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Abstract

This thesis is concerned with the problem of learning comprehensible theories from

structured data and covers primarily classification and regression learning. The basic

knowledge representation language is set around a polymorphically-typed, higher-

order logic. The general setup is closely related to the learning from propositional-

ized knowledge and learning from interpretations settings in Inductive Logic Pro-

gramming. Individuals (also called instances) are represented as terms in the logic. A

grammar-like construct called a predicate rewrite system is used to define features in

the form of predicates that individuals may or may not satisfy. For learning, decision-

tree algorithms of various kinds are adopted.

The scope of the thesis spans both theory and practice. On the theoretical side, I

study in this thesis

1. the representational power of different function classes and relationships be-

tween them;

2. the sample complexity of some commonly-used predicate classes, particularly

those involving sets and multisets;

3. the computational complexity of various optimization problems associated with

learning and algorithms for solving them; and

4. the (efficient) learnability of different function classes in the PAC and agnostic

PAC models.

On the practical side, the usefulness of the learning system developed is demon-

trated with applications in two important domains: bioinformatics and intelligent

agents. Specifically, the following are covered in this thesis:

1. a solution to a benchmark multiple-instance learning problem and some useful

lessons that can be drawn from it;

2. a successful attempt on a knowledge discovery problem in predictive toxicology,

one that can serve as another proof-of-concept that real chemical knowledge can

be obtained using symbolic learning;

3. a reworking of an exercise in relational reinforcement learning and some new

insights and techniques we learned for this interesting problem; and

4. a general approach for personalizing user agents that takes full advantage of

symbolic learning.
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Chapter 1

Introduction

1.1 The General Problem

Learning from examples is an important topic in the study of machine intelligence.

We consider the general problem of learning comprehensible theories from structured data

in this thesis. The three key phrases here are ‘learning’, ‘structured data’, and ‘com-

prehensible theories’. We now elaborate on each of these in turn.

Learning The basic learning problem is standard. The learner receives randomly

drawn training examples of the form (x, y), x ∈ X , y ∈ Y , where X is some set

called the individual space, and Y is either a finite set or (a bounded interval of) the

real line R. There could be an underlying target function f relating each x and y

by y = f(x), and the examples are generated according to an unknown probability

distribution on X . More generally, we do not presuppose the existence of a target

function and simply assume that examples are generated according to an unknown

joint probability distribution on X × Y . In both cases, the learning task is to find a

hypothesis h from a class of functions H called the hypothesis space that generalizes

well to unseen examples. That is to say, h is our theory of the underlying process that

generates the training examples.

Structured Data In a typical formulation of the learning problem, X is a (strict) sub-

set of Rn for some n > 0. This representation is inconvenient for certain domains

like bioinformatics where the individuals at work are complex entities with rich in-

ternal structures. To widen the applicability of machine learning to these areas, we

need to move to a richer instance space X , one capable of modelling a wide range of

structured data, and consider the problem of learning in that setting.

Comprehensible Theories Besides being able to deal with structured data, we would

also like the theories we produce to be, whenever possible, comprehensible. This is a

worthy goal to aim for. If we expect our theory to be useful enough to be assimilated

into the body of human knowledge, then it must have explanatory power and be

amenable to some form of scrutiny, and comprehensibility helps in that regard.

The general problem is, by popular agreement, an important one. There are dif-

ferent ways to tackle the problem. We next outline an approach based on the use of

computational logic.

1



2 Introduction

1.2 A Symbolic Approach

In [130], an elegant logical framework is proposed for the problem of learning compre-

hensible theories from structured data. The framework is based on a polymorphically-

typed, higher-order logic and forms the backbone of the present thesis. The main

features of the formalism are as follows. (More details can be found in Chapter 2.)

1. A special class of terms in the logic called basic terms is used for data modelling.

A rich catalogue of data types is supported this way. They include integers,

floating-point numbers, data constants, tuples, lists, trees, graphs, sets, multi-

sets, and composite types that can be built up from these more basic types.

2. A class of functions called transformations provides a convenient way to define

and incorporate domain knowledge into learning. Transformations can be com-

posed to form (complex) predicates on individuals, and these form part of the

hypothesis space in applications.

Predicate classes relevant to an application can be compactly defined and effi-

ciently enumerated using a construct called predicate rewrite systems. Essen-

tially, a predicate rewrite system is a grammar for constructing predicates from

transformations.

3. For the purpose of learning, the standard top-down tree-induction algorithm

was ‘upgraded’, in the sense of [194], to handle basic terms and higher-order

predicates. Decision-tree learning was adopted because it is one of only a few

learning algorithms that can produce comprehensible rules.

The knowledge representation aspects of the framework are well-understood. The

learning aspects, as documented in [130], however, could do with more development.

The aim of this thesis is to fill some of these gaps in our overall understanding.

1.3 Two Scientific Questions

We have outlined the general problem and the symbolic approach taken. We now

state two specific scientific questions that drive the development of the present work.

1. What is the nature of learning with an expressive language such is provided by

the formalism adopted here?

