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Abstract

Sequential behaviour is often compositional and organised across multiple time scales: a

set of individual elements developing on short time scales (motifs) are combined to form lon-

ger functional sequences (syntax). Such organisation leads to a natural hierarchy that can

be used advantageously for learning, since the motifs and the syntax can be acquired inde-

pendently. Despite mounting experimental evidence for hierarchical structures in neurosci-

ence, models for temporal learning based on neuronal networks have mostly focused on

serial methods. Here, we introduce a network model of spiking neurons with a hierarchical

organisation aimed at sequence learning on multiple time scales. Using biophysically moti-

vated neuron dynamics and local plasticity rules, the model can learn motifs and syntax

independently. Furthermore, the model can relearn sequences efficiently and store multiple

sequences. Compared to serial learning, the hierarchical model displays faster learning,

more flexible relearning, increased capacity, and higher robustness to perturbations. The

hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of

higher variability in the between-motif timings.

Author summary

The brain has the ability to learn and execute sequential behaviour on multiple time scales.

This behaviour is often compositional: a set of simple behaviours is concatenated to create

a complex behaviour. Technological improvements increasingly shine light on the build-

ing blocks of compositional behaviour, yet the underlying neural mechanisms remain

unclear. Here, we propose a hierarchical model to study the learning and execution of

compositional sequences, using bio-plausible neurons and learning rules. We compare

the hierarchical model with a serial version of the model. We demonstrate that the hierar-

chical model is more flexible, efficient and robust by exploiting the compositional nature

of the sequences.

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008866 March 25, 2021 1 / 28

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation:Maes A, Barahona M, Clopath C (2021)

Learning compositional sequences with multiple

time scales through a hierarchical network of

spiking neurons. PLoS Comput Biol 17(3):

e1008866. https://doi.org/10.1371/journal.

pcbi.1008866

Editor: Abigail Morrison, Research Center Jülich,
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Introduction

Many natural behaviours are compositional: complex patterns are built out of combinations of

a discrete set of simple motifs [1–3]. Compositional sequences unfolding over time naturally

lead to the presence of multiple time scales—a short time scale is associated with the motifs

and a longer time scale is related to the ordering of the motifs into a syntax. How such behav-

iours are learnt and controlled is the focus of much current research. Broadly, there are two

main strategies for the modeling of sequential behaviour: serial and hierarchical. In a serial

model, the long-term behaviour is viewed as a chain of motifs proceeding sequentially, so that

the first behaviour in the chain leads to the second and so on (’domino effect’). Serial models

present some limitations [4, 5]. Firstly, serial models have limited flexibility since relearning

the syntax involves rewiring the chain. Secondly, such models lack robustness, e.g., breaking

the serial chain halfway means that the later half of the behaviour is not produced. It has been

proposed theoretically that hierarchical models can alleviate these problems, at the cost of

extra hardware.

Evidence for the presence of hierarchical structures in the brain is mounting [6–8]. Further-

more, experiments are increasingly shining light on the hierarchical mechanisms of sequential

behaviour. An example is movement sequences in multiple animal models, such as Drosophila

[9–11], mice [12–14] and C. elegans [15, 16]. Simultaneous recordings of behaviour and neural

activity are now possible in order to relate the two together [17, 18]. Songbirds are another

example of animals that produce stereotypical sequential behaviour: short motifs are strung

together to form songs. In this case, a clock-like dynamics is generated in the premotor nucleus

HVC of the bird’s brain, such that neurons are active in sequential bursts of� 10 ms [19]. This

activity is thought to control the timing of the spectral content of the song (the within-motif

dynamics). The between-motif dynamics has a different temporal structure [20, 21]; hence the

ordering of the motifs into a song (the syntax) might be controlled by a different mechanism.

Supporting this view, it has been found that learning the motifs and syntax involves indepen-

dent mechanisms [22]. The computational study of hierarchical structures and compositional

behaviour can also lead to insights into the development of human locomotion and language

as there are striking conceptual parallels [23–26].

Here, we present a model for learning temporal sequences on multiple scales implemented

through a hierarchical network of bio-realistic spiking neurons and synapses. In contrast to

current models, which focus on acquiring the motifs and speculate on the mechanisms to

learn a syntax [27–29], our spiking network model learns motifs and syntax independently

from a target sequence presented repeatedly. Furthermore, the plasticity of the synapses is

entirely local, and does not rely on a global optimisation such as FORCE-training [30–32] or

backpropagation through time [33]. To characterise the effect of the hierarchical organisation,

we compare the proposed hierarchical model to a serial version by looking at their learning

and relearning behaviours. We show that, contrary to the serial model, the hierarchical model

acquires the motifs independently from the syntax. In addition, the hierarchical model has a

higher capacity and is more resistant to perturbations, as compared to a serial model. We also

investigate the variability of the neural activity in both models, during spontaneous replay of

stored sequences. The organisation of the model shapes the neural variability differently. The

within-motif spiking dynamics is less variable in a hierarchical organisation, while the time

between the execution of motifs is more variable.

The paper is organised as follows. We start by describing the proposed hierarchical spiking

network model and the learning protocol. We then analyse the learning and relearning behav-

iour of the proposed model, and compare it to the corresponding serial model. Next, we inves-

tigate several properties of the model: (i) the performance and consistency of spontaneous
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sequence replays on a range of learnt sequences; (ii) capacity, i.e., how multiple sequences can

be stored simultaneously; (iii) robustness of the sequence replays.

Results

Hierarchical model of spiking neurons with plastic synapses for temporal
sequence learning

We design a hierarchical model by combining the following spiking recurrent networks (Fig

1): 1) A recurrent network exhibiting fast sequential dynamics (the fast clock); 2) a recurrent

network exhibiting slow sequential dynamics (the slow clock); 3) a series of interneuron net-

works that store and produce the to-be-learnt ordering of motifs (the syntax networks); 4) a

series of read-out networks that store and produce the to-be-learnt motif dynamics (themotif

networks). We assume that there are a finite number of motifs and each motif is associated to a

separate read-out network (e.g., in Fig 1 there are 2 read-out networks corresponding to motifs

A and B). The goal of the model is to learn a complex sequence, with the motifs arranged in

a certain temporal order, such that the motifs themselves and the temporal ordering of the

motifs are learnt using local plasticity rules.

Neuronal network architecture. All neurons are either excitatory or inhibitory. Excit-

atory neurons follow an adaptive exponential integrate-and-fire dynamics and inhibitory neu-

rons follow a standard integrate-and-fire dynamics (see Methods).

The model has two recurrent networks that exhibit sequential dynamics: the fast and slow

clocks. The design of the clock networks follows Ref. [29]. Each clock is composed of clusters

of excitatory neurons coupled in a cycle with a directional bias (i.e., neurons in cluster i

are more strongly connected to neurons in cluster i + 1) together with a central cluster of

Fig 1. A cartoon of the model.Dynamics in the read-out networks (A and B) is learnt and controlled on two time
scales. The fast time scale network (fast clock) exhibits sequential dynamics that spans individual motifs. This acts
directly on the read-out networks through plastic synapses. These synapses learn themotifs. The slow time scale
network (slow clock) exhibits sequential dynamics that spans the entire sequence of motifs. This acts indirectly on the
read-out networks through an interneuron network. The synapses from the slow clock to the interneurons are plastic
and learn the right order of the motifs, or the syntax. The plastic synapses follow a simple symmetric STDP rule for
potentiation, with a constant depression independent of spike time.

https://doi.org/10.1371/journal.pcbi.1008866.g001
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inhibitory neurons coupled to all the excitatory clusters (Fig 1). This architecture leads to

sequential dynamics propagating around the cycle and the period can be tuned by choosing

different coupling weights. The individual motifs are not longer than the period of the fast

clock and the total length of the sequence is limited to the period of the slow clock. In our

case, we set the coupling weights of the fast clock such that a period of� 200 ms is obtained,

whereas the weights of the slow clock are set to obtain a period of� 1000 ms.

