like filters used in this work.

Red (Green) is used to represent value +1 (-1).

the complexity constraint as the cascade grows. While in

the early iterations there is pressure to select weak learners

of reduced complexity, this pressure reduces as iterations

progress. Gradually, complex weak learners are penalized

less and the algorithm asymptotically reduces to a cascaded

version of AdaBoost. This makes intuitive sense, since the

latter cascade stages process a much smaller percentage of

the examples than the earlier ones and have much less im-

pact on the overall complexity. On the other hand, since

the surviving examples are the most difficult to classify, ac-

curate classification requires weak learner accuracy to in-

crease with cascade length. This usually (but not always)

implies that weak learner complexity increases as well be-

cause powerful features usually require heavy computation.

By pushing the complexity to the later stages, the algo-

rithm can learn cascades that are both accurate and com-

putationally efficient. This effect is reinforced by the fact

that 1/(�+ 1) also decreases with cascade length.

The loss �(�) enables fine-tuning of this general be-

havior, via �� . In this work, we adopt the hinge loss

�(�) = max(0,−�), for which �−
� = 1, �+

� = 0 and

�� = �−� . This assigns no penalty to the complexity of

positive examples, encouraging CompACT to focus on the

fast rejection of negatives.

4. Pedestrian Detection

This section discusses the proposed pedestrian detector.

4.1. Feature Pools of Variable Complexity

CompACT seeks the optimal trade-off between accuracy

and complexity, at each cascade stage. This is most effec-

tive when the feature pool is composed of features of vari-

ous complexities. In the cascade literature, where most de-

tectors use a single feature family, it is common practice to

pre-compute a large number of feature responses at all im-

age locations, before any detection takes place [21, 37, 23].

This, however, has unfeasible complexity if the feature pool

is very large (e.g. the 200,000∼500,000 features proposed

per patch in [37, 23]) or some features are computationally

intense (e.g. the CNN features of [17, 29]). In these cases,

it is neither tractable nor necessary to pre-compute all fea-

tures at all image locations. For example, a cascade of 2048

decision trees of depth 2, will evaluate at most 4096 fea-

tures per patch. Since the cascade rejects most candidate

patches after a few stages, the most intensive features (e.g.

CNN) are unlikely to be needed at most image locations.

Hence, while pre-computation is useful for low-complexity

features, complex features should be evaluated as necessary.

We refer to the former as pre-computed features and the lat-

ter as computed just-in-time (JIT).

4.1.1 Pre-computed Features

Our pre-computed feature set consists of ACF [4], mostly

due to its computational efficiency. Following [4], we

extract 10 LUV+HOG channels. Since these are pre-

computed, the complexity of using an ACF feature in any

cascade stage is 1.

4.1.2 Just-in-time Features

The JIT pool contains several feature subsets. The ability

to weigh accuracy vs. computation enables CompACT to

seamlessly combine these feature sets.

SS: The self-similarity (SS) features of [28] capture the dif-

ference between local patches and have achieved good per-

formance on edge detection tasks [18, 7]. Following [18, 7],

we compute SS features on a 12×6 grid of the 16×8 ACF

patch. This results in

(

72
2

)

× 10 = 25, 560 SS features per

patch. Since the computation of an SS feature involves 2

ACF values, its complexity is 2.

CB: Checkerboard features (CB) are the result of convolv-

ing the ACF channels with a set of checkerboard filters. [37]

has shown that a simple set of such features could achieve

state-of-the-art performance for pedestrian detection. Based

on their observation that the number of features determines

performance (rather than feature type), we adopt the set of

8 simple 2×2 checkerboard filters of Figure 1. A CB has

implementation complexity of 4.

LDA: Locally decorrelated HOG features, computed with

linear discriminant analysis (LDA), have shown some su-

periority for object detection over HOG features [13]. [21]

showed that the computation of these features on ACF chan-

nels leads to a big improvement over ACF. We adopt this

feature family but, unlike [21], restrict the filter size to 3×3.

