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This paper has two main focal points. We first consider an important class of machine learning
algorithms: large margin classifiers, such as Support Vector Machines. The notion of margin
complexity quantifies the extent to which a given class of functions can be learned by large margin
classifiers. We prove that up to a small multiplicative constant, margin complexity is equal to the
inverse of discrepancy. This establishes a strong tie between seemingly very different notions from
two distinct areas.

In the same way that matrix rigidity is related to rank, we introduce the notion of rigidity of
margin complexity. We prove that sign matrices with small margin complexity rigidity are very
rare. This leads to the question of proving lower bounds on the rigidity of margin complexity.
Quite surprisingly, this question turns out to be closely related to basic open problems in commu-
nication complexity, e.g., whether PSPACE can be separated from the polynomial hierarchy in
communication complexity.

Communication is a key ingredient in many types of learning. This explains the relations
between the field of learning theory and that of communication complexity [6, 10, 16, 26]. The
results of this paper constitute another link in this rich web of relations. These new results have
already been applied toward the solution of several open problems in communication complexity
[18, 20, 29].

1. Introduction

Several papers have investigated the relationships between parameters from learning theory and
their counterparts from communication complexity. For example, unbounded error communic-
ation complexity can be characterized in terms of dimension complexity [26]. Also, as shown
in [16], there is an equivalence between VC-dimension and one-way distributional complexity
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with respect to product distributions. The present paper adds some new ingredients to the emer-
ging relations between these two disciplines.

Large margin classifiers such as Support Vector Machines (a.k.a. SVM), occupy a central
place in present-day machine learning in both theory and practice. Our initial motivation was to
understand the strengths and weaknesses of large margin classifiers. (For general background on
this subject see, e.g., [8, 33]). This has led us quite naturally to investigate the margin complexity
of sign matrices. We were pleased to discover that these parameters are also central to the field
of communication complexity.

We first describe the learning-theoretic point of view, and define margin complexity, and then
review the relevant background and explain our new results.

A classification algorithm receives as input a sample (z1, f(z1)), . . . , (zm, f(zm)) which is a
sequence of points {zi} from a set D (the domain) and the corresponding evaluations of some
unknown function f : D → {±1}. The output of the algorithm is a function h : D → {±1},
which should be close to f. Here we think of f as chosen by an adversary from a predefined class
F (the so-called concept class). (In real-world applications, the choice of the class F represents
our prior knowledge of the situation.)

Large margin classifiers take the following route to the solution of classification problems.
The domain D is mapped into R

t (this map is usually called a feature map). If zi is mapped to
xi for each i, our sample points are now {xi} ⊂ R

t. The algorithm then seeks a linear functional
(i.e., a vector) y that maximizes

mf({xi}, y) = min
i

|〈xi, y〉|
‖xi‖2‖y‖2

.

under the constraint that sign(〈xj, y〉) = f(xj), for all j. We denote this maximum by mf({xi}).
Clearly, an acceptable linear functional y defines a hyperplane H that separates the points

(above and below H) as dictated by the function f. What determines the performance of the
classifier associated with y is the distances of the points xi from H , i.e., the margin mf({xi}, y).
Thus, the margin captures the extent to which the family F can be described by the sign of
a linear functional. We study the margin, in quest of those properties of a concept class that
determine how well suited it is for such a description.

These considerations lead us to define the margin of a class of functions. But before we do
that, some words about the feature map are in order. The theory and the practice of choosing
a feature map is at present a subtle art. Making the proper choice of a feature map can have a
major impact on the performance of the classification algorithm. Our intention here is to avoid
this delicate issue and concentrate instead on the concept class per se. In order to bypass the
dependence of our analysis on the choice of a feature map, we consider the best-possible choice.
This explains the supremum in the definition of margin below:

m(F) = sup
{xi}

inf
f∈F

mf({xi}).

How should we model this set-up? For every set of m samples there is only a finite number, say
n, of possible classifications by functions from the relevant concept class. Consequently, we can
represent a concept class by an m × n sign matrix, each column of which represents a function
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f : [m] → {±1}. It should be clear, then, that the margin of a sign matrix A is

m(A) = supmin
i,j

|〈xi, yj〉|
‖xi‖2‖yj‖2

, (1.1)

where the supremum is over all x1, . . . , xm, y1, . . . , yn ∈ R
m+n such that sign(〈xi, yj〉) = aij , for

all i,j. (It is not hard to show that there is no advantage in working in any higher-dimensional
Euclidean space.) It is also convenient to define mc(A) = m(A)−1, the margin complexity of A.

We mention below some previous results and several simple observations on margin complex-
ity. We begin with some very rough bounds.

Observation 1.1. For every m × n sign matrix A,

1 � mc(A) � min{
√
m,

√
n}.

The lower bound follows from Cauchy–Schwarz. For the upper bound, assume w.l.o.g. that
m � n and let xi be the ith row of A and yj the jth vector in the standard basis.

The first paper on margin complexity [6] mainly concerns the case of random matrices. Among
other things they proved the following.