The fast clock neurons project directly onto the read-out networks associated with each

motif, which are learnt and encoded using a supervisor input. Hence the fast clock controls the

within-motif dynamics. The slow clock neurons, on the other hand, project onto the interneu-

ron network of inhibitory neurons. The interneuron network is also composed of clusters:

there is a cluster associated with each motif, with coupling weights that inhibit all other motif

networks, and one cluster associated with the ‘silent’ motif, with couplings that inhibit all

motif networks and the fast clock. Hence the temporal ordering of the motifs (the syntax) can

be encoded in the mapping that controls the activity of the interneurons driven by the slow

clock. As a result of this hierarchical architecture, the model allows for a dissociation of

within-motif dynamics and motif ordering. The two pathways, from the fast clock to the read-

out and from the slow clock to the interneurons, each control a different time scale of the spik-

ing network dynamics.

Plasticity. Learning is accomplished through plastic synapses under a simple biophysi-

cally plausible local STDP rule (see Methods) governing the synapses from the fast clock to the

read-out networks (motif synapses) and from the slow clock to the interneurons (syntax syn-

apses). The STDP rule has a symmetric learning window and implements a Hebbian ‘fire

together, wire together’ mechanism.

All other weights in the model are not plastic and are fixed prior to the learning protocol.

The weights in the fast and slow clocks and the interneuron wiring are assumed to originate

from earlier processes during evolution or early development. Previous computational studies

have shown that sequential dynamics can be learnt in recurrent networks, both in an unsuper-

vised [34, 35] and supervised [29, 36] fashion.

Learning scheme. During learning, a target sequence is presented. We design a target

sequence by combining motifs in any order, e.g., AAB. A time-varying external current, corre-

sponding to the target sequence, projects to the excitatory neurons in the read-out networks.

Additionally, a short external current activates the first cluster in the fast clock to signal the

onset of a new motif (see Methods for more details). During the presentation of the target

sequence, the plastic synapses change. When no target sequence is presented, spontaneous

dynamics is simulated. Spontaneous dynamics replays the stored sequence. In this case, there

is only random external input and no external input corresponding to a target sequence.

The model allows for independent learning of motifs and syntax

We first show how a non-trivial sequence can be learned emphasising the role that each net-

work plays. As an example, consider the target sequence AAB. This sequence is non-trivial as

both the within-motif dynamics and syntax is non-Markovian (Fig 2A). Non-Markovian

sequences are generally hard to learn, because they require a memory about past dynamics

[37]. The sequential dynamics in the fast and slow clock provide a mechanism to overcome

this challenge: by providing time indices the non-Markovian sequence is essentially trans-

formed into a Markovian sequence. First, we present the target sequence repeatedly to the

read-out networks (as shown in S1 Fig). After learning is finished, we test whether learning

was successful by checking that the sequence is correctly produced by spontaneous dynamics

(Fig 2B–2E). Note that the slow clock spans the entire sequence (Fig 2C) and activates the
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Fig 2. Learning sequence AAB. A. The target sequence is repeatedly presented to the read-out networks corresponding to motifs A and B. A and B are 200 ms long
motifs. Between the motifs, we assume a silent period of 150 ms. B-E. Spontaneous dynamics after learning (50 target presentations). Red dots: excitatory neurons; blue
dots: inhibitory neurons. B. The fast clock, controlled by interneurons 201 to 300. C. The slow clock, spanning and driving the entire sequence replay. D. The read-out
networks, driven by the fast clock and controlled by the interneurons. E. The interneurons, driven by the slow clock. Neurons 1 − 100 inhibit motif B. Neurons 101
− 200 inhibit motif A. Neurons 201 − 300 shut down both the fast clock and read-out networks. F. The motif synapses show that the target motifs A (neurons 1 − 300
on the y-axis) and B (neurons 301 − 600 on the y-axis) are stored. The weights for motif A are stronger because there are two As in the target sequence and only one B.
G. The syntax weights store the temporal ordering A-silent-A-silent-B-silent. H. Non-plastic inhibitory weights from the interneuron network to the read-out network
and fast clock. I. Non-plastic excitatory weights from the read-out network and fast clock to the interneuron network.

https://doi.org/10.1371/journal.pcbi.1008866.g002
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interneurons in the correct order (Fig 2E), whereas the interneuron dynamics in turn deter-

mines the activation of the fast clock (Fig 2B) and the selection of a read-out network (Fig 2D).

Through the learning phase, the motif weights (from the fast clock to the read-out networks)

evolve to match the target motifs (Fig 2F), and, similarly, the syntax weights (from the slow

clock to interneurons) evolve to match the ordering of the motifs in the target sequence (Fig

2G). Crucially, as shown below, these two sets of plastic weights are dissociated into separate

pathways so that compositional sequences can be learnt efficiently through this model. The

interneuron network coordinates the two pathways using non-plastic lateral inhibition (Fig

2H) and receives non-plastic excitatory input from the fast clock and motif networks (Fig 2I).

Note that this conceptual model can be implemented in various ways (see Methods section

Changing the slow clock into an all-inhibitory network) but can serve as a general framework

for the learning and replay of stereotypical compositional behaviour.

The hierarchical model enables efficient relearning of the syntax

We next demonstrate the ability of the model to relearn the ordering of the motifs. In general,

we wish relearning to be efficient, i.e., the model should relearn the syntax without changing

the motifs themselves. To test this idea, we perform a re-learning scheme AAB! ABA (Fig 3).

An efficient model would only learn the switch in the syntax without the need to relearn the

two motifs A and B. Starting from a network where no sequence was stored, we begin with a

learning phase where the sequence AAB is presented (as in Fig 2) until it is learnt. We then

switch to presenting the sequence ABA in the relearning phase. To quantify the progress of

learning throughout both phases, we simulate spontaneous dynamics after every fifth target

sequence presentation and compute the error between the spontaneous dynamics and the tar-

get sequence (see Methods and Fig 3).

Our results show that the motifs are not re-learnt when switching between the first and sec-

ond target sequences—the within-motif error keeps decreasing after we switch to the relearn-

ing phase indicating that there continues to be improved learning of the motifs common to

both target sequences (Fig 3A). In contrast, the model relearns the temporal ordering of the

Fig 3. Relearning syntax: AAB! ABA. Brown shaded areas: presentation of target sequence AAB; dark green shaded areas:
presentation of target sequence ABA. Brown dots: spontaneous dynamics is simulated 3 times, and the error with respect to the target
sequence AAB is measured; dark green dots: spontaneous dynamics is simulated 3 times, and the error with respect to the target
sequence ABA is measured. Lines guide the eye and are averages of the dots. See the Methods section for the details of the error
measurements. A. The within-motif error keeps decreasing independent of the motif ordering. B. The motif ordering error (syntax
error) switches with a delay.

https://doi.org/10.1371/journal.pcbi.1008866.g003
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motifs after the switch to the new target sequence—the syntax error relative to AAB decreases

during the learning phase and then grows during relearning at the same time as the syntax

error relative to ABA decreases (Fig 3B). Therefore, the hierarchy of the model allows for effi-

cient relearning: previously acquired motifs can be reordered into new sequences without

relearning the motifs themselves.