LDA features have complexity 9.

CNN: In addition to operators defined over the ACF chan-

nels, we consider a set of CNN features. The CNN is

a smaller version of the popular model of [17], with five

convolutional layers and one fully connected layer. The

CNN is applied to 64×64 image patches, the first convo-

lutional layer has 32 filters, the remaining four have 64,

and the fully connected layer consists of 1024 hidden units.

All convolutional filters have size 3×3, and stride 1. The

CNN model was originally trained with the ILSVRC14-

DET dataset [24], using the cropped object patches, and

then fine tuned on the target pedestrian dataset. For feature

extraction, we only use the output of the 5�ℎ convolutional

layer, which can be seen as CNN feature channels, similar

3365

to ACF. These features are denoted as CNN. Inspired by the

good performance and simplicity of the checkerboard fea-

tures on ACF, we also compute them on the conv5 feature

channels. These are denoted CNNCB features.

The complexity of CNN features is of a different nature

than that of ACF features. First, the implementation on a

different processor (GPU instead of CPU) makes the direct

comparison of number of operations meaningless. Second,

while the CNN features are computed on an “as needed”

basis, the structure of the network makes it inefficient to

compute each feature individually. If the CNN features are

needed to classify a certain image window, it is significantly

more efficient to compute the 5�ℎ layer responses over the

whole window than repeatedly applying the network to sub-

window regions. We account for these difficulties by setting

a trigger complexity Ω��� for CNN features. That is, in

(23), CNN features have Ω� = Ω��� if no CNN feature

has been used by the previous cascade stages to classify the

current patch. Once the CNN features are computed, the

complexity of using any CNN feature is 1, similar to ACF,

while CNNCB features have complexity 4.

4.2. Embedding Large CNN Models

Large CNN models [17, 29] are now popular in computer

vision. However, the use of these models in CompACT is

challenging, due to the computational cost of embedding

them in the iterative boosting algorithm. Our attempts to

do so revealed impractical. Instead, we limited the use of

a large CNN to the final cascade stage. Upon learning the

cascade, we simply used a large CNN classifier as the final

weak learner � of (21). Note that this has no loss of opti-

mality, since � was learned with (20). The CNN is simply a

descent direction of (18) unavailable to prior stages. It dif-

fers from the standard proposal+CNN approach in that 1)

not only the bounding boxes but also the confidence scores

of the cascade are forwarded to the deep CNN stage, and 2)

the combination of the proposal mechanism (cascade) and

large CNN is optimal under the well defined risk of (8).

In our implementation, we considered both the Alex [17]

and VGG [29] models. Previous implementations [12] have

warped cropped patches to size 227×227. However, such

large patches are computationally expensive. We adopted

the convolutional layers from the pre-trained models and

two (randomly initialized) fully connected layers of 2048

units each. These networks were fine tuned to the pedestrian

datasets using Caffe [16]. This allowed us to use the canon-

ical 128×64 size for the pedestrian template. For Alex-Net,

we used a convolution stride of 2 on the first layer, instead

of 4 in the original model. For VGG-Net, we used all as-

pects of the original configuration other than input size and

fully connected layers. While the original VGG-Net is ap-

proximately 8 times slower than the Alex-Net, the modified

VGG-Net is only twice as slow.

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

stage #

fe
a
tu

re
 t
y
p
e

ACF

SS

CB

LDA

CNN

CNNCB

Figure 2. Stage configuration of the proposed CompACT cascade

(blue) and the manually set cascade (green). Only one in five (fifty)

stages is shown for the CompACT (manual) cascade.

5. Experiments

Various experiments were performed to evaluate the per-

formance of CompACT cascades. All times reported are for

implementation on a single CPU core (2.10GHz) of an In-

tel Xeon E5-2620 server with 64GB of RAM. An NVIDIA

Tesla K40M GPU was used for CNN computations.