Theorem 1.2 (Ben-David, Eiron and Simon [6]). Almost every1 n × n sign matrix has margin

complexity at least Ω(
√

n
log n

).

This theorem illustrates the general principle that random elements are complex. A main goal
in that paper is to show that VC-dimension and margin complexity are very distinct measures of
complexity, as follows.

Theorem 1.3 (Ben-David, Eiron and Simon [6]). Let d � 2. Almost every matrix with VC-
dimension at most 2d has margin complexity larger than

Ω
(
n

1
2 − 1

2d − 1

2d+1
)
.

If A : U → V is a linear map between two normed spaces, we denote its operator norm by
‖A‖U→V = maxx:‖x‖U=1 ‖Ax‖V , with the shorthand ‖ · ‖p→q to denote ‖ · ‖�p→�q . A particularly
useful instance of this norm is ‖A‖2→2. It is well known that ‖A‖2→2 is the largest singular value
of A. Moreover, this quantity can be computed efficiently. Forster [9] proved the following lower
bound on margin complexity.

Claim 1.4 (Forster [9]). For every m × n sign matrix A,

mc(A) �
√
nm

‖A‖2→2
.

1 Here and below we adopt a common abuse of language and use the shorthand ‘almost every’ to mean ‘asymptotically
almost every’.
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This result has several nice consequences. For example, it implies that almost every n × n

sign matrix has margin complexity Ω(
√
n). Also, together with Observation 1.1 it yields that the

margin complexity of an n × n Hadamard matrix is
√
n. Forster’s proof is of interest too, and

provides more insight than earlier proofs which were based on counting arguments.
Subsequent papers [10, 11, 12], following [9], improved Forster’s bound in different ways.

Connections were shown between margin complexity and other complexity measures. These
papers also determine exactly the margin complexity of some specific families of matrices.

In [19] we noticed the relation between margin complexity and factorization norms. Let an
operator A : U → V and a normed space W be given. In order to define the corresponding
factorization of A, we should find how to express A as A = XY , where Y : U → W and X :

W → V , so as to minimize the product of X’s and Y ’s operator norms. Of special interest is the
case U = �n1, V = �m∞ and W = �2. We denote

γ2(A) = min
XY =A

‖X‖2→∞‖Y ‖1→2.

It is well known (e.g., [27]) that γ2 is indeed a norm. Its dual is denoted, as usual by γ∗
2(·). One

can easily check that ‖B‖1→2 is the largest �2 norm of a column of B, and ‖B‖2→∞ is the largest
�2 norm of a row of B.

It is proved in [19] that, for every sign matrix A,

mc(A) = min
B: bijaij�1 ∀i,j

γ2(B). (1.2)

This identity turns out to be very useful in the study of margin complexity. Some consequences
drawn in [19] are as follows. For every sign matrix A,

• mc(A) = maxB:sign(B)=A,γ∗
2 (B)�1〈A,B〉,

• mc(A) � γ2(A) �
√

rank(A),
• let RC(A) be the randomized or quantum communication complexity of A; then

2 log mc(A) − Θ(1) � RC(A) � O(mc(A)2).

In this paper, we derive another consequence of the relation between margin complexity and
γ2. Discrepancy is a combinatorial notion that comes up in many contexts: see, e.g., [7, 22].
We prove here that margin and discrepancy are equivalent up to a constant factor for every sign
matrix. Let A be an m × n sign matrix, and P a probability measure on its entries. We define

discP (A) = max
S⊂[m],T⊂[n]

∣∣∣∣ ∑
i∈S,j∈T

pijaij

∣∣∣∣.
The discrepancy of A is then defined by

disc(A) = min
P

discP (A).

Theorem 3.1. For every sign matrix A,

disc(A) � m(A) � 8 disc(A).

Discrepancy is used to derive lower bounds on communication complexity in different mod-
els [5, 34]. Theorem 3.1 provides additional evidence for the role of margins in the field of
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communication complexity. (See also [6, 10, 20]). As described below, we find here additional
new relations to communication complexity, specifically to questions about separation of com-
munication complexity classes.

It is very natural to consider also classification algorithms that tolerate a certain probability
of error but achieve larger margins. Namely, we are led to consider the following complexity
measure,

mcr(A, l) = min
B:h(B,A)�l

mc(B),

where h(A,B) is the Hamming distance between the two matrices. We call this quantity mc-
rigidity. The relation between this complexity measure and margin complexity is analogous to
the relation between rank rigidity and rank. Rank rigidity (usually simply called rigidity) was
first defined in [32] and has attracted considerable interest, e.g., [15, 21, 30]. A major reason to
study rank rigidity is that, as shown in [32], the construction of explicit examples of sign matrices
with high rank rigidity would have very significant consequences in computational complexity.