To investigate the role of the hierarchical organisation, we next studied how the relearning

behaviour compares to a serial model with no dissociation between motifs and syntax. The

serial model contains only one clock network and the read-out networks associated with each

motif, with no interneurons (S2 Fig). In this serial architecture, motifs and syntax are both

learnt and replayed by a single pathway (S2 Fig), and, consequently, when relearning the syn-

tax, the motifs are also re-learnt from scratch even when there is no change within the individ-

ual motifs. This leads to a slower decay of the sequence error during learning and relearning in

the serial model as compared to the hierarchical model (S3 Fig). The speed by which an old

syntax is unlearned, and a new syntax is learned, depends on the learning rate of the syntax

plasticity (S4 Fig).

The above results illustrate the increased efficiency of the hierarchical model to learn com-

positional sequences. The separation of motifs and syntax into two pathways, each of them

associated with a different time scale and reflected in the underlying neuronal architecture,

allows for the learning and control of the different aspects of the sequence independently.

The hierarchical organisation leads to improved learning speed and high
motif fidelity

We now study the effects of having a hierarchical organisation on the speed and quality of

learning. To do so, we consider three target sequences of increasing complexity, where each

target sequence is comprised of a motif presented three times (Fig 4A).

First, we studied the speed at which the pattern is learnt by the hierarchical model as com-

pared to the serial model. The hierarchical model is roughly three times faster than the serial

model in learning patterns consisting of three repetitions (Fig 4B). This is expected: in the hier-

archical model, the same motif synapses are potentiated three times during a single target pre-

sentation, whereas no such repeated learning takes place in the serial model. Furthermore, the

speed and quality of the learning also depends on the complexity of the target sequence, i.e.,

target sequences with rapid temporal changes are harder to learn. Learning target sequences

with faster-changing, more complex temporal features leads to a degradation of the perfor-

mance of both models, but the hierarchical model consistently learns roughly three times faster

than the serial model for all patterns (Fig 4, left to right).

Another important quality measure of learning is the reliability and consistency of the pat-

tern replayed by the model under spontaneous dynamics. To study this, we generated repeated

trials in which the three target sequences learnt (in Fig 4) were replayed spontaneously, and we

compared the variability of the read-out dynamics across the trials for both the hierarchical

and serial models. We first computed the within-motif and between-motif variability in the

spontaneous trials. The hierarchical model leads to low within-motif variability and higher

variability in the between-motif timings. This follows from the spiking in the read-out net-

works, with highly variable time gaps between motifs in the hierarchical model (Fig 5A). On

the other hand, the spike trains within the three motifs correlate strongly with each other for

the hierarchical model (Fig 5B). This is the case for the three target sequences.

We then studied the consistency of the motif as it is repeated (three times) within a target

sequence. We observe that a high degradation of the repeated motif towards the end of the

sequence in the serial model, which is milder in the hierarchical model (Fig 5C). In summary,
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the hierarchical model produces accurate motifs that persist strongly over time, but with

higher variability in the timing between them. The high reliability of the motifs is due to the

stronger learning on the motif synapses discussed above. The higher variability in the inter-

motif times is a result of the underlying variability of the periods of the clock networks. As

discussed in Ref. [29], the sequential dynamics that underpins the clock networks operates by

creating clusters of neurons that are active over successive periods of time. In that sense, the

network uses neuron clusters to discretise a span of time (its period) into time increments. The

variability of the period of the clock depends on the number of clusters, the number of neurons

per cluster in the network, and the time span to discretise. A fast clock will thus have low vari-

ability in its period, whereas the slow clock is highly variable. The variability of the period of

the serial clock is between the fast and slow clocks (Fig 5D). Consequently, within-motif tem-

poral accuracy is maintained quasi-uniformly over the sequence in a hierarchical model. The

price to pay is the addition of appropriately wired interneurons.

The hierarchical organisation reduces the resources needed to store
multiple sequences

As shown above, the plasticity of the model allows it to relearn single sequences, yet the

relearning process might be too slow for particular situations. In general, animals acquire and

Fig 4. Learning speed and performance of hierarchical and serial models on three target sequences of increasing temporal complexity.A. Each target sequence
consists of three presentations of the same motif (200 ms long) but with increasing complexity from left to right. Left: the simplest motif consists of five 40 ms
stimulations. Middle: the motif consists of eight 25 ms stimulations. Right: the motif consists of ten 20 ms stimulations. B. Learning curves for the three target
sequences for both the hierarchical and serial models. The same plasticity parameters are used for both models (see Methods). The shaded area indicates one
standard deviation from the mean (50 trials). Note that the x-axis has two scales to show the three-fold increase in learning speed of the hierarchical model (i.e., for
each learning iteration of the hierarchical model there are three iterations of the serial model). The performance degrades from left to right, as a more difficult target
sequence is presented.

https://doi.org/10.1371/journal.pcbi.1008866.g004
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store multiple sequences to be used as needed. Motivated by this idea, we explore the capacity

of the hierarchical model to learn, store and replay more than one sequence, and we compare

it to the alternative serial model. We define capacity here as the number of neurons and synap-

ses needed to store a number of sequences NS. First, we note that a new sequence can be stored

in the hierarchical model by adding another interneuron network in parallel. The additional

Fig 5. Measuring variability and performance in the read-out dynamics. A. The time between motifs 1 and 2 and motifs 2 and 3 is measured during spontaneous
dynamics. We plot the coefficient of variation of these times (50 trials) on the y-axis, for the three target sequences in Fig 4A. B. The cross correlation between the spike
trains in the first motif and the second and third motif is measured, normalized by the auto-correlation of the spike trains in motif 1. The maximum of the cross
correlation is recorded in each trial (50 trials). This is repeated for the three target sequences in Fig 4A. C. We measure the error between the target sequence with 25
ms stimulations in Fig 4A and spike trains in motif 1, 2 and 3. In both models, the performance degrades towards later occurring motifs. The degradation is
significantly worse in the serial model: a linear regression yields a slope of 0.0163 for the serial model and a slope of 0.0048 for the hierarchical model (p< 10−5 using t-
test). D. The serial clock (48 clusters) is obtained by adding the slow (28 clusters) and fast (20 clusters) clocks together. Sequential dynamics is simulated 50 times for
each clock. The time at which each cluster is activated in the sequential dynamics is measured. The standard deviation of these activation times is plotted as a function
of the cluster index. The serial clock has a maximal variability of about 9 ms. The fast and slow clock have a maximal variability of about 3 and 35 ms respectively.

https://doi.org/10.1371/journal.pcbi.1008866.g005
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interneuron network is a replica of the existing one, with the same structure and connection

weights to the rest of the system.