2. Is the symbolic approach to learning propounded here relevant and applicable?

The first question is interesting from a theoretical perspective. A lot is known

about the processes and nature of learning in the restricted setting where individuals

are simple feature vectors; see, for an introduction, [3] and [103]. What is fundamen-

tally different when we move on to a richer setting and avail ourselves of a more

expressive language for representing individuals and hypothesis spaces? Is the re-

sulting learning problem harder or easier? In what way? Why? These are but some of

the questions that we will try to answer in this thesis.
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The second question is important from a practical perspective, and it is one we ask

to keep ourselves honest. To demonstrate relevance, we will concentrate on two appli-

cation domains of scientific significance: bioinformatics and agents. In the context of

bioinformatics, we will show that symbolic learning can help in the discovery of real

biochemical knowledge. In the context of agents, we will show that symbolic learning

can be used, in a complementary way with other components in an agent architecture,

to incorporate adaptability into the behaviour of autonomous and intelligent agents.

If you find that you’re spending almost all your time on theory, start turn-

ing some attention to practical things; it will improve your theories. If you

find that you’re spending almost all your time on practice, start turning

some attention to theoretical things; it will improve your practice.

Donald E. Knuth [111]

1.4 Thesis Organization

The thesis is organized as follows. In Chapter 2, we summarize the essential aspects

of the knowledge representation formalism introduced in [130] and describe a few

simple tools for manipulating predicate rewrite systems.

Chapter 3 is concerned with the basic problem of learning classification rules from

structured data. In it, we study different decision-tree learning algorithms and ana-

lyze their properties from a few standard learning-theoretic viewpoints. The material

presented in this chapter sheds light on the nature of learning with a rich language.

In Chapter 4, we extend, in a straightforward manner, the basic tree-learning algo-

rithm to regression. In Chapter 5, we introduce two incremental induction algorithms,

one for classification and one for regression. Each one is, in a sense to be made pre-

cise later, lossless with respect to its corresponding batch learning algorithm. These

extensions broaden the applicability of the present work.

Chapter 6 contains descriptions of four applications, two in bioinformatics, two in

agents. Two of them are ‘toy problems’1, two non-trivial problems.

Chapter 7 compares the general approach presented in this thesis with related

work in the literature. Both qualitative and quantitative analyses are given.

We conclude in Chapter 8 with an evaluation of what has been achieved in this

thesis and state some possible future work.

1.5 The Alkemy Software

As part of development of the work reported here, a prototype system called ALKEMY

was implemented and made available for download at

1Toy problems can be relevant; see [110].



4 Introduction

http://rsise.anu.edu.au/˜kee/Alkemy.

The system is a fairly complex piece of software (∼ 20,000 lines of C++ code). It was

written as a literate program [154] using Noweb [165]. All the algorithms discussed

in this thesis are implemented. The system comes complete with a tutorial.

I like to work in a variety of fields

in order to spread my mistakes more thinly.

Victor Klee (1999)



Chapter 2

Knowledge Representation

Language is the armory of the human mind, and at once

contains the trophies of its past and the weapons of its future conquests.

Samuel Taylor Coleridge

2.1 Introduction

The representation language adopted in this thesis is the one proposed in [130]. The

basic setting is a typed, higher-order logic based on Alonzo Church’s simple theory

of types [41] with several extensions, most notably the support of polymorphism in

the type system. The form of the language is similar to that of a standard functional

programming language like Haskell. In fact, the formalism grew out of research into

a functional logic programming language called Escher [128], [129].

In this chapter, we review the fundamental elements of that formalism, starting

with the representation of individuals in Section 2.2. A rich catalogue of data types is

provided for that purpose. They include integers, floating-point numbers, characters,

strings, booleans, data constructors, tuples, sets, multisets, lists, trees, graphs and

composite types that can be built up from these more basic types. We will take a brief

look at how these are made available through the concept of basic terms.

Besides individuals, we also need a language to express features about individ-

uals. Here, features are identified with properties that individuals may or may not

have, in other words, predicates. A class of predicates that can be built up from more

basic functions called transformations suitable for use here is introduced in Section

2.3. Section 2.4 then describes a mechanism based on term rewriting that can be used

to define a collection of predicates relevant to a particular application.

We end the chapter with a listing of some common data types and transformations

in Section 2.5. They are used at different places throughout the thesis, and are collected

here for easy referencing.

Before moving on, we give a few pointers to where information beyond what is

given in this chapter can be obtained. With the exception of material in §2.4.3, the

specifics of every concept presented in this chapter can be found in [130]. Discus-

sions on the merits of the formalism and comparisons with existing first-order and

propositional representations can be found in Sect. 7.1, [31], [83] and [76].

5



6 Knowledge Representation

2.2 Representation of Individuals

The formal basis for the representation of individuals is provided by the concept of a

basic term. Essentially, one first defines the concept of a term in higher-order logic. A

suitably rich subset is then identified for data modelling. We give a brief outline of its

development here.