It transpires that mc-rigidity behaves similarly. To begin, it does not seem easy to construct
sign matrices with high mc-rigidity (where ‘high’ means close to the expected complexity of a
random matrix). Furthermore, we are able to establish interesting relations between the construc-
tion of sign matrices of high mc-rigidity and the separation of complexity classes in communic-
ation complexity, as introduced and studied in [5, 21].

The mc-rigidity of random matrices is considered in [24, 25]. There it is shown that there is
an absolute constant 1 > c > 0 such that, for almost every n × n sign matrix,

mcr(A, cn
2) � Ω(

√
n).

We give a bound on the number of sign matrices with small mc-rigidity that is much stronger
than that of [24, 25]. Our proof is also significantly simpler.

Regarding explicit bounds, we prove the following lower bounds on mc-rigidity.

Theorem 5.1. Every m × n sign matrix A satisfies

mcr

(
A,

mn

8g

)
� g,

provided that g < mn
2KG‖A‖∞→1

. (Here KG � 1.8 is Grothendieck’s constant: see Theorem 2.1.)

Theorem 5.2. Every n × n sign matrix A with γ2(A) � Ω(
√
n) (this is a condition satisfied by

almost every sign matrix) satisfies

mcr(A, cn
2) � Ω(

√
log n),

for some constant c > 0.

In a 1986 paper [5], Babai, Frankl and Simon took a complexity-theoretic approach to com-
munication complexity. They defined communication complexity classes analogous to compu-
tational complexity classes. For example, the polynomial hierarchy is defined as follows. We
define the following classes of 2m × 2m 0–1 matrices. We begin with Σcc

0 , the set of combinatorial
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rectangles, and with Πcc
0 = coΣcc

0 . From here we proceed to define

Σcc
i =

{
A|A =

2polylog(m)∨
j=1

Aj, Aj ∈ Πcc
i−1

}
,

Πcc
i =

{
A|A =

2polylog(m)∧
j=1

Aj, Aj ∈ Σcc
i−1

}
.

For more on communication complexity classes see [5, 17, 21].
Some communication complexity classes were implicitly defined prior to [5]. In particular,

it is possible to define and investigate the communication complexity analogues of important
complexity classes such as P , NP , coNP , PH and AM . For example, it was shown in [1] that
P cc = NP cc ∩ coNP cc.

It remains a major open question in this area whether the hierarchy can be separated. We
approach this problem using results of Lokam [21] and Tarui [31]. (In our statement of Theor-
ems 4.4 and 4.5 we adopt a common abuse of language and speak of individual matrices where
we should refer to an infinite family of sign matrices of growing dimensions.)

Theorem 4.4. Let A be an n × n sign matrix. If there exists a constant c � 0 such that, for
every c1 � 0,

mcr(A, n
2/2(log log n)c) � 2(log log n)c1 ,

then A is not in PH cc.

Theorem 4.5. Let A be an n × n sign matrix. If

mcr(A, n
2/2(log log n)c) � 2(log log n)c1

for every c, c1 � 0, then A is not in AM cc.

As mentioned, questions about rigidity tend to be difficult, and mc-rigidity seems to follow
this pattern as well. However, the following conjecture, if true, would shed some light on the
mystery surrounding mc-rigidity:

Conjecture 6.1. For every constant c1 there are constants c2, c3 such that every n × n sign
matrix A satisfying mc(A) � c1

√
n also satisfies

mcr(A, c2n
2) � c3

√
n.

What the conjecture says is that every matrix with high margin complexity has high mc-rigidity
as well. In particular, explicit examples are known for matrices of high margin complexity, e.g.,
Hadamard matrices. It would follow that such matrices have high mc-rigidity too.

The rest of this paper is organized as follows. We start with relevant background and notation
in Section 2. In Section 3 we prove the equivalence of discrepancy and margin. Section 4 contains
the definition of mc-rigidity, the mc-rigidity of random matrices, and applications to the theory
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of communication complexity classes. In Section 5 we prove lower bounds on mc-rigidity, and
discuss relations to rank rigidity. Open questions are discussed in Section 6.

2. Background and notation

Basic notation. Let A and B be two real matrices. We use the following notation.

• The inner product of A and B is denoted 〈A,B〉 =
∑

ij aijbij .

• Matrix norms: ‖B‖1 =
∑

|bij | is B’s �1 norm, ‖B‖2 =
√∑

b2
ij is its �2 (Frobenius) norm,

and ‖B‖∞ = maxij |bij | is its �∞ norm.
• If A and B are sign matrices then h(A,B) = 1

2
‖A − B‖1 denotes the Hamming distance

between A and B.

Dimension complexity. The dimension complexity of a sign matrix A is defined as the smallest
dimension d = d(A) such that there exist sets of vectors {xi}, {yj} ⊂ R

d so that for all i, j there
holds ai,j = sign(〈xi.yj〉). Equivalently, it is not hard to see that

d(A) = min
B:A=sign(B)

rank(B).

(For more about this complexity measure see [6, 9, 10, 12, 19, 26].)