Each interneuron network learns one syntax, in the same way as one read-out network

learns one motif. As an illustration, we learn the sequences AAB and BAAB (Fig 6A), by

Fig 6. Spontaneous dynamics after learning two sequences alternately (80 learning iterations). A. The target sequences. B-E. Red dots: excitatory
neurons; blue dots: inhibitory neurons. Brown shaded area: sequence AAB is played by inhibiting the interneurons related to the second sequence;
light green shaded area: sequence BAAB is played by inhibiting the interneurons related to the first sequence. B. Spike raster of the fast clock. C.
Spike raster of the slow clock. D. Spike raster of the two read-out networks. E. Spike raster of the interneurons. An external attentional inhibitory
current selects which sequence is played. F. The motif weights encode the two motifs. Note the similarity with Fig 2F: the same motifs are re-used in
both sequences. G. The syntax weights encode the two motif orderings. Note the difference with Fig 2G: an additional syntax is stored. All motif and
syntax synapses are plastic at all times during the sequence presentations.

https://doi.org/10.1371/journal.pcbi.1008866.g006
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presenting the target sequences alternately. We then simulate spontaneous dynamics to test

that the learning is successful. The spiking dynamics (Fig 6B–6E) show that the model is able

to replay the two sequences. To select between the two sequences, we use an attentional exter-

nal current to the interneuron networks during learning and spontaneous dynamics (shaded

areas in Fig 6E). Depending on the interneuron activity, the fast clock (Fig 6B) and read-out

networks (Fig 6D) are active. Note that the motifs are encoded in the motif weights (Fig 6F)

and syntax weights encode both target motif orderings (Fig 6G). These results show that the

hierarchical model can learn, store and replay multiple sequences. Importantly, the motifs are

still efficiently re-used: when motifs A and B are learnt by presenting sequence AAB, they can

immediately be re-used when a different syntax (e.g., BAAB) is presented.

We then compare the efficiency of the hierarchical model to the serial model (S5 Fig). In

the serial model, read-out networks have to be added in order to learn and store multiple

sequences. This is inefficient for two reasons: 1) The same motif might be stored in different

read-out networks, making learning slower; 2) The addition of new read-out networks in the

serial model requires more ‘hardware’ (i.e. neurons and synapses) than the addition of an

interneuron network in the hierarchical model. In the case where we have a number of

sequences NS consisting of two motifs (and using network parameters as detailed in the

Methods), we have the following capacities. For the serial model, we have 6000 neurons in

the serial clock (of which 4800 are excitatory), and 750 neurons in each read-out network (of

which 600 are excitatory). Then the number of neurons needed is 6000 + 750 � NS, and the

number of plastic synapses needed is 4800 � NS � 600.
For the hierarchical model, on the other hand, there are 6000 neurons in the fast and slow

clocks combined, 750 neurons in the read-out network, and 300 neurons in each interneuron

network. Hence the number of neurons needed is 6750 + 300 � NS, and the number of plastic

synapses and non-plastic lateral connections due to the interneuron network is 2000 � 600
+ 2800 � 300 � NS + 750 � 300 � NS + 600 � 300 � NS + 2000 � 100 � NS + 200 � 100 � NS = (2000

+ 2441.67 � NS) � 600. For two sequences (NS = 2), we then have 7500 neurons and 5, 760, 000

synapses for the serial model, whereas the hierarchical model requires 7350 neurons and 4,

130, 000 synapses—a significant reduction in resources. Even when NS = 1, the hierarchical

model uses more neurons than the serial model, but still fewer synapses. In general, the hierar-

chical model scales substantially more favourably as NS is increased.

Finally, we extend the hierarchical model to learn two sequences consisting of in total six

motifs, (S6 Fig). We generalize the model to include multiple motif durations and observe that

the hierarchical model is scalable. A serial model would need 10, 500 neurons and 17, 280, 000

synapses. The hierarchical model uses instead 9650 neurons and 13, 630, 000 synapses, again a

significant reduction in resources. Our results show that the hierarchical model can learn and

store multiple sequences by adding more interneuron networks in parallel. This hierarchical

organisation thus exploits the compositional nature of the sequences, in a way the serial model

cannot, leading to increased capacity. The hierarchical model primarily uses less synapses.

The hierarchical model displays increased robustness to perturbations of
the sequential dynamics

We next investigate the role of the hierarchy in enhancing the robustness of the model to per-

turbations in the target sequence. Behavioural perturbation experiments have shown that indi-

vidual motifs can be removed mid-sequence without affecting later-occurring motifs [13].

This is a useful feature which can dramatically improve the robustness of responses, since

later-occurring behaviour does not critically depend on the successful completion of all previ-

ous behaviours. To examine this issue, we have carried out simulations on the serial and
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hierarchical models under perturbations in the firing of the neurons in the clock; specifically

we remove the external input to excitatory neurons in the clock network. In the serial model,

the perturbation leads to the breakdown of the remaining parts of the sequence (Fig 7A),

whereas when the same perturbation is applied to the fast clock of the hierarchical model, we

see that later motifs are preserved (Fig 7B). The reason is that the dynamics in the slow clock is

intact and continues to drive the behaviour. Perturbing the slow clock, and keeping the fast

clock intact, has less predictable outcomes for the dynamics. Random activity in the interneu-

rons can cause motifs to be played in a random order (S7 Fig). Overall, the hierarchical model

improves the robustness. Indeed, at any point in time, a single cluster of neurons is active in

the clock of the serial model, whereas there are two active clusters of neurons (one in the fast

clock and another in the slow clock) in the hierarchical model. This separation of time scales is

fundamental to preserve the robustness of the model.

Discussion

Summary of results

We have presented here a hierarchical neuronal network model for the learning of composi-

tional sequences. We demonstrated how motifs and syntax can be learnt independently of

each other. The hierarchical structure has direct implications for the learning and is con-

trasted with a serial architecture. The hierarchical structure leads to an increased learning

speed and the possibility to efficiently relearn the ordering of individual motifs. The replays

of individual motifs are more similar to each other as compared to replays in the serial

model. Separating the motifs and syntax into two different pathways in the hierarchical

model has also implications for the resources used and robustness. The motifs can be re-used

Fig 7. Perturbing the dynamics.We learn sequence AAB and then apply a perturbation. Blue shade indicates the perturbation time, and neurons perturbed. A. 250
ms perturbation of the serial network clock. The targeted neurons (neurons 1000 to 2000) have no excitatory external input during the perturbation. The sequential
activity breaks down completely. B. 250 ms perturbation of the fast clock in the hierarchical model. The targeted neurons (neurons 1 to 1000) have no excitatory
external input during perturbation. The sequential activity breaks down but is reactivated for the final motif through the interneurons.

https://doi.org/10.1371/journal.pcbi.1008866.g007
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in the hierarchical model, leading to a significant reduction in hardware (i.e. neurons and

synapses). Finally, the serial model has a single pathway, as opposed to two, and is therefore

more prone to perturbations.

From serial to hierarchical modelling

Modelling studies so far have either focused on the study of sequential dynamics [38–41] or on

motif acquisition [27–29]. This paper introduces an explicitly hierarchical model as a funda-

mental building block for the learning and replay of sequential dynamics of a compositional

nature. Sequential dynamics is omnipresent in the brain and might be important in time-keep-

ing during behaviour [19, 42–46]. When temporal sequences are compositional (i.e., formed

by the ordering of motifs), they lead to the presence of different time scales associated with the

motifs and their ordering (or syntax). From the perspective of learning, such multiscale tempo-

ral organisation lends itself naturally to a hierarchical organisation, where the different scales

are associated with different groups of neurons in the network (see also [47]). While sequential

dynamics has been observed, coordination between multiple sequences on different scales, as

we propose in this paper, has not been observed experimentally. We thus present this as a pre-

diction that sequences on different scales may organize compositional behaviour in the same

brain region or across different brain regions.

Hierarchical temporal structures might arise during development in a variety of ways [23,

48]. One way is that a single protosequence is learnt first. The protosequence covers the entire

behaviour learning the most crude aspects. This might then be followed by splitting the proto-

sequence into multiple sequences specialized to different aspects of the behaviour. A similar

splitting of sequences has been observed in birdsong [49, 50]. Hierarchical motor control has

also been studied in the artificial intelligence field [51]. A recent model works towards closing

the gap from a machine system to a biological system [52] but remains non-trivial to imple-

ment using dynamics and plasticity that are considered to be more realistic in a biological

sense.