We assume there is given a set of type constructors of various arities. The types

of the logic are expressions that can be built up from the set of type constructors and

a set of parameters (type variables) using the symbols → and ×. The former is used

to construct function types, the latter, product types. Parameters are usually denoted

using the symbols a, b, c, . . ..

Example 2.2.1. Standard type constructors (of arity 0) include Ω (the type of the

booleans), Nat (the type of natural numbers), Int (the type of integers), Float (the

type of floating-point numbers), Char (the type of characters) and String . ◭

Example 2.2.2. List is a type constructor that is used to provide list types. If α is a

type, then List α is the type of lists whose elements have type α. ◭

There is also a set of constants of various types. Included in the set are 1 (true) and

0 (false), each of type Ω. One can distinguish between two kinds of constants, data

constructors and functions. In a knowledge representation context, data constructors

are used to represent individuals. Functions have definitions, data constructors do

not. A signature is the declared type of a constant. If a constant C has signature α, we

denote this by C : α.

Example 2.2.3. The constant [] is the empty list constructor with signature List a,

where a is a parameter. The constant # : a → List a → List a is a list constructor. It

takes two arguments, an element of type α and a list of type List α, and produces a

new list of type List α. (Here, α is unified with the parameter a.) ◭

The terms of the logic are the terms of the typed λ-calculus, formed in the usual

way by application, abstraction, and tupling from the set of constants and a set of

variables. The definition of basic terms – a strict subset of terms – has three parts: the

first part gives those basic terms that have a data constructor at the top level (integers,

characters, lists, trees, etc); the second part gives certain abstractions that include sets

and multisets; the third part gives tuples. The exact definition is in [130].

We now describe a simple problem to give a feel of the data modeling language. It

will be used as a running example to illustrate the different concepts we will encounter

in this chapter.

Example 2.2.4. Consider the East-West challenge proposed by Michalski. (See, for

example, [140].) Given ten trains and the directions they are traveling in (Figure 2.1),

the problem is to come up with a rule that can differentiate between those heading east

and those heading west. To solve the problem, we first need a way of representing

the trains. How might we do that? Recognizing the fact that the order in which

the carriages appear in a train might be important, we can model a train as a list of
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1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 2.1: Trains in Michalski’s East-West Challenge.

its carriages. A carriage can in turn be modeled using a tuple made up of six of its

properties - shape, length, number of wheels, open air or closed, roof shape, and the

load the carriage is carrying. From that initial analysis, we introduce the following

data constructors and type synonyms.

Rectangular ,DoubleRectangular ,UShaped ,BucketShaped ,

Hexagonal ,Ellipsoidal : Shape

Long ,Short : Length

Closed ,Open : Kind

Flat , Jagged ,Peaked ,Curved ,None : Roof

Circle,Hexagon ,Square ,Rectangle ,LRectangle ,Triangle ,UTriangle ,

Diamond ,Null : Object

East ,West : Direction

NumWheels = Int

NumObjects = Int

Load = Object ×NumObjects

Car = Shape × Length ×NumWheels ×Kind × Roof × Load

Train = List Car .

Note that type synonyms are denoted using = signs here; their use allows us to give

meaningful names to types. Given these type declarations, formally, the task is to

learn the definition of a function direction with signature Train → Direction . Individ-

uals in the training examples can be easily encoded as terms of type List Car . The



8 Knowledge Representation

first trains traveling in each direction are shown below.

direction [(Rectangular ,Long , 2,Open ,None, (Square , 3)),

(Rectangular ,Short , 2,Closed ,Peaked , (Triangle , 1)),

(Rectangular ,Long , 3,Open ,None, (Hexagon , 1)),

(Rectangular ,Short , 2,Open ,None, (Circle , 1))] = East

direction [(Rectangular ,Long , 2,Closed ,Flat , (Circle , 3)),

(Rectangular ,Short , 2,Open ,None, (Triangle , 1))] = West .

◭

2.3 Representation of Features

We now turn our attention to the formalism for expressing features. We identify

boolean features with predicates that individuals may or may not satisfy. A predi-

cate is a function with a signature of the form α→ Ω for some α.

The class of predicates we are interested in are built up incrementally by com-

position of simpler functions called transformations. Composition is handled by the

(reverse) composition function

◦ : (a→ b)→ (b→ c)→ (a→ c)

defined by ((f ◦ g) x) = (g (f x)).

Definition 2.3.1. A transformation f is a function having a signature of the form

f : (̺1 → Ω)→ · · · → (̺k → Ω)→ µ→ σ,

where any parameters in ̺1, . . . , ̺k and σ appear in µ, and k > 0. The type µ is called

the source of the transformation, while the type σ is called the target of the transforma-

tion. The number k is called the rank of the transformation.

The idea behind the definition of transformation is rather intuitive. Given predi-

cates pi : ̺i → Ω (i = 1, . . . , k), f p1 . . . pk is a function that takes individuals of type

µ to individuals of type σ. By composing several such functions, the last of which is

a transformation with target type boolean, a predicate on individuals of the desired

type is obtained.

Note that every function having signature µ → σ is potentially a transformation.

Just put k = 0.