Discrepancy. Let A be a sign matrix, and let P be a probability measure on the entries of A.
The P -discrepancy of A, denoted discP (A), is defined as the maximum over all combinatorial
rectangles R in A of |P+(R) − P−(R)|, where P+ [P−] is the measure of the positive entries
(negative entries).

The discrepancy of a sign matrix A, denoted disc(A), is the minimum of discP (A) over all
probability measures P on the entries of A.

We make substantial use of Grothendieck’s inequality (see, e.g., [27, p. 64]), which we now
recall.

Theorem 2.1 (Grothendieck’s inequality). There is a universal constant KG such that, for
every real matrix B and every k � 1,

max
∑

bij〈ui, vj〉 � KG max
∑

bijεiδj , (2.1)

where the max are over the choice of u1, . . . , um, v1, . . . , vn as unit vectors in R
k and ε1, . . . , εm,

δ1, . . . , δn ∈ {±1}.

The constant KG is called Grothendieck’s constant. Its exact value is not known but it is proved
that 1.5 � KG � 1.8.

As mentioned, we denote by γ∗
2 the dual norm of γ2, i.e., for every real matrix B,

γ∗
2(B) = max

C:γ2(C)�1
〈B,C〉.

We note that the norms γ∗
2 and ‖ · ‖∞→1 are equivalent up to a small multiplicative factor, namely,

for any real matrix,

‖B‖∞→1 � γ∗
2(B) � KG‖B‖∞→1. (2.2)
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The left inequality is easy, and the right inequality is a reformulation of Grothendieck’s in-
equality. Both use the observation that the left-hand side of (2.1) equals γ∗

2(B), and the max term
on the right-hand side is ‖B‖∞→1.

The norm dual to ‖ · ‖∞→1 is the nuclear norm from l1 to l∞. The nuclear norm of a real matrix
B is defined as follows:

ν(B) = min{
∑

|wi| such that B can be expressed as∑
wixiy

t
i = B for some choice of sign vectors x1, x2, . . . , y1, y2 . . .}.

See [13] for more details.
It is a simple consequence of the definition of duality and (2.2) that, for every real matrix B,

γ2(B) � ν(B) � KG · γ2(B). (2.3)

3. Margin and discrepancy are equivalent

Here we prove (recall that mc(A) = m(A)−1) the following.

Theorem 3.1. For every sign matrix A,

disc(A) � m(A) � 8 disc(A).

We first define a variant of margin.

Margin with sign vectors. Given an m × n sign matrix A, denote by Λ = Λ(A) the set of all
pairs of sign matrices X,Y such that the sign pattern of XY equals A, i.e., A = sign(XY ) and
let

mν(A) = max
(X,Y )∈Λ

min
i,j

|〈xi, yj〉|
‖xi‖2‖yj‖2

. (3.1)

Here xi is the ith row of X, and yj is the jth column of Y . The definition of mν is almost the
same as that of margin (equation (1.1)), except that in defining mν we consider only pairs of sign
matrices X,Y and not arbitrary matrices. It is therefore clear that mν(A) � m(A) for every sign
matrix A. As we see next, the two parameters are equivalent up to a small multiplicative constant.

3.1. Proof of Theorem 3.1

First we prove that margin and mν are equivalent up to multiplication by the Grothendieck
constant. Then we show that mν is equivalent to discrepancy up to a multiplicative factor of
at most 4.

Lemma 3.2. For every sign matrix A,

mν(A) � m(A) � KG · mν(A),

where KG is the Grothendieck constant.

Proof. The left inequality is an easy consequence of the definitions of m and mν , so we focus
on the right one. Let Bν be the convex hull of rank-one sign matrices. The convex body Bν is
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the unit ball of the nuclear norm ν, which is dual to the operator norm from �∞ to �1. With this
terminology we can express mν(A) as

mν(A) = max
B∈Bν

min
ij

aijbij . (3.2)

It is not hard to check (using equation (1.2)) that m(A) can be equivalently expressed as

m(A) = max
B∈Bγ2

min
ij

aijbij ,

where Bγ2
is the unit ball of the γ2 norm.

Equation (2.3) can be restated as

Bν ⊂ Bγ2
⊂ KG · Bν .

Now let B ∈ Bγ2
be a real matrix satisfying m(A) = minij aijbij . The matrix K−1

G B is in Bν and
therefore

mν(A) � K−1
G min

ij
aijbij = K−1

G m(A).

Remark. Grothendieck’s inequality has an interesting consequence in the study of large margin
classifiers. As mentioned above, such classifiers map the sample points into R

t and then seek an
optimal linear classifier (a linear functional, i.e., a real vector). Grothendieck’s inequality implies
that if we restrict ourselves to mapping the sample points only into {±1}k, then the resulting loss
in margin is at worst a factor of KG.

We return to prove the equivalence between mν and discrepancy. The following relation
between discrepancy and the ∞ → 1 norm is fairly simple (e.g., [4]):

disc(A) � min
P

‖P ◦ A‖∞→1 � 4 · disc(A)

where P ◦ A denotes the Hadamard (entry-wise) product of the two matrices.