Limitations of the hierarchical model

An important aspect of the hierarchical model is the interneuron network, which coordinates

the different time scales. The specificity of the hardwired lateral connectivity to and from the

interneuron network is a limitation of the model, but does not require extensive fine tuning, as

seen in S8 Fig. An important aspect of sequential behaviour is the ability to vary the speed of

execution. In the serial model, the speed can easily be controlled by playing the serial clock

faster or slower (see also [29, 36]). In the hierarchical model, this is not as straightforward.

One possibility is that the fast and slow clock coordinate the increase or decrease in speed. A

different possibility could be that the speed is controlled in a network downstream of the read-

out network.

A storage and replay device

The proposed model can be viewed as a biological memory device that stores sequences by

means of supervised learning and replays them later by activating the device with spontaneous

activity. However, it is important to note that during spontaneous activity there is no input to

the device other than the random spike patterns that keep the dynamics of the system going.

This mode of operation is therefore distinct from computational machines, such as the liquid

state machine [53, 54] or the tempotron [55], where different input patterns are associated

with and transformed into different output patterns. Such computational machines, where
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spiking patterns are inputs to be transformed or classified, are thus complementary to our

autonomous memory device.

Hierarchies in other tasks

Hierarchies exist beyond the somewhat simple learning of compositional sequences, and it is

expected that hierarchical models share common basic features despite solving highly distinct

problems. For instance, a recent example of a hierarchical model for working memory uses

two different networks: an associative network and a task-set network [56]. In our setting, the

associative network could be identified with the motifs (fast clock+read-out) whereas the task-

set network would correspond to the syntax (slow clock+interneurons). Navigation is another

typical example of a task where hierarchy is used [57], and the discovery of structure in an

environment is closely related to the presence of a hierarchy [58].

Relating the model to experiments

As mentioned above, there are qualitative similarities between the proposed hierarchical

model and experimental studies. Experimental studies have pointed increasingly at the impor-

tance of hierarchical organisation both in structural studies as well as in the learning and exe-

cution of movement and auditory sequences. For example, behavioural re-learning has shown

that birds can re-order motifs independently from the within-motif dynamics [22]. Optogene-

tical perturbation in the striatum of mice has shown that individual motifs can be deleted or

inserted mid-sequence, without altering the later part of the behavioural sequence [13]. The

proposed model aims to provide a conceptual framework to explain such behavioural observa-

tions while simultaneously using biophysically realistic spiking networks and plasticity rules.

However, a quantitative link between model and experiment is not trivial. This is true for

behaviour, but even more so for neural activity. Indeed, our model has free parameters, includ-

ing topology and plasticity, which need to be tuned to the task at hand. Nevertheless, there are

two recent advances that may help future work in this direction. Firstly, there have been recent

technological improvements in recording of behaviour [18, 59] and neural activity [60] along

with the possibility to apply perturbations [13]. Secondly, there has been progress in decoding

meaningful information from large observational datasets [61], e,g, the extraction of sequences

from neural recordings [62] and the analysis of learning behaviour of songbirds [63]. In this

vein, an interesting question to pursue is whether one could rediscover the hierarchical struc-

ture from temporal data generated by our model. For instance, one could observe a randomly

chosen subset of neurons in the model: could the hierarchical organisation and function of the

network be inferred from those partial observations by using data analysis?

Conclusion

Using realistic plasticity rules, we built a spiking network model for the learning of composi-

tional temporal sequences of motifs over multiple time scales. We showed that a hierarchical

model is more flexible, efficient and robust than the corresponding serial model for the learn-

ing of such sequences. The hierarchical model concentrates the variability in the inter-motif

timings but achieves high motif fidelity.

Methods

Excitatory neurons (E) are modelled with the adaptive exponential integrate-and-fire model

[64]. A classical integrate-and-fire model is used for the inhibitory neurons (I). Motifs and
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syntax are learnt using simple STDP-rules (see for example [65]) without need for additional

fast normalization mechanisms.

Model architecture

The hierarchical model consists of four recurrent networks. Each network and their parame-

ters are described below. Synaptic weights within each recurrent network are non-zero with

probability p = 0.2. The synaptic weights in the recurrent networks which produce sequential

dynamics are scaled using a scaling factor f � 1=
ffiffiffiffi

N
p

, i.e., it scales with the corresponding net-

work size N.

Fast clock (Fc). The fast clock network has NE
Fc ¼ 2000 excitatory and NI

Fc ¼ 500 inhibi-

tory neurons recurrently connected with parameters shown in Table 1. Sequential dynamics is

ensured by dividing the excitatory neurons in 20 clusters of 100 neurons. The baseline excit-

atory weights wEE
Fc within the same cluster are multiplied with a factor of 25, whereas the excit-

atory weights from cluster i to cluster i + 1 mod 20 (i = 1‥20) are multiplied by a factor of 12.5.

Previous studies have shown that such a weight structure leads to sequential dynamics and can

be learnt in a biologically plausible way [29, 35, 36]. The last cluster in the fast clock has a spe-

cial role. It is not inhibited by the ‘silent’ interneurons and as such remains active during silent

periods. Once the silent period is over, it restarts the fast clock by activating the first cluster.

The fast clock receives excitatory external random Poisson input and inhibitory input from

the interneurons, and projects to the read-out networks.

Read-out networks (R). Each read-out network codes for one individual motif. There are

no overlaps or connections between the different read-out networks. The read-out networks

are identical and balanced (see Table 2 for the parameters). The excitatory neurons in the

read-out networks receive excitatory input from the plastic motif synapses coming from the

fast clock. All read-out neurons receive inhibitory input from the interneurons. All read-out

neurons also receive external inputs: a supervisor component (only during learning) and a ran-

dom input. The results are not sensitive to the exact configuration of the read-out networks

(see S9 Fig).

Slow clock (Sc). The slow clock network has NE
Sc ¼ 2800 excitatory and NI

Sc ¼ 700 inhibi-

tory neurons, recurrently connected. It is essentially a scaled copy of the fast clock. Table 3

shows the parameters of this network. Sequential dynamics is ensured by dividing the excit-

atory neurons in 28 clusters of 100 neurons. The baseline excitatory weights wEE
Fc within the

same cluster are multiplied with a factor of 25, and the excitatory weights from cluster i to clus-

ter i + 1 mod 28 (i = 1‥28) are multiplied by a factor of 4.7. The slow clock receives excitatory

external random Poisson input and projects to the interneuron networks.

Interneuron networks (In). Each interneuron network codes for one syntax. There are

no overlaps between the interneuron networks. Each interneuron network is balanced with

Table 1. Fast clock network parameters.

Constant Value Description

NE
Fc 2000 Number of recurrent E neurons

NI
Fc 500 Number of recurrent I neurons

f 0.6325 Scaling factor

wEE
Fc 5f pF Baseline E to E synaptic strength

wIE
Fc 3.5f pF E to I synaptic strength

wEI
Fc 110f pF I to E synaptic strength

wII
Fc 36f pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t001
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parameters given in Table 4. Neurons within each interneuron network are grouped into 3

groups of 100 neurons: one group per motif and one group for the ‘silent’ motif. The ‘silent’

motif inhibits all clusters in the fast clock except the last one, and also silences all read-out

motifs. The interneuron networks receive excitatory input from all other networks. They also

receive random excitatory external input.