Example 2.3.2. There are two fundamental transformations top : a → Ω and bottom :

a → Ω defined by (top x) = 1 and (bottom x) = 0, for each x. Each of top and bottom

is a constant predicate, with top being the weakest predicate on the type a and bottom ,

the strongest. We will see more examples of transformations shortly. ◭
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We now give the definition of the class of predicates that can be formed by com-

posing transformations. In the definition, it is assumed that some (possibly infinite)

class of transformations is given and all transformations considered are taken from

this class.

Definition 2.3.3. A standard predicate is a term of the form

(f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω, pi,ji
is a

standard predicate (i = 1, . . . , n, ji = 1, . . . , ki), ki > 0 (i = 1, . . . , n) and n > 1.

The set of all standard predicates is denote by S.

Example 2.3.4. Referring back to the East-West challenge described in Example 2.2.4,

one may ask what transformations are suitable for use with the learning task? The

type we have chosen for trains gives strong clues about the possible transformations.

At the top level, a train is a list of carriages. Here are some standard transformations

on lists.

head : Train → Car

head (x : xs) = x

tail : Train → Train

tail (x : xs) = xs

listToSet : Train → {Car}

listToSet y = {x : member x y}

Given a set of carriages, the following transformations can be useful.

setExists1 : (a→ Ω)→ {a} → Ω

setExists1 p t = ∃x.((p x) ∧ (x ∈ t))

domCard : (a→ Ω)→ {a} → Nat

domCard p t = card {x | (p x) ∧ x ∈ t}.

Given a predicate p and a set t having appropriate types,

• setExists1 p t evaluates to 1 iff the set t has at least one element that satisfies the

predicate p;

• domCard p t returns the number of elements in t that satisfy p. (The function

card computes the cardinality of a set.)

Corresponding to the types Car and Load , which are tuples, we can define trans-
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formations that project onto the components of the tuples.

projShape : Car → Shape

projShape (t1, t2, t3, t4, t5, t6) = t1

. . .

projLoad : Car → Load

projLoad (t1, t2, t3, t4, t5, t6) = t6

projObject : Load → Object

projObject (t1, t2) = t1

projNumObjects : Load → NumObjects

projNumObjects (t1, t2) = t2

We may also want to form conjunctions of predicates (of arbitrary types). This can

be defined as folows.

∧n : (a→ Ω)→ · · · → (a→ Ω)→ a→ Ω

∧n p1 . . . pn = λx.((p1 x) ∧ · · · ∧ (pn x))

The lambda notation is used here. Thus, given a term t of the appropriate type,

∧n p1 . . . pn t evaluates to 1 iff the term ((p1 t) ∧ · · · ∧ (pn t)) evaluates to 1. We

remark that disjunctions ∨n and negation ¬ at the predicate level can be defined in a

similar manner.

Corresponding to the data constructors and integers, we can have the following

transformations that check for equality of terms.

(= Rectangular) : Shape → Ω

(= Rectangular) x = (x = Rectangular )

(= DoubleRectangular) : Shape → Ω

(= DoubleRectangular) x = (x = DoubleRectangular )

. . .

(= Null) : Object → Ω

(= Null) x = (x = Null)

(= 2) : NumWheels → Ω

(= 2) x = (x = 2)

(= 3) : NumWheels → Ω

(= 3) x = (x = 3)

Corresponding to any integer N , we can define the transformation (< N) as fol-
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lows. In a similar way, one can define (> N), (> N), and (6 N).

(< N) : Int → Ω

((< N) m) = (m < N).

There are many other appropriate transformations one can think of, but the small

set we have identified can already be used to express complex conditions on trains.

For example, the predicate

listToSet ◦ (setExists1 (projLength ◦ (= Short)))

takes as input an object of type Train , converts it into a set of carriages, and checks

whether there exists a short carriage in the set. For another example, the predicate

head ◦ (∧2 (projShape ◦ (= Rectangular )) (projLoad ◦ projNumObjects ◦ (= 3)))

takes as input an object of type Train , pulls out the first carriage and checks whether

its shape is rectangular and that it carries three objects. ◭

2.4 Predicate Construction

We next describe a mechanism to define and enumerate a set of predicates relevant to

a particular application. We start with the definition of a predicate rewrite system.

Definition 2.4.1. A predicate rewrite system is a finite relation  on S (the set of all

standard predicates) satisfying the following property: for each p  q, the type of p

is more general than the type of q.

Informally, a type α is more general than a type β if there exists a type substitution

ξ instantiating parameters in α such that β = αξ.

Each p  q in  is called a predicate rewrite, p the head and q the body of the

predicate rewrite.

The next few definitions make clear how a predicate rewrite system defines a pred-

icate search space.

Definition 2.4.2. A subterm of a standard predicate

(f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

)

is eligible if it is a suffix of the standard predicate or it is an eligible subterm of pi,ji
, for

some i ∈ {1, . . . , n} and ji ∈ {1, . . . , ki}.