Lemma 3.3. Let P denote the set of matrices whose elements are non-negative and sum up to
1. For every sign matrix A,

mν(A) = min
P∈P

‖P ◦ A‖∞→1. (3.3)

Proof. We express mν as the optimum of some linear program and observe that the right-hand
side of equation (3.3) is the optimum for the dual program. The statement then follows from LP
duality.

Equation (3.2) allows us to express mν as the optimum of a linear program. The variables of
this program correspond to a probability measure q on the vertices of the polytope Bν , and an
auxiliary variable δ is used to express minij aijbij . The vertices of Bν are in 1:1 correspondence
with all m × n sign matrices of rank one. We denote this collection of matrices by {Xi|i ∈ I}.
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The linear program is:

maximize δ

s.t. ∑
i∈I qi(Xi ◦ A) − δJ � 0

∀ i ∈ I qi � 0∑
i qi = 1.

Here J is the all-ones matrix. It is not hard to see that the dual of this linear program is:

minimize Δ

s.t.
∀ i ∈ I 〈P ◦ A,Xi〉 = 〈P ,Xi ◦ A〉 � Δ

∀i, j pij � 0∑
i,j pij = 1,

where P = (pij). The optimum of the dual program is equal to the right-hand side of equa-
tion (3.3) by definition of ‖ · ‖∞→1. The statement of the lemma follows from LP duality.

To conclude, we have proved the following.

Theorem 3.4. The ratio between any two of the following four parameters is at most 8 for any
sign matrix A,

• m(A) = mc(A)−1,
• mν(A),
• disc(A),
• minP∈P ‖P ◦ A‖∞→1, where P is the set of matrices with non-negative entries that sum up

to 1.

4. Soft margin complexity, or mc-rigidity

As mentioned in the Introduction, some classification algorithms allow the classifier to make
a few mistakes, and yield in return a better margin. Such algorithms are called soft margin al-
gorithms. The complexity measure associated with these algorithms is what we call mc-rigidity.
The mc-rigidity of a sign matrix A is defined as

mcr(A, l) = min
B:h(B,A)�l

mc(B)

where h(·, ·) is the Hamming distance. We prove that low mc-rigidity is rare.

Theorem 4.1. There is a constant c > 0 such that the number of n × n sign matrices A that

satisfy mcr(A, l) �
√

l
n

is at most

(
n2

l

)c·l·log n2

l

,
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for every 0 < l � n2/2. In particular, there exist ε > 0 such that almost every n × n sign matrix
A satisfies

mcr(A, εn
2) >

√
εn.

The first part of the theorem is significantly better than previous bounds [6, 19, 24, 25]. Note
that using Theorems 3.1 and 4.1 we get an upper bound on the number of sign matrices with
small discrepancy. We do not know of a direct method to show that low-discrepancy matrices are
so rare.

Theorem 4.1 is reminiscent of bounds found in [3, 28] on the number of sign matrices of small
dimensional complexity.

To prove Theorem 4.1 we use the following theorem by Warren (see [2] for a comprehensive
discussion), and the lemma below it.

Theorem 4.2 (Warren 1968). Let P1, . . . , Pm be real polynomials in t � m variables, of total
degree � k each. Let s(P1, . . . , Pm) be the total number of sign patterns of the vectors (P1(x), . . . ,

Pm(x)), over x ∈ R
t. Then

s(P1, . . . , Pm) �
(
4ekm/t

)t
.

In the next lemma we consider the relation between margin complexity and dimension com-
plexity (see Section 2). This relation makes it possible to use Warren’s theorem in the proof of
Theorem 4.1.

Lemma 4.3. Let B be an n × n sign matrix, and let 0 < ρ < 1. There exists a matrix B̃ with
Hamming distance h(B, B̃) < ρn2, such that

d(B̃) � O(log ρ−1 · mc(B)2).

Proof. We use the following known fact (e.g., [14, 23]). Let x, y ∈ R
n be two unit vectors with

|〈x, y〉| � ε. Then

Pr
L

(
sign(〈PL(x), PL(y)〉) �= sign(〈x, y〉)

)
� 4e−kε2/8,

where the probability is over k-dimensional subspaces L, and where PL : R
n → L is the projec-

tion onto L.
By definition of the margin complexity, there are two n × n matrices X and Y such that

• B = sign(XY ),
• every entry in XY has absolute value � 1,
• ‖X‖2→∞ = ‖Y ‖1→2 =

√
mc(B).