Connections between recurrent networks. The recurrent networks are connected to

each other to form the complete hierarchical architecture. All excitatory neurons from the fast

clock project to all excitatory neurons in the read-out networks. These synapses, wM
0
, are plas-

tic. All excitatory neurons from the slow clock project to all the interneurons. These synapses,

wS
0
, are also plastic. To signal the end of a motif, the penultimate cluster of the fast clock acti-

vates the interneurons of the ‘silent’ motif. The last cluster is also connected to the ‘silent’

motif which silences all other clusters in the fast clock and all neurons in the read-out net-

works. Each read-out network gives excitatory input to its corresponding interneuron group.

This interneuron group laterally inhibits the other read-out network(s). Table 5 gives all the

parameters of the connections between the different networks. To understand the limitations

of the model, we test a range of lateral connectivity parameters (S8 Fig).

Serial model (Sm). The hierarchical model is compared with a serial model. The serial

model has one large clock (with the same number of neurons as the fast and slow clocks com-

bined) and no interneurons. Sequential dynamics is generated by clustering the neurons in the

network in 48 clusters of 100 neurons. The baseline excitatory weights wEE
Sm of the same cluster

are multiplied with a factor of 25, and the excitatory weights from group i to group i + 1 mod 48

Table 2. Read-out network parameters.

Constant Value Description

NE
R 300 Number of recurrent E neurons

NI
R 75 Number of recurrent I neurons

wEE
R 3 pF E to E synaptic strength

wIE
R 6 pF E to I synaptic strength

wEI
R 190 pF I to E synaptic strength

wII
R 60 pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t002

Table 3. Slow clock network parameters.

Constant Value Description

NE
Sc 2800 Number of recurrent E neurons

NI
Sc 700 Number of recurrent I neurons

f 0.5345 Scaling factor

wEE
Sc 5f pF Baseline E to E synaptic strength

wIE
Sc 3.5f pF E to I synaptic strength

wEI
Sc 110f pF I to E synaptic strength

wII
Sc 36f pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t003

Table 4. Interneuron network parameters.

Constant Value Description

NI
In 300 Number of recurrent I neurons

wII
In 25 pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t004
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(i = 1‥48) are multiplied by a factor of 6. Table 6 shows the network parameters. The read-out

network is kept unchanged (Table 2).

Neural and synaptic dynamics

All neurons in the model are either excitatory (E) or inhibitory (I). The parameters of the neu-

rons do not change depending on which network they belong to. Parameters are consistent

with Ref. [66].

Membrane potential dynamics. The membrane potential of the excitatory neurons (VE)

has the following dynamics:

dVEðtÞ
dt

¼ 1

t
E

EEL � VEðtÞ þ D
E

T exp
VEðtÞ � VE

T

D
E

T

� �� �

þgEE E
E � VEðtÞ

C
þ gEI

EI � VEðtÞ
C

� aE

C

ð1Þ

where τE is the membrane time constant, EE
L is the reversal potential, D

E

T is the slope of the

exponential, C is the capacitance, gEE, gEI are synaptic input from excitatory and inhibitory

neurons respectively and EE, EI are the excitatory and inhibitory reversal potentials respec-

tively. When the membrane potential diverges and exceeds 20 mV, the neuron fires a spike

and the membrane potential is reset to Vr. This reset potential is the same for all neurons in

the model. There is an absolute refractory period of τabs. The parameter VE
T is adaptive for

excitatory neurons and set to VE
T þ AT after a spike, relaxing back to VT with time constant τT:

tT

dVE
T

dt
¼ VT � VE

T : ð2Þ

Table 5. Connections between four networks.

Constant Value Description

wM
0

0.3 pF Initial motifs synaptic strengths

wS
0

0.1 pF Initial syntax synaptic strengths

wRIn 50 pF In to R synaptic strength of lateral inhibition

wRIn 20 pF In to R synaptic strength of silencing motif

wInR 0.4 pF R to In synaptic strength

wFcIn 20 pF In to Fc synaptic strength of silencing motif

wInFc 1.5 pF Penultimate Fc cluster to In synaptic strength

wInFc 0.4 pF Last Fc cluster to In synaptic strength

wInFc 0 pF Other Fc clusters to In synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t005

Table 6. Serial model clock network parameters.

Constant Value Description

NE
Sm 4800 Number of recurrent E neurons

NI
Sm 1200 Number of recurrent I neurons

f 0.4082 Scaling factor

wEE
Sm 5f pF Baseline E to E synaptic strength

wIE
Sm 3.5f pF E to I synaptic strength

wEI
Sm 110f pF I to E synaptic strength

wII
Sm 36f pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t006
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The adaptation current aE for excitatory neurons follows:

ta

daE

dt
¼ �aE þ aðVE � EE

LÞ: ð3Þ

where τa is the time constant for the adaptation current. The adaptation current is increased

with a constant β when the neuron spikes.

The membrane potential of the inhibitory neurons (VI) has the following dynamics:

dV IðtÞ
dt

¼ EI
L � V IðtÞ

t
I

þ gIE
EE � V IðtÞ

C
þ gII

EI � V IðtÞ
C

: ð4Þ

where τI is the inhibitory membrane time constant, EIL is the inhibitory reversal potential and

EE, EI are the excitatory and inhibitory resting potentials respectively. gEE and gEI are synaptic

input from excitatory and inhibitory neurons respectively. Inhibitory neurons spike when the

membrane potential crosses the threshold VT, which is non-adaptive. After this, there is an

absolute refractory period of τabs. There is no adaptation current (see Table 7 for the parame-

ters of the membrane dynamics).

Synaptic dynamics. The synaptic conductance, g, of a neuron i is time dependent, it is a

convolution of a kernel with the total input to the neuron i:

gXYi ðtÞ ¼ KYðtÞ � WX
ext s

X
i;ext þ

X

j

WXY
ij sYj ðtÞ

 !

: ð5Þ

where X and Y can be either E or I. K is the difference of exponentials kernel:

KYðtÞ ¼ e�t=t
Y
d � e�t=t

Y
r

t
Y
d � t

Y
r

;

with a decay time τd and a rise time τr dependent only on whether the neuron is excitatory or

inhibitory. The conductance is a sum of recurrent input and external input. The externally

incoming spike trains sXext are generated from a Poisson process with rates rXext. The externally

Table 7. Neuronal membrane dynamics parameters.

Constant Value Description

τE 20 ms E membrane potential time constant

τI 20 ms I membrane potential time constant

τabs 5 ms Refractory period of E and I neurons

EE 0 mV excitatory reversal potential

EI −75 mV inhibitory reversal potential

EE
L −70 mV excitatory resting potential

EI
L −62 mV inhibitory resting potential

Vr −60 mV Reset potential (both E and I)

C 300 pF Capacitance

D
E

T
2 mV Exponential slope

τT 30 ms Adaptive threshold time constant

VT −52 mV Membrane potential threshold

AT 10 mV Adaptive threshold increase constant

τa 100 ms Adaptation current time constant

α 4 nS Adaptation current factor

β 0.805 pA Adaptation current increase constant

https://doi.org/10.1371/journal.pcbi.1008866.t007
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generated spike trains enter the network through synapsesWX
ext (see Table 8 for the parameters

of the synaptic dynamics).

Plasticity

Motif plasticity. The synaptic weight from excitatory neuron j in the fast clock network

to excitatory neuron i in the read-out network is changed according to the following differen-

tial equation:

dWM
ij ðtÞ
dt

¼ �AM
dep þ AM

pot yiðtÞ sjðtÞ þ yjðtÞ siðtÞ
� �

: ð6Þ

where AV
pot and A

V
dep are the amplitude of potentiation and depression, si(t) is the spike train of

the postsynaptic neurons, and sj(t) is the spike train of the presynaptic neurons. Both pre- and

post-synaptic spike trains are low pass filtered with time constant τM to obtain y(t):

tM

dyðtÞ
dt

¼ sðtÞ � yðtÞ: ð7Þ

The synapses from the fast clock to the read-out network have a lower and upper bound

½WM
min;W

M
max�. Table 9 shows parameter values for the motif plasticity rule.