Definition 2.4.3. Given a predicate rewrite system  and a standard predicate p, an

eligible subterm r of p is a redex with respect to  if there exists a predicate rewrite

r  b such that the type of b and the type of r in p are unifiable. We say r is a redex

via r  b.
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Definition 2.4.4. Let  be a predicate rewrite system and p and q standard predicates.

Then q is obtained by a predicate derivation step from p using  if there is a redex r via

r  b in p and q = p[r/b]. Here, p[r/b] denotes the predicate obtained from p by

replacing r in p with b.

In applications, to generate a search space of predicates, we start from some pred-

icate p0 and generate all the predicates that can be obtained by a predicate derivation

step from p0, then all the predicates that can be obtained from those by a predicate

derivation step, and so on.

Definition 2.4.5. A predicate derivation with respect to a predicate rewrite system 

is a finite sequence 〈p0, p1, . . . , pn〉 of standard predicates such that pi is obtained by a

derivation step from pi−1 using , for i = 1, . . . , n. The standard predicate p0 is called

the initial predicate and the standard predicate pn is called the final predicate.

Example 2.4.6. Consider Example 2.2.4 again. Suppose we speculate that the defi-

nition of direction has the following general form: a train travels east (or west) iff

there exists a carriage in the train that satisfies some (as yet unknown) properties. The

following predicate rewrite system specifies a space of predicates of the desired form.

top  listToSet ◦ setExists1 (∧3 top top top)

top  projShape ◦ top

top  projLength ◦ top

top  projNumWheels ◦ top

top  projKind ◦ top

top  projRoof ◦ top

top  projLoad ◦ top

top  projObjects ◦ top

top  projNumObjects ◦ top

top  (= Rectangular )

top  (= DoubleRectangular )

top  (= UShaped)

. . .

top  (= UTriangle)

top  (= Diamond)

top  (= Null)

top  (= 1)

top  (= 2)

top  (= 3)

It is clear that the set of predicate rewrites given above satisfies the condition of Defi-
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nition 2.4.1. The following is a predicate derivation.

top

listToSet ◦ setExists1 (∧3 top top top)

listToSet ◦ setExists1 (∧3 (projShape ◦ top) top top)

listToSet ◦ setExists1 (∧3 (projShape ◦ top) (projLength ◦ top) top)

listToSet ◦ setExists1 (∧3 (projShape ◦ top) (projLength ◦ top) (projKind ◦ top))

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ top)) (projKind ◦ top))

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ top) (projKind ◦ (= Open)))

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ (= Short)) (projKind ◦ (= Open)))

We used top as the initial predicate. The first predicate rewrite is used in the first step.

(It is intended that the derivation provides a predicate of type Train → Ω.) For the

second step, the redex top has type Car → Ω which is the same as the type of the body

of the predicate rewrite top  projShape ◦ top. Thus this occurrence of top is a redex

via this predicate rewrite. The remaining steps are similar.

Without spelling out the algorithm for generating the search space given a predi-

cate rewrite system (this will be done next in §2.4.1), we remark that ALKEMY searched

through the predicate space and produced the following hypothesis for the problem.

direction t = if listToSet ◦ (setExists1 (∧3 projLength ◦ (= Short)

projKind ◦ (= Closed) top)) t

then East

else West .

In more user-friendly terms, “A train is eastbound iff it has a short closed car”. ◭

2.4.1 Predicate Enumeration

Given a predicate rewrite system  and a predicate p0, we call the expected predicates

obtainable from p0 via  , denoted S(p0) (or just S when p0 is understood), the

set of all the the final predicates of predicate derivations with initial predicate p0 that

can be formed with no restrictions on the selection of redexes at each derivation step.

To efficiently enumerate expected predicates in practical applications, some care is

necessary. The difficulty is that the search space defined by a predicate rewrite system

is (usually) a graph, not a tree. In other words, there may be many paths from some

initial predicate p to some predicate q. The first problem is related to the selection

order of the redexes.
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Example 2.4.7. Consider the predicate rewrite system in Example 2.4.6. Correspond-

ing to the different choices of redexes, there are 3! distinct predicate derivations with

initial predicate top that have

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ (= Short)) (projKind ◦ (= Open))

as the final predicate. Clearly, it would be preferable to construct only one of these

derivations. ◭

The second problem is related to equivalence of predicates.

Example 2.4.8. Consider again the predicate rewrite system in Example 2.4.6. The

standard predicates

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ (= Short)) (projKind ◦ (= Open)))

and

listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projKind ◦ (= Open)) (projLength ◦ (= Short )))

can both be obtained as the final predicates of derivations starting from the initial

predicate top. But these two standard predicates are logically equivalent. There are 3!

such logically equivalent predicates altogether corresponding to the various orderings

of the arguments to ∧3. Clearly, it would be preferable to only construct one of these

predicates. ◭

We now give two algorithms for systematically enumerating the search space de-

fined by a predicate rewrite system. Each has features not available in the other. De-

pending on the application, one may be preferred to the other. Algorithm I, first

reported in [31], was designed by John W. Lloyd, Antony Bowers and Christophe

Giraud-Carrier. Algorithm II was joint work between John W. Lloyd and the author

and first appeared in [130].