Let x1, x2, . . . , xn and y1, y2, . . . , yn denote the rows of X and columns of Y respectively. Take C

such that 4e−C/8 � ρ. Then, by the above fact, for k = C mc(B)2 there is a k-dimensional linear
subspace L, such that projecting the points onto L preserves at least (1 − ρ)n2 signs of the n2

inner products {〈xi, yj〉}.
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To complete the proof of Theorem 4.1 let A be a sign matrix with mcr(A, l) � μ. Namely, it is
possible to flip at most l entries in A to obtain a sign matrix B with mc(B) � μ. Let ρ = l/n2 and
apply Lemma 4.3 to B. This yields a matrix E, such that the Hamming distance h(sign(E), B) � l

and E has rank O(log ρ−1 · μ2) (In the terminology of Lemma 4.3 B̃ = sign(E).) To sum up, we
change at most l entries in A to obtain B and then at most l more entries to obtain sign(E),
a matrix of dimension complexity O(log ρ−1 · μ2). Therefore A = sign(E + F1 + F2), where
F1, F2 have support of size at most l each (corresponding to the entries where sign flips were
made).

Now E can be expressed as E = UVt for some n × r matrices U and V with r � c1 log ρ−1 ·
μ2 (c1 is a constant). Let us fix one of the �

(
n2

l

)2
choices for the supports of the matrices F1, F2

and consider the entries of U,V and the non-zero entries in F1, F2 as formal variables. Each
entry in A is the sign of a polynomial of degree 2 in these variables. We apply Warren’s theorem
(Theorem 4.2) with these parameters to conclude that the number of n × n sign matrices A with
mcr(A, l) � μ is at most(

n2

l

)2

·
(
8en2/(2c1 log ρ−1 · μ2 · n + 2l)

)2c1 log ρ−1·μ2·n+2l
.

Recall that ρ = l/n2 and substitute μ =
√

l
n
, to get

(
n2

l

)2

·
(

8en2/

(
2c1 · l · log

n2

l
+ 2l

))2c1·l·log n2

l
+2l

=

(
n2

l

)O(l·log n2

l
)

.

4.1. Communication complexity classes

Surprisingly, mc-rigidity is related to questions about separating communication complexity
classes. It is not necessary to know the precise definitions of these classes in order to read what
follows. (The interested reader can find the definitions, e.g., in [21]). A major open problem
from [5] is to separate the polynomial hierarchy. Lokam [21] has raised the question of explicitly
constructing matrices that do not belong to AM cc, the class of bounded round interactive proof
systems. We tie these questions to mc-rigidity.

Theorem 4.4. Let A be an n × n sign matrix. If there exists a constant c � 0 such that, for
every c1 � 0,

mcr(A, n
2/2(log log n)c) � 2(log log n)c1 ,

then A is not in PH cc.

Theorem 4.5. Let A be an n × n sign matrix. If

mcr(A, n
2/2(log log n)c) � 2(log log n)c1

for every c, c1 � 0, then A is not in AM cc.

We now present the proofs of Theorems 4.4 and 4.5.
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Proof of Theorem 4.4. The theorem is a consequence of the definition of mcr and the following
claim. For every 2m × 2m sign matrix A ∈ PH cc and every constant c � 0 there is a constant
c1 � 0 and a matrix B such that:

(1) the entries of B are non-zero integers,
(2) γ2(B) � 2(log log n)c1 ,
(3) h(A, sign(B)) � n2/2(log log n)c .

The proof of this claim is based on a theorem of Tarui [31] (see also Lokam [21]).
It should be clear how Boolean gates operate on 0–1 matrices. By definition of the polynomial

hierarchy in communication complexity, every Boolean function f in Σk can be computed by
an AC0 circuit of polynomial size whose inputs are 0–1 matrices of size 2m × 2m and rank 1.
Namely,

f(x, y) = C(X1, . . . , Xs),

where C is an AC0 circuit, {Xi}si=1 are 0–1 rank-1 matrices, and s � 2polylog(m).
Now, AC0 circuits are well approximated by low degree polynomials, as proved by Tarui

[31]. Let C be an AC0 circuit of size 2polylog(m) acting on 2m × 2m 0–1 matrices φ1, . . . , φs. Fix
0 < δ = 2(logm)c for some constant c � 0. Then there exists a polynomial Φ ∈ Z[X1, . . . , Xs] such
that:

(1) the sum of absolute values of the coefficients of Φ is at most 2polylog(m),
(2) the fraction of entries where the matrices C(φ1, . . . , φs) and Φ(φ1, . . . , φs) differ is at most δ

(here and below, when we evaluate Φ(φ1, . . . , φs), products are pointwise matrix products),
(3) where Φ and C differ, Φ(φ1, . . . , φs) � 2.

Let us apply Tarui’s theorem on the 0–1 version of A, and let Φ =
∑

T∈{0,1}s aTΠi∈TXi be the
polynomial given by the theorem. Notice that YT = Πi∈TXi has rank 1. Let

B =

( ∑
T∈{0,1}s

aTYT

)
− J.

Then,

(1) the entries of B are non-zero integers,
(2) γ2(B) � 1 +

∑
T∈{0,1}s |aT | � 2polylog(m),

(3) h(A, sign(B)) � δn2,

as claimed.