Syntax plasticity. Similar to the motif plasticity rule, the syntax plasticity rule has a sym-

metric window. The dynamics is as such governed by the same equations, with slightly differ-

ent parameters:

dWS
ijðtÞ
dt

¼ �AS
dep þ AS

pot yiðtÞ sjðtÞ þ yjðtÞ siðtÞ
� �

: ð8Þ

where si(t) is the spike train of the postsynaptic neurons, and sj(t) is the spike train of the pre-

synaptic neurons. The spike trains are low pass filtered with time constant τS to obtain y(t) (as

Table 8. Synaptic dynamics parameters.

Constant Value Description

t
E
d 6 ms E decay time constant

t
E
r 1 ms E rise time constant

t
I
d 2 ms I rise time constant

t
I
r 0.5 ms I rise time constant

WE
ext 1.6 pF External input synaptic strength to E neurons

rEext 4.5 kHz Rate of external input to E neurons

WI
ext 1.52 pF External input synaptic strength to I neurons

rIext 2.25 kHz Rate of external input to I neurons

https://doi.org/10.1371/journal.pcbi.1008866.t008

Table 9. Motif plasticity parameters.

Constant Value Description

AM
pot 0.03 pFHz Amplitude of potentiation

AM
dep 2/3 × 10−6 pF Amplitude of depression

τM 5 ms Time constant of low pass filter

WM
min 0 pF Minimum I to I weight

WM
max 1 pF Maximum I to I weight

https://doi.org/10.1371/journal.pcbi.1008866.t009
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in Eq 7). The synapses from the slow clock to the interneurons have a lower and upper bound

½WS
min;W

S
max�. Table 10 shows parameter values for the syntax plasticity rule. Note that the time

constants are longer than the time constants in the motif plasticity.

Measuring the error

Motif error. The fast clock and motif networks are uncoupled from the slow clock and

the interneuron network. We simulate spontaneous dynamics in the fast clock and motif net-

works by giving an input to the first cluster of the fast clock. We end the simulation after one

fast clock sequence is completed. The spike trains of the excitatory neurons in the motif net-

works are compared to the individual target motifs (e.g. A or B), which are binary. The spike

trains are first convolved using a Gaussian kernel of width� 10 ms. This gives a proxy to the

firing rates of the neurons. The firing rates are then normalized between 0 and 1. Dynamic

time warping is finally used to compare the normalized spontaneous dynamics to the target

sequence. Dynamic time warping is needed to remove the timing variability in the spontane-

ous dynamics. We computed dynamic time warping using the built-in Matlab function dtw.

Dynamic time warping was not used to compute the error in Fig 5.

The ordering error. Spontaneous dynamics is simulated using the complete model. The

target sequence is now the binary target dynamics of the interneurons. Similarly as described

above, the spike trains of the interneurons are convolved and normalized to compute the error

with the target using dynamic time warping.

Total error. Spontaneous dynamics is simulated using the complete model. The spike

trains of the excitatory read-out neurons are compared to a binary target sequence to measure

the error during learning. The target sequence is the entire sequence of motifs (e.g. AAB). The

spontaneous spiking dynamics is convolved and normalized, as described above, to compute

the error with the target using dynamic time warping.

Numerical simulations

Protocol—Learning. A start current of 5 kHz is given for 10 ms to the first cluster of the

slow clock to initiate a training session. Strong supervising input (50 kHz, see also S8 Fig) to

the read-out networks controls the dynamics in the read-out networks. The weights from the

read-out networks to the interneurons make sure that also the interneurons follow the target

ordering: there is no need for an explicit target current to the interneurons. At the start of each

motif the fast clock is activated by giving a strong current of 50 kHz to the first cluster for 40

ms. The high supervisor currents are assumed to originate from a large network of neurons,

external to this model.

Protocol—Spontaneous dynamics. A start current of 5 kHz is given for 10 ms to the first

cluster of the slow clock to initiate a spontaneous replay. The slow clock determines which

interneurons are active, together with an external attention mechanism (if multiple sequences

Table 10. Syntax plasticity parameters.

Constant Value Description

AS
pot 0.025 pFHz Amplitude of potentiation

AS
dep 0.10 × 10−5 pF Amplitude of depression

τS 20 ms Time constant of low pass filter

WS
min 0 pF Minimum I to I weight

WS
max 0.3 pF Maximum I to I weight

https://doi.org/10.1371/journal.pcbi.1008866.t010
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are stored). The interneurons then determine which read-out network is active. The fast

dynamics in the read-out networks is controlled by the input from the fast clock.

Simulations. The code used for the training and testing of the spiking network model is

built in Matlab. Forward Euler discretisation with a time step of 0.1 ms is used. The code is

available on GitHub: https://github.com/amaes-neuro/compositional-sequences.

Changing the slow clock into an all-inhibitory network

The hierarchical model is composed of four networks. These networks can be implemented in

various ways. Here, we implement the slow clock differently to illustrate this (Fig 8, to be com-

pared with Fig 1). Sequential dynamics can also be obtained by having an all-inhibitory net-

work (see for example [36]). Learning the sequence AAB with this differently implemented

hierarchical model leads to similar results (Fig 9, to be compared with Fig 2). Table 11 shows

the new slow clock inhibitory network parameters. We conserve the other networks. Sequen-

tial dynamics in the slow clock is ensured by grouping the inhibitory neurons in 20 clusters of

100 neurons. The inhibitory weights wII of the same group are multiplied with a factor of 1/30.

The inhibitory weights from group i to group i + 1 mod 20 (i = 1‥20) are multiplied by a factor

of 1/2. This weight structure does not lead to sequential dynamics by itself, some form of adap-

tation has to be introduced. To this end, short-term depression is used:

txd

dxdðtÞ
dt

¼ 1� xdðtÞ ð9Þ

where xd is a depression variable for each neuron in the all-inhibitory network, and txd ¼ 200ms.

This variable is decreased by 0.07xd(t) when the neuron spikes. The outgoing weights of each

neuron in the network are multiplied with this depression variable. The slow clock receives

excitatory external random Poisson input and projects to the interneuron networks. The syntax

synapses follow the same dynamics as Eq 8, but the right hand side of the equation is multiplied

by −1 (an inverted STDP window). The parameters are summarized in Table 12.

Fig 8. The networks in the model can have different components. The slow clock is replaced by an all-inhibitory
network (compare with Fig 1). The syntax synapses follow the same STDP rule as the motif synapses, only inverted.

https://doi.org/10.1371/journal.pcbi.1008866.g008
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Supporting information

S1 Text. Extending the model to more and variable motif lengths.We extend the model

such that it can learn sequences consisting of more than two motifs, with variable durations. In

the main text, each motif has the same duration. This means the supervisor only needs to pro-

vide a starting signal to the fast clock, indicating when a motif starts. In general, a motif can be

shorter than a fast clock sequence. In that case, the supervisor has to provide a stop signal to

Fig 9. Learning sequence AAB with an inhibitory slow clock network. The target sequence is repeatedly presented to the read-out network. A-D. Spontaneous
dynamics is simulated after learning (85 target presentations). Red dots: excitatory neurons; blue dots: inhibitory neurons. A. The fast clock, controlled by interneurons
201 to 300. B. The slow clock, consisting of only inhibitory neurons, inhibits the interneurons in the correct order after learning. C. The read-out networks, driven by
the fast clock and controlled by the interneurons. D. The interneurons, controlled by the slow clock. E. The motif synapses show that the target motifs A and B are
stored after learning. F. The syntax weights store the correct temporal ordering A-silent-A-silent-B-silent.

https://doi.org/10.1371/journal.pcbi.1008866.g009

Table 11. Slow clock inhibitory network parameters.