Both algorithms make use of the following syntactic condition that reveals equiv-

alence of predicates.

Definition 2.4.9. A transformation f is symmetric if it has a signature of the form

f : (̺→ Ω)→ · · · → (̺→ Ω)→ µ→ σ,

and whenever f p1 . . . pk is a standard predicate, it follows that for all permutations i

of {1, . . . , k}, f p1 . . . pk and f pi1 . . . pik are equivalent.

Example 2.4.10. The transformation ∧n is symmetric. Also, every transformation of

rank k, where k 6 1, is (trivially) symmetric. ◭



§2.4 Predicate Construction 15

Since any permutation of the predicate arguments of a symmetric transformation

produces an equivalent function, we can choose to allow only one particular order of

arguments and ignore the others. For this purpose, a total order � on standard pred-

icates needs to be defined. (For details, see [130].) Arguments for symmetric trans-

formations are then chosen in increasing order according to �. The class of regular

predicates is defined as follows.

Definition 2.4.11. A standard predicate (f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

) is reg-

ular if pi,ji
is a regular predicate, for i = 1, . . . , n and ji = 1, . . . , ki, and fi is symmetric

implies that pi,1 � · · · � pi,ki
, for i = 1, . . . , n.

There is an algorithm called Regularize that takes a standard predicate and returns

an equivalent regular standard predicate. It can be found in [130].

2.4.1.1 Algorithm I

Figure 2.2 shows the first algorithm. It is an instance of the classical anagram algo-

rithm [16]. A set of (regularized forms of) previously seen predicates is maintained in

a seenSet during search. Each time a new predicate is generated, the algorithm regu-

larizes the predicate and checks whether it is already in the seenSet , adding it if it is

not. This tactic essentially turns the search space back into a tree.

The algorithm works well when used in conjunction with incomplete search algo-

rithms. Good predicates can be reached quickly via any of the many paths leading to

it. A big disadvantage of the algorithm is the (un)scalability of its memory require-

ment. Asymptotically, the size of the seenSet can be as large as the whole search space.

This implies that for sufficiently large search spaces, an exhaustive enumeration is

computationally intractable. This motivates the development of the next algorithm,

which is memory efficient.

2.4.1.2 Algorithm II

The central idea of the second algorithm is that one can introduce a restricted form

of redex selection to solve the problem illustrated in Example 2.4.7, and discard non-

regular predicates during enumeration to solve the second problem illustrated in Ex-

ample 2.4.8.

The algorithm is given in Figure 2.3. In the figure, the phrase ‘LR redex’ means

the redex is selected according to the LR (left-to-right) selection rule, that is, the redex

must be at or to the right of the redex selected in the parent predicate of p. More

precisely, suppose p is a standard predicate and  a predicate rewrite system. If r

is a redex in p via r  b and we derive q = p[r/b] from p using r  b, then the LR

selection rule stipulates that the only redexes in q that can be chosen next are those

that are at or to the right of b in q.

The algorithm, while conceptually simple and elegant, introduces some subtle and

difficult questions:
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function Enumerate(, p0) returns the set of expected predicates
obtainable from p0 via ;

inputs: , a predicate rewrite system ;
p0, a standard predicate;

predicates := {};

openList := [p0];

seenSet := {p0};

while openList 6= [] do

p := head(openList );

openList := tail(openList);

predicates := predicates ∪ {p};

for each redex r via r  b, for some b, in p do

q := Regularize(p[r/b]);

if q 6∈ seenSet then

seenSet := seenSet ∪ {q};

openList := openList ++ [q];

return predicates ;

Figure 2.2: Algorithm I

function Enumerate2(, p0) returns the set of regular predicates that
can be derived from p0 using ;

inputs: , a predicate rewrite system ;
p0, a predicate;

predicates := {};

openList := [p0];

while openList 6= [] do

p := head(openList );

openList := tail(openList);

predicates := predicates ∪ {p};

for each LR redex r via r  b, for some b, in p do

q := p[r/b];

if q is regular then openList := openList ++ [q];

return predicates ;

Figure 2.3: Algorithm II
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1. Is the search conducted by the algorithm complete? In other words, are (the

regularizations of) all the expected predicates obtainable from p0 via  actually

generated by such restricted predicate derivations?

2. Is each (regularization of an) expected predicate generated exactly once?

In [130], it is shown that under some weak conditions on the predicate rewrite

system, completeness and uniqueness of predicate derivations can be guaranteed. The

results are technical and we refer the reader to the book for more details.

Note that Algorithm II is memoryless, and is particularly useful for performing

exhaustive searches. However, it does not work as well when used in conjunction

with incomplete search algorithms. This is because it often cannot go where the search

strategy is suggesting it go because only one path out of the many possible ones can be

traversed. During search, non-regular predicates generated are thrown away without

further examination. One of these predicates could very well be the best predicate in

the whole predicate space, but it won’t be examined until a regular path to it can be

found.