5.1. Cascade Configuration

We started by learning a CompACT cascade on the

Caltech pedestrian dataset, using the set up of [4].

The cascade used 2048 decision trees of depth 2, and

was bootstrapped 6 times during training, after stages

{32, 128, 256, 512, 1024, 1536}, using the procedure of

[10, 30]. Figure 2 presents the configuration of the learned

cascade, showing how features of different complexities

were chosen at different stages. ACF features, which are

the cheapest, were the only selected for the first 200 stages,

and rarely chosen after stage 500. This suggests that these

features are very efficient but not very discriminant. A bet-

ter trade-off between these two goals is achieved by the SS

features, which were selected throughout the training pro-

cess. It is particularly interesting that these features are

competitive even for the later cascade stages. This suggests

that they can be very discriminant despite their simplicity.

Similarly, CB features were selected across a large range

of cascade stages. This is unlike LDA features, which were

rarely selected and do not appear to achieve a good trade-off

between discrimination and complexity. More surprisingly,

the CNN features were also rarely selected, with CNNCB

dominating the late cascade stages. This suggests that the

CNNCB representation is more discriminant. Recall that,

while the CNN features are a little more efficient, Com-

pACT boosting weighs complexity less heavily than dis-

crimination in the late cascade stages.

3366

Table 1. Comparison to single-feature cascades (MR: log-average

miss-rate).

Method
Single Type CompACT

ACF SS CB LDA CNN CNNCB ACF CNN

MR 42.6 34.29 37.89 37.15 28.07 26.93 32.15 23.82

time (s) 0.07 0.08 0.23 0.16 0.87 2.05 0.11 0.28

Table 2. Comparison to multiple-feature cascades.

Method
ACF-based ACF-based+Small CNN

Boosting Manual CompACT Boosting Manual CompACT

MR 33.06 36.08 32.15 22.37 25.46 23.82

time (s) 0.41 0.11 0.11 2.69 0.28 0.28

5.2. Cascade Comparison

The CompACT cascade of the previous section was com-

pared to cascades of other architectures. Table 1 presents a

comparison to the predominant architecture in the literature:

cascades of a single feature type. In this case, the complex-

ity penalty of (23) is equal for all weak learners, and Com-

pACT reduces to standard boosting. This was used to pro-

duce “standard” cascades of ACF, SS, CB, LDA, CNN and

CNNCB features. We start by noting that the implemented

ACF outperforms [4]. This is due to the use of a different

bootstrapping strategy. Clearly, SS outperforms the other

ACF-based features (ACF, CB, and LDA), achieving higher

accuracy and speed. This confirms Figure 2, where SS fea-

tures were selected throughout the detector. CB and LDA

are more discriminant than ACF, but have higher complex-

ity. CNN features have higher accuracy than all ACF-based

features at the cost of a ten-fold increase in complexity over

ACF. Finally, CNNCB has the best detection results, but

only a marginal gain over CNN and much higher computa-

tion. When compared to CompACT cascades, all single fea-

ture cascades perform poorly. CompACT-ACF, which is re-

stricted to ACF-based features, has higher accuracy than all

ACF-based single feature cascades and is faster than most.

CompACT-CNN, which includes all features, has the best

detection performance. Note that not only its detection per-

formance is clearly superior to the best single-feature cas-

cade (CNNCB) but it is also 10 times faster.

Table 2 presents a comparison to cascades that combine

multiple features. “Boosting” is a cascade learned without

complexity constraints (� = 0 in (23)). This is equiva-

lent to applying existing cascade learning algorithms to the

diverse feature set considered in this work. “Manual” is

an attempt to “hand-code” the behavior of CompACT, by

restricting the boosting algorithm without complexity con-

straint (� = 0) to use certain types of features in different

cascade stages. This restriction is based on feature com-

plexity, as illustrated in Figure 2. The features were ranked

by complexity and used sequentially, each feature type be-

ing used in approximately 400 stages. The two sides of Ta-

ble 2 differ in that only ACF-based features were used on

the left, while both these and the small CNN model were

used on the right. In both cases, the “manual” cascade has

Table 3. Performance of CompACT cascades using large CNNs.