Constant Value Description

NI 2000 Number of recurrent I neurons

wII 30 pF I to I synaptic strength

https://doi.org/10.1371/journal.pcbi.1008866.t011

Table 12. Syntax plasticity parameters.

Constant Value Description

AS
pot 0.03 pFHz Amplitude of potentiation

AS
dep 0.25 × 10−5 pFHz Amplitude of depression

τS 25 ms Time constant of low pass filter

WS
min 0 pF Minimum I to I weight

WS
max 0.3 pF Maximum I to I weight

https://doi.org/10.1371/journal.pcbi.1008866.t012
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the fast clock, indicating when a motif ends. This stop signal activates the penultimate cluster

in the fast clock, which activates in turn the ‘silent’ interneurons. The stop signal is 10 ms long

and has the same rate as the start signal. We learn example sequences to illustrate this (S6 Fig).

Specifically, we learn sequences ABCD and EBCF. Motifs A and B are both 200 ms long. Motif

C, D, E and F are respectively 150 ms, 120 ms, 180 ms and 100 ms long. To keep the sequences

as general as possible, we also include variable inter-motif intervals. The silent gap between

motifs A and B, motifs B and C, and motifs C and D is respectively 70 ms, 50 ms, and 80 ms.

The silent gaps in the second sequence between motifs E and B, motifs B and C, and motifs C

and F are respectively 70 ms, 50 ms, and 150 ms. We observe that the model is able to learn the

two sequences, but the replay of shorter motifs D and F is less accurate. The parameters used

in this simulation are the same as in other simulations, with an increased network size for the

interneuron networks, and read-out network.

(PDF)

S1 Fig. Dynamics of the hierarchical model during target sequence presentation. A. The

first cluster of the fast clock receives a high input current at the start of each motif presentation.

B. The first cluster of the slow clock receives a high input current at the beginning of the

sequence presentation. C. The high input current forces spiking in the read-out neurons. D.

The read-out neurons activate the interneurons.

(TIF)

S2 Fig. The serial network model. A. A single recurrent network clock (left) produces sequen-

tial dynamics and drives the dynamics in the read-out networks (right). The weights from the

serial clock to the read-out network are plastic. B. We learn target sequence AAB. Spontaneous

dynamics is simulated after 90 target sequence presentations. C. The read-out weights after

learning. Both motif and syntax information are stored in the same weights.

(TIF)

S3 Fig. Total sequence error for hierarchical and serial model, during relearning: AAB!
ABA. Spontaneous dynamics is simulated every fifth training iteration and compared with tar-

get sequence AAB (brown line) and target sequence ABA (dark green line) to compute the

total sequence error. A. Total sequence error for the hierarchical model. Note how the total

sequence error (which is the combination of within-motif error and syntax error) relative to

AAB decreases for about 30 iterations after target ABA is presented for the first time due to the

continued improvement in the within-motif dynamics. After this, there is a marked increase

in the syntax error and the total error relative to AAB. B. Total sequence error for the serial

model. The lack of hierarchy in the serial model implies that both the within-motif dynamics

and motif ordering has to be relearned. This leads to a more gradual and slower relearning

(note the longer x-axis).

(TIF)

S4 Fig. Total sequence error for various learning rates, during relearning AAB! ABA.

Spontaneous dynamics is simulated every fifth training iteration and compared with target

sequence AAB (brown line) and target sequence ABA (dark green line) to compute the total

sequence error. The lines shows the average of 5 simulations. A. The solid line shows the same

total error as in S3(A) Fig (the baseline). The dashed line shows the total error, when learning

faster. The right hand side of Eq 8 is multiplied by a factor 2. B. The total error when learning

slower. The right hand side of Eq 8 is divided by a factor 2. More iterations are shown because

the model needs more time to learn the sequences.

(TIF)
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S5 Fig. Learning two sequences. The hierarchical model requires an additional interneuron

network. An external current is assumed to inhibit the interneurons for sequence BAAB when

sequence AAB is presented and vice versa. The serial model duplicates the entire read-out net-

work. Here also, an external current is assumed to inhibit the read-out networks for sequence

BAAB when sequence AAB is presented and vice versa.

(TIF)

S6 Fig. Learning 2 sequences with variable motif durations and variable inter-motif inter-

vals. A. The two target sequences. Individual motifs have durations between 100 and 200 ms.

Inter-motif intervals range from 50 to 150 ms. B-E. Red dots: excitatory neurons; blue dots:

inhibitory neurons. Brown shaded area: sequence ABCD is played by inhibiting the interneu-

rons related to the second sequence; light green shaded area: sequence EBCF is played by inhib-

iting the interneurons related to the first sequence. B. Spike raster of the fast clock. C. Spike

raster of the slow clock. D. Spike raster of the six read-out networks. E. Spike raster of the inter-

neurons. An external attentional inhibitory current selects which sequence is played. F. The

motif weights encode the six motifs. Note that motifs B and C are learned more as they occur in

both sequences. G. The syntax weights encode the two sequences. All motif and syntax synapses

are plastic at all times during the sequence presentations (see S1 Text for Method details).

(TIF)

S7 Fig. Perturbing the slow clock of the hierarchical network. Blue shade indicates the per-

turbation time, all excitatory neurons receive no external input for 250 ms. The sequential

dynamics in the slow clock breaks down (top right) but random activity in the interneurons

(bottom right) leads to sequences in the fast clock (top left), which in turn leads to motif

replays (bottom left).

(TIF)

S8 Fig. Limitations on parameters. A. Spontaneous dynamics is simulated for a range of

parameters, for a model that has learned sequence ABA. The potentiated motif synapses have

values between 0.7 pF and 1 pF. Raster plots of the read-out network is shown. The lateral inhi-

bition wRIn and the lateral excitation wInR are varied. When the lateral inhibition is too weak,

the motifs occur at the same time (top left panel). When the lateral inhibition is sufficiently

strong, the motifs are replayed well (bottom right panel). B. A supervisor gives input ABA to

the read-out network, for a model that has stored sequence AAB. When the supervisor input is

too low (left panel), the stored sequence dominates the dynamics in the read-out network and

there will be no relearning. When the supervisor input is sufficiently high (right panel), the

stored sequence is overwritten by the supervisor input and there will be relearning.

(TIF)

S9 Fig. Learning curves for different read-out configurations. The read-out network in the

main text consists of two separate networks, which are not interconnected. A. Cartoon of

read-out network without recurrent excitatory connections. B-D: The learning curves when

the recurrent connections in the two separate motif networks are zero. The same relearning

protocol as in Fig 3 and S4 Fig is used. E. Cartoon of read-out network when the two motif net-

works are combined and interconnected into one network. F-H: The learning curves when the

two motif networks are combined and interconnected into one network. In this case, the same

connections as listed in Table 2 are used but multiplied by 1=
ffiffiffi

2
p

, and NE
R ¼ 600,N I

R ¼ 150.

The sparsity of the connections remains p = 0.2. The same relearning protocol as in Fig 3 and

S4 Fig is used.

(TIF)
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