2.4.2 Structuring the Search Space

In the top-down construction of predicates, it is crucial to ensure that if a standard

predicate q is obtained by a predicate derivation step from a standard predicate p,

then p ⇐ q holds, where⇐ denotes logical implication. Sufficient conditions for this

are now given.

Informally, we say a standard predicate p is monotone with respect to a predicate

rewrite system  if for every redex r in p with respect to  and for every standard

predicates s and s′ such that r ⇐ s ⇐ s′, then p[r/s] ⇐ p[r/s′]. (Recall that p[r/s]

denotes the predicate obtained from p by replacing r in p with s.) Further details on

this definition of monotonicity can be found in [130]. We now give a few examples to

illustrate the concept.

A standard predicate that contains no redexes with respect to a predicate rewrite

system  is clearly monotone with respect to . Also, a predicate pwhose only redex

with respect to a predicate rewrite system  is a suffix of p is monotone with respect

to .

Example 2.4.12. If p1, . . . , pn are standard predicates that are monotone with respect

to a predicate rewrite system, then so is ∧n p1 . . . pn.

Example 2.4.13. If p is a standard predicate that is monotone with respect to a predi-

cate rewrite system, then so is (domCard p) ◦ (> N). This is not true of the predicate

(domCard p) ◦ (< N), however.

Definition 2.4.14. We say a predicate rewrite system  is monotone if the following

conditions are satisfied.

1. p  q implies p⇐ q.

2. p  q implies q is monotone with respect to .



18 Knowledge Representation

Example 2.4.15. The predicate rewrite system given in Example 2.4.6 is monotone.

Clearly, each predicate rewrite p  q satisfies p ⇐ q. Also, the body of each pred-

icate rewrite is monotone. Each predicate of the form (= C) for some constant C

has no redex and is therefore monotone. Predicates like projShape ◦ top contain only

one redex that is a suffix and are therefore monotone. The body of the first predicate

rewrite is monotone since ∧n and setExists1 are both monotone when the arguments

are monotone. (Note that setExists1 p is equivalent to (domCard p) ◦ (> 0).) ◭

It can be shown that the monotone property of standard predicates is preserved

under predicate derivation steps for monotone predicate rewrite systems. In other

words, given a monotone predicate rewrite system  and a predicate p that is mono-

tone with respect to , every predicate q that can be obtained by a predicate deriva-

tion step from p is monotone with respect to .

Example 2.4.16. Consider the predicate derivation given in Example 2.4.6. The predi-

cate rewrite system  is monotone. The initial predicate top is monotone with respect

to the predicate rewrite system. Consequently, we have

top

⇐ listToSet ◦ setExists1 (∧3 top top top)

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ top) top top)

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ top) (projLength ◦ top) top)

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ top) (projLength ◦ top) (projKind ◦ top))

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ top)) (projKind ◦ top))

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ top) (projKind ◦ (= Open)))

⇐ listToSet ◦ setExists1 (∧3 (projShape ◦ (= Rectangular ))

(projLength ◦ (= Short)) (projKind ◦ (= Open))).

◭

Checking whether a predicate rewrite system is monotone is undecidable in gen-

eral. However, the condition is a weak one and it is natural for predicate rewrite

systems in practical applications to be monotone.

2.4.3 Operations on Predicate Rewrite Systems

In this section, we discuss a few basic operations for manipulating predicate rewrite

systems. These will be needed in later chapters. It is worth noting that the notation

and materials introduced in this section have not previously appeared elsewhere.
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2.4.3.1 Computing the Size of Predicate Classes

A useful piece of information to have when using ALKEMY is the size of the predicate

space defined by a predicate rewrite system.

Definition 2.4.17. Given an initial predicate p0, we say a predicate rewrite system 

is finite if the set S(p0) of expected predicates obtainable from p0 via  is finite.

We now present an algorithm for calculating |S(p0)|, denoted #() henceforth,

given an initial predicate p0 and a finite predicate rewrite system . A naı̈ve way

to compute #() is to simply enumerate all the predicates and count them. A more

efficient procedure is possible, provided some restrictions are imposed on the form of

. This motivates the next definition.

Definition 2.4.18. A predicate rewrite system  is in normal form if the following

hold for each predicate rewrite r  s.

1. r is a transformation of rank 0.

2. For each subterm of s having the form f p1 . . . pk (k > 0), if f is symmetric, then

pi = pj for all i, j ∈ {1, . . . , k}.

Example 2.4.19. Consider the following two predicate rewrite systems.

top  ∨2 (∧2 top top) (∧2 top top) top  ∨2 (∧2 q top) (∧2 q top)

top  p1 top  p1

. . . . . .

top  pn top  pn

The predicate rewrite system on the left is in normal form, but the one on the right is

not in normal form because the arguments to ∧2 are not equal. ◭

Condition (1) in Definition 2.4.18 is introduced to achieve efficiency in locating

redexes. Without the constraint, we need to check all suffixes; with it, we only have to

look at the last transformations. This restriction is not severe. In fact, we have never

encountered the need to use anything more complex than a transformation of rank 0

as the head of a predicate rewrite. In any case, it is not hard to normalize a predicate

rewrite system to satisfy condition (1); in general, such changes do not affect the value

of #().