Method CompACT
Proposal Intermediate Embedded

Alex VGG Alex VGG Alex VGG

MR 18.92 19.59 14.77 16.18 13.71 14.96 11.75

time (s) 0.25 +0.01 +0.03 +0.01 +0.03 +0.1 +0.25

low complexity but poor accuracy. “Boosting,” on the other

hand, can produce a more accurate cascade. The price is,

however, a significant increase in complexity. CompACT

achieves the best trade-off between accuracy and complex-

ity. Note also the introduction of the small CNN model en-

ables substantially better cascades.

5.3. Large CNN models

While the previous experiments only use small models,

a number of experiments were performed with large mod-

els. These experiments were performed on both Caltech and

KITTI, in both cases using cascades of 4096 decision trees

of depth 5. These were bootstrapped 9 times, after stages

{32, 128, 256, 512, 1024, 1536, 2048, 2560, 3328}. For

Caltech, we used the training set size of [21], and the tem-

plate size 64×32 as in [4]. On KITTI, test images were

upsampled by 2 to detect pedestrians of height 25. This

enabled the use of a single template size (64×32). After

upsampling, the detected bounding boxes (minimum height

of 50) had twice the actual object size. They were rescaled

down by a factor of 2.

Table 3 compares the performance of the CompACT cas-

cade with small CNNs (denoted CompACT) with several

variants for the inclusion of large CNNs. In all these vari-

ants, the large CNN is computed only on windows selected

by CompACT. The times noted as ”+” reflect the added cost

of running the image patches through it. The “Proposal”

columns report to the use of the CompACT cascade as a

proposal mechanism [12, 15] for the CNN. The “Embed-

ded” columns report to the use of the large CNN as the last

stage of the cascade, as discussed in Section 4.2. Finally, the

“Intermediate” columns report to an intermediate between

these two, in which the large CNN stage was only applied

to the CompACT output, after non-maximum suppression

(NMS). However, the prediction was that of (21), i.e. the

CNN and CompACT scores were combined.

A number of interesting conclusions are possible. First,

under the proposal architecture, only VGG improved on the

CompACT cascade. For Alex, there was no benefit. This

shows that the CompACT cascade is already a very good

classifier. Second, the embedding of the large CNN on

the CompACT model achieved the best results in all cases.

This shows that the ComPACT cascade score contains in-

formation that complements that of the CNN scores. For

both CNN models, it was better to combine scores with the

CompACT cascade than to consider the latter simply as a

proposal mechanism. Finally, the theoretically more sound

embedding of the large CNN before NMS (”Embedding”)

3367

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

94.7% VJ

77.2% ConvNet

68.5% HOG

34.6% InformedHaar

29.8% ACF−Caltech+

24.8% LDCF

23.3% R−CNN

22.5% Katamari

21.9% SpatialPooling+

18.5% Checkerboards

18.9% CompACT

11.7% CompACT−Deep

Figure 3. Comparison to state-of-the-art on Caltech (reasonable).

always produced higher detection accuracy than the com-

bination after NMS (“Intermediate”). This, however, had

substantially less computation, since the number of bound-

ing boxes is approximately 10 times smaller after NMS.

5.4. Comparison with the state-of-the-art

Figure 3 compares two CompACT pedestrian detectors

to the state of the art on Caltech. CompACT refers to the

model using “ACF + small CNN features”, and CompACT-

Deep to the model with the embedded VGG model in

the last stage. CompACT achieves state-of-the-art perfor-

mance, close to [37]. Note that the competing detectors

- Katamari [2] and SpatialPooling+ [23] - combine many

features (HOG, LBP, spatial covariance, optical flow, mul-

tiple detectors, etc.) and are all quite slow. The same holds

for the state-of-the-art implementation of Checkerboards,

which requires a large number of filter channels [37]. On

the other hand, CompACT runs at 4 fps on a relatively slow

processor. The CompACT-Deep cascade performs even bet-

ter - 7 points better than the state-of-the-art [37] and 11

points better than the best deep pedestrian detector [15]!