Proof of Theorem 4.5. We first recall some background from [21]. A family G ⊂ 2[n], is said
to generate a family F ⊂ 2[n] if every F ∈ F can be expressed as the union of sets from G. We
denote by g(F) the smallest cardinality of a family G that generates F . Each column in a 0–1

matrix Z is considered as the characteristic vector of a set and Φ(Z) is the family of all such sets.
If A is an n × n sign matrix, we define F(A) as Φ(Ā) where Ā is obtained by replacing each −1

entry in A by zero. We denote g(F(A)) by g(A). Finally there is the rigidity variant of g(A):

g(A, l) = min
B:h(B,A)�l

g(B).
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Lokam [21, Lemma 6.3] proved that if g(A, n2/2(log log n)c ) � 2(log log n)ω(1)

for every c > 0 then
A �∈ AM cc. We conclude the proof by showing that

g(A) � (mc(A) − 1)/2

for every n × n sign matrix A.
Let g = g(A) and let G = {G1, . . . , Gg} be a minimal family that generates F(A). Let X be the

n × g 0–1 matrix whose ith column is the characteristic vector of Gi. Let Y denote a g × n 0–1

matrix that specifies how to express the columns of Ā by unions of sets in G. Namely, if we choose
to express the ith column in Ā as ∪t∈TGt, then the ith column in Y is the characteristic vector
of T . Clearly XY is a non-negative matrix whose zero pattern is given by Ā. Consequently, the
matrix B = XY − J

2
satisfies

(1) sign(B) = A,
(2) |bij | � 1/2, and
(3) γ2(B) � γ2(XY ) + γ2(

J
2
) � g + 1/2.

It follows that

mc(A) � γ2(2B) � 2g + 1,

as claimed.

5. Lower bounds on mc-rigidity

To provide some perspective for our discussion of lower bounds on mc-rigidity, it is worthwhile
to recall first some of the known results about rank rigidity. The best-known explicit lower bound
for rank rigidity is for the n × n Sylvester–Hadamard matrix Hn [15], and has the following
form. For every r > 0, at least Ω( n

2

r
) changes have to be made in Hn to reach a matrix with rank at

most r. Our first lower bound has a similar flavour. For example, since ‖Hn‖∞→1 = Θ(n3/2) (e.g.,
Lindsey’s lemma), Theorem 5.1 below implies that at least Ω( n

2

g
) sign flips in Hn are required to

reach a matrix with margin complexity � g. (This applies for all relevant values of g, since we
only have to consider g � O(

√
n).)

Theorem 5.1. Every m × n sign matrix A satisfies

mcr

(
A,

mn

8g

)
� g,

provided that g < mn
2KG‖A‖∞→1

.

We conjecture that there is an absolute constant ε0 > 0 such that, for every sign matrix A

with mc(A) � Ω(
√
n), at least Ω(n2) sign flips are needed in A to reach a sign matrix with

margin complexity � ε0 · mc(A). Theorem 5.1 yields this conclusion only when ε0 � O( 1√
n
).

The next theorem offers a slight improvement and yields a similar conclusion already for ε0 �
O(

√
log n
n

). (Recall that mc(A) � γ2(A) for every sign matrix A. Thus mc(A) � Ω(
√
n) entails

the assumption of Theorem 5.2.)
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Theorem 5.2. Every n × n sign matrix A with γ2(A) � Ω(
√
n) satisfies

mcr(A, δn
2) � Ω(

√
log n),

for some δ > 0.

The proofs of Theorems 5.1 and 5.2 use some information about the Lipschitz constants of
two of our complexity measures.

Lemma 5.3. The Hamming distance of two sign matrices A,B is at least

h(A,B) � 1

2

(
‖B‖∞→1 − ‖A‖∞→1

)
.

Proof. Let x and y be two sign vectors satisfying
∑

bijxiyj = ‖B‖∞→1. If M is the Hamming
distance between A and B, then

‖A‖∞→1 �
∑

aijxiyj =
∑

bijxiyj +
∑

(aij − bij)xiyj

�
∑

bijxiyj −
∑

|aij − bij | = ‖B‖∞→1 − 2M

We next need a similar result for γ2.

Lemma 5.4. For every pair of sign matrices A and B,

h(A,B) �
(

|γ2(A) − γ2(B)|
4

)4

.

In the proof of Lemma 5.4 we need a bound on the γ2 of sparse (−1, 0, 1)-matrices given by
the following lemma.

Lemma 5.5. Let A be a (−1, 0, 1)-matrix with N non-zero entries. Then γ2(A) � 2N1/4.

Proof. We find matrices B and C such that A = B + C and

γ2(B), γ2(C) � N1/4,

since γ2 is a norm, and γ2(A) � 2N1/4.
Let I be the set of rows of A with more than N1/2 non-zero entries, we define the matrices B

and C by:

bij =

{
aij if i ∈ I,

0 otherwise,

cij =

{
aij if i �∈ I,

0 otherwise,

The matrix B has at most N1/2 non-zero rows, and each row in C has at most N1/2 non-
zero entries. Thus, by considering the trivial factorizations (IX = XI = X), we conclude that
γ2(B), γ2(C) � N1/4. Obviously A = B + C, which concludes the proof.
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Proof of Lemma 5.4. Let A and B be two sign matrices. The matrix 1
2
(A − B) is a (−1, 0, 1)-

matrix with h(A,B) non-zero entries. Thus, by Lemma 5.5,

γ2(A − B) � 4h1/4(A,B).