Condition (2), which is more restrictive, is introduced for practical reasons. We

would like to be able to determine the set of predicate rewrites applicable to a redex

using only local type information. Terms of the form f p1 . . . pk, where f is symmetric

but there exists i and j in the range {1, . . . , k} such that pi 6= pj , can cause difficulty

because the determination of applicable predicate rewrites requires information not

available locally. As an illustration of the problem, consider a predicate of the form

f (p ◦ top) top. If f is not symmetric, to compute the set of applicable rewrites, AR,

for the second top we need to know only its type. But if f is symmetric, to compute

AR requires knowledge of p ◦ top and how it is rewritten. This is because we only
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want to count regular predicates. In general, normalizing a predicate rewrite system

 to conform to the second condition will change the value of #(). However, this

restriction is not serious. As we shall see, given a predicate rewrite system that does

not satisfy condition (2), the algorithm returns an upper bound on #().

The algorithm implements the following recursive formula size(p,) for counting

the number of predicates obtainable from some standard predicate p via .

size((f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

),) =
n
∏

i=1

expand(fi pi,1 . . . pi,ki
,)

1) expand(f,) = 1, if f is not a redex;

2) expand(f,) = 1 +
∑

fs∈AR

size(s,),

if f is a redex, and AR are the applicable rewrites;

3) expand(f p1 . . . pk,) =

(

size(p1,) + k − 1

k

)

,

if f is symmetric and pi = pj for all i, j ∈ {1, . . . , k};

4) expand(f p1 . . . pk,) =
k
∏

i=1

size(pi,), otherwise.

The function expand is to be understood as a macro, to be expanded in different

ways depending on the form of the input; its use simplifies the presentation of the

formula. The correctness of the algorithm relies on the following.

Proposition 2.4.20. Given a finite, normalized predicate rewrite system  and a standard

predicate q = (f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

), the function call size(q,) returns

the size of the set of expected predicates obtainable from q via .

Proof. The proof proceeds by induction on n, the number of calls to size . For n = 1,

formula (1) must apply for each fi pi,1 . . . pi,ki
(1 6 i 6 n). That means q does not

have a redex, and the number of predicates obtainable from q is indeed 1.

Assume now that the statement holds for all computations involving strictly less

than k calls to size , where k > 1. Consider a computation involving k calls to size ,

assuming one exists. Each computation of the form expand(fi pi ,1 . . . pi ,ki
,) cal-

culates the number of predicates that can be obtained from q using only redexes in

fi pi,1 . . . pi,ki
. The total number of predicates that can be obtained from q is then

n
∏

i=1

expand(fi pi,1 . . . pi,ki
,).

It is sufficient to show that each individual expand(fi pi,1 . . . pi,ki
,) computation is

correct. The correctness of cases (1), (2) and (4) follow directly from the inductive

hypothesis. For case (3), we want to choose a multiset of k elements from m possible
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choices, where m is the number of distinct predicates that can be used to rewrite the

redexes. The number of such multi-combinations is given by
(m+k−1

k

)

. We have the

desired result by noting that m = size(p1,) by the inductive hypothesis.

We now examine the implication of using a predicate rewrite system that does not

satisfy condition (2) of Definition 2.4.18. Only subterms of the form f p1 . . . pk where

f is symmetric are affected. For these, we count the number of ways they can be

rewritten as if f is non-symmetric. The function size thus gives us an upper bound for

#() in this case.

Example 2.4.21. Consider the predicate rewrite system  given in Example 2.4.6.

Using the algorithm given, we can compute the size of the set of expected predicates

obtainable from top : Train → Ω via  as follows.

size(top : Train → Ω,)

= expand (top,)

= 1 + size(listToSet ◦ setExists1 (∧3 top top top),)

= 1 + expand(listToSet ,)× expand(setExists1 (∧3 top top top),)

= 1 +

(

size(∧3 top top top,) + 1− 1

1

)

= 1 + size(∧3 top top top,)

= 1 +

(

size(top,) + 3− 1

3

)

= 10661

The last step follows from this calculation.

size(top : Car → Ω,)

= 1 + size(projShape ◦ top,) + . . .+ size(projLoad ◦ top,)

= 1 + expand(projShape ,)× expand (top,) + . . .

= 1 + 1× (1 + size((= Rectangular ),) + . . . size((= Ellipsoidal),)) + . . .

= 1 + 7 + 3 + 4 + 3 + 6 + 15

= 39 ◭

2.4.3.2 Negating a Predicate Rewrite System

In addition to generating predicates in S for a given , we sometimes need to gen-

erate the negation of each predicate in S as well. For the purpose of search, it is not

sufficient to enumerate S and for each p ∈ S generate also ¬p — the implication

relationships between the negated predicates would be in the ‘wrong’ order. A sepa-

rate predicate rewrite system neg is needed. Unfortunately, there is no easy way to

generate neg by simple manipulation of