CompACT-Deep runs at 2fps and is faster than the com-

peting detectors [2, 23, 37].

Figure 4 and Table 4 summarize performance on KITTI.

Since test images are larger than in Caltech, running times

are higher on this dataset. Nevertheless, the CompACT cas-

cade is the fastest of all the state-of-the-art detectors. Note

that it uses approximately the same number of feature chan-

nels (including the CNN model) as pAUCEnsT [23] and

FilteredICF [37], which are both much less accurate and

slower. R-CNN [15, 12], the only CNN detector on KITTI,

is also substantially weaker than CompACT-Deep (differ-

ence larger than 8 points). Overall, the only approach com-

petitive with the CompACT-Deep cascade is the Regionlets

method of [33]. However, this work only reports classifica-

tion times, excluding the time needed to generate proposals,

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

recall

p
re

c
is

io
n

KITTI Pedestrian (moderate)

DPM

DA−DPM

RCNN

FilteredICF

pAUCEnsT

Regionlets

CompACT

CompACT−Deep

Figure 4. Comparison to state-of-the-art on KITTI Pedestrian

(moderate).

Table 4. Comparison to state-of-the-art detectors on KITTI. Note:
∗ ignores the time needed to compute object proposals.

Methods Easy Moderate Hard Time (s)

DPM 45.50 38.35 34.78 10

DA-DPM 56.36 45.51 41.08 21

RCNN 61.61 50.13 44.79 4

FilteredICF 61.14 53.98 49.29 40

pAUCEnsT 65.26 54.49 48.60 60

Regionlets 73.14 61.15 55.21 1∗

CompACT 65.35 54.92 49.23 0.75

CompACT-Deep 70.69 58.74 52.71 1

which can be on the order of several seconds. This is equiv-

alent to only accounting for the processing time of the last

stage of the CompACT-Deep model, which is 0.25 second.

6. Conclusion

In this work, we proposed the CompACT boosting al-

gorithm for learning complexity-aware detector cascades.

By optimizing classification risk under a complexity con-

straint, CompACT produces cascades that push features of

high complexity to the later cascade stages. This has been

shown to enable the seamless integration of multiple fea-

ture families in a unified design. This integration extends to

features, such as deep CNNs, that were previously beyond

the realm of cascaded detectors. The proposed CompACT

cascades also generalize the popular combination of object

proposals+CNN, which they were shown to outperform. Fi-

nally, we have shown that a pedestrian detector learned by

application of CompACT to a diverse feature pool achieves

state-of-the-art detection rates on Caltech and KITTI, with

much faster speeds than competing methods.

Acknowledgements

This work was partially supported by NSF awards IIS-

1208522 and CCF-0830535.

3368

References

[1] R. Benenson, M. Mathias, T. Tuytelaars, and L. J. V. Gool.

Seeking the strongest rigid detector. In CVPR, pages 3666–

3673, 2013. 1, 2

[2] R. Benenson, M. Omran, J. Hosang, , and B. Schiele. Ten

years of pedestrian detection, what have we learned? In

ECCV, CVRSUAD workshop, 2014. 2, 8

[3] L. D. Bourdev and J. Brandt. Robust object detection via soft

cascade. In CVPR (2), pages 236–243, 2005. 1, 2

[4] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. IEEE Trans. Pattern Anal.

Mach. Intell., 36(8):1532–1545, 2014. 1, 2, 5, 6, 7

[5] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel

features. In BMVC, pages 1–11, 2009. 2

[6] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: An evaluation of the state of the art. IEEE Trans.