Since γ2 is a norm,

γ2(A − B) � |γ2(A) − γ2(B)|.

The claim follows by combining the above two inequalities.

We can now complete the proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. It is proved in [19] that, for every m × n sign matrix Z ,

‖Z‖∞→1 � mn

KG · mc(Z)
.

We apply this to a matrix B with mc(B) = g and conclude that ‖B‖∞→1 � mn
gKG

. On the other
hand, by assumption, ‖A‖∞→1 � mn

2gKG
, so by Lemma 5.3, h(A,B) � mn

4gKG
� mn

8g
.

Proof of Theorem 5.2. Let A be an n × n sign matrix with γ2(A) � ε
√
n, for some con-

stant ε. By Lemma 5.4 there is a constant δ > 0 such that every sign matrix B with h(A,B) �
δn2 satisfies γ2(B) � ε

2

√
n. As observed in the Discussion Section in [20], every n × n sign

matrix B with γ2(B) � Ω(
√
n) also satisfies mc(A) � Ω(

√
log n). It follows that mcr(A, cn

2) �
Ω(

√
log n).

5.1. Relations with rank rigidity

We next discuss the relation between mc-rigidity and rank rigidity. First we prove the following
lower bound on rank rigidity, which compares favourably with the best known bounds (see, e.g.,
[15]). This lower bound is related to mc-rigidity in that it is proved by the same method used
to prove Theorem 5.1. We then prove lower bounds in terms of mc-rigidity on a variant of rank
rigidity.

Claim 5.6. Let A be an n × n sign matrix and let r < n2

2KG‖A‖∞→1
. In order to turn A into a matrix

of rank � r by changing entries, at least Ω( n
2

r
) entries in A must be reversed.

Proof. Let B̃ be a matrix of rank r obtained by changing entries in A, and let B = sign(B̃) be
its sign matrix. Then

r � d(B) � n2

KG‖B‖∞→1
.

The first inequality follows from the definition of dimension complexity and the latter from a
general bound proved in [19]. It follows that

‖B‖∞→1 � n2

rKG

.

By assumption, ‖A‖∞→1 � n2

2rKG
, and so Lemma 5.3 implies that the sign matrices A and B differ

in at least Ω( n
2

r
) places.
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We turn to discuss rank rigidity when only bounded changes are allowed.

Definition ([21]). For A a sign matrix, and θ � 0, define

R+
A (r, θ) = min

B
{h(A,B) : rank(B) � r, ∀i,j 1 � |bij | � θ}.

Claim 5.7. For every sign matrix A,

R+
A (mc2

r (A, l)/θ
2, θ) � l.

Proof. Let A be a sign matrix, and B a real matrix with θ � |bij | � 1 for all i, j, and rank(B) �
mc2

r (A, l)/θ
2. Denote the sign matrix of B by Ã. Then h(A, Ã) � h(A,B). Also, it holds that

mc(Ã) � γ2(B) � ‖B‖∞
√

rank(B) � mcr(A, l).

The first inequality follows from equation (1.2). The second inequality follows since γ2(Z) �√
rank(Z) for every sign matrix Z . (This inequality is well known in Banach space theory. See,

e.g., [19] for a proof.) We conclude that h(A,B) � h(A, Ã) � l. Since this is true for every matrix
B satisfying the assumptions, R+

A (mc2
r (A, l)/θ

2, θ) � l.

6. Discussion and open problems

It remains a major open problem to derive lower bounds on mc-rigidity. In particular, the follow-
ing conjecture seems interesting and challenging.

Conjecture 6.1. For every constant c1 there are constants c2, c3 such that every n × n sign
matrix A satisfying mc(A) � c1

√
n also satisfies

mcr(A, c2n
2) � c3

√
n.

This conjecture says that every matrix with high margin complexity has a high mc-rigidity
as well. This is helpful since we do have general techniques for proving lower bounds on mar-
gin complexity, e.g., [9, 19]. In particular, an n × n Hadamard matrix has margin complexity√
n ([9]). Thus, Conjecture 6.1 combined with Theorems 4.4 and 4.5 implies that PH cc �=

PSPACE cc and AM cc �= IP cc, since Sylvester–Hadamard matrices are in IP cc ∩ PSPACE cc.
The relation between margin complexity and discrepancy (Theorem 3.1) adds another interesting
angle to these statements.

References

[1] Aho, A. V., Ullman, J. D. and Yannakakis, M. (1983) On notions of information transfer in VLSI
circuits. In Proc. 15th ACM STOC, pp. 133–139.

[2] Alon, N. (1995) Tools from higher algebra.In Handbook of Combinatorics, Vol. 1, North-Holland,
pp. 1749–1783.
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