Pattern Anal. Mach. Intell., 34(4):743–761, 2012. 2

[7] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, pages 1841–1848, 2013. 5

[8] Y. Freund and R. E. Schapire. A decision-theoretic general-

ization of on-line learning and an application to boosting. In

EuroCOLT, pages 23–37, 1995. 1, 2

[9] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic

regression: A statistical view of boosting. The Annals of

Statistics, 28(2):337–407, 2000. 2

[10] J. Gall and V. S. Lempitsky. Class-specific hough forests for

object detection. In CVPR, pages 1022–1029, 2009. 6

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

CVPR, pages 3354–3361, 2012. 2

[12] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 2, 6, 7, 8

[13] B. Hariharan, J. Malik, and D. Ramanan. Discriminative

decorrelation for clustering and classification. In ECCV,

2012. 2, 5

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, pages 346–361, 2014. 2

[15] J. H. Hosang, M. Omran, R. Benenson, and B. Schiele. Tak-

ing a deeper look at pedestrians. In CVPR, 2015. 1, 2, 7,

8

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In MM, pages

675–678, 2014. 6

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012. 1, 5, 6

[18] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A

learned mid-level representation for contour and object de-

tection. In CVPR, pages 3158–3165, 2013. 5

[19] H. Masnadi-Shirazi and N. Vasconcelos. High detection-rate

cascades for real-time object detection. In ICCV, pages 1–6,

2007. 2

[20] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boost-

ing algorithms as gradient descent. In NIPS, pages 512–518,

1999. 2

[21] W. Nam, P. Dollár, and J. H. Han. Local decorrelation for im-

proved pedestrian detection. In NIPS, pages 424–432, 2014.

2, 5, 7

[22] W. Ouyang and X. Wang. Joint deep learning for pedestrian

detection. In ICCV, pages 2056–2063, 2013. 2

[23] S. Paisitkriangkrai, C. Shen, and A. van den Hengel.

Strengthening the effectiveness of pedestrian detection with

spatially pooled features. In ECCV, pages 546–561, 2014. 1,

2, 5, 8

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 2015. 5

[25] M. J. Saberian and N. Vasconcelos. Learning optimal em-

bedded cascades. IEEE Trans. Pattern Anal. Mach. Intell.,

34(10):2005–2018, 2012. 2

[26] M. J. Saberian and N. Vasconcelos. Boosting algorithms for

detector cascade learning. Journal of Machine Learning Re-

search, 15(1):2569–2605, 2014. 2

[27] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun.

Pedestrian detection with unsupervised multi-stage feature

learning. In CVPR, pages 3626–3633, 2013. 2

[28] E. Shechtman and M. Irani. Matching local self-similarities

across images and videos. In CVPR, 2007. 5

[29] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 1, 5, 6

[30] D. Tang, Y. Liu, and T. Kim. Fast pedestrian detection by

cascaded random forest with dominant orientation templates.

In BMVC, pages 1–11, 2012. 6

[31] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and

A. W. M. Smeulders. Segmentation as selective search for

object recognition. In ICCV, pages 1879–1886, 2011. 1

[32] P. A. Viola and M. J. Jones. Robust real-time face detec-

tion. International Journal of Computer Vision, 57(2):137–

154, 2004. 1, 2

[33] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic

object detection. In ICCV, pages 17–24, 2013. 2, 8

[34] R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades

for face detection. In ICCV, pages 1–8, 2007. 2

[35] R. Xiao, L. Zhu, and H. Zhang. Boosting chain learning for

object detection. In ICCV, pages 709–715, 2003. 1, 2

[36] S. Zhang, C. Bauckhage, and A. B. Cremers. Informed haar-

like features improve pedestrian detection. In CVPR, pages

947–954, 2014. 2

[37] S. Zhang, R. Benenson, and B. Schiele. Filtered channel

features for pedestrian detection. In CVPR, 2015. 1, 2, 5, 8

[38] W. Zheng and L. Liang. Fast car detection using image strip

features. In CVPR, pages 2703–2710, 2009. 2

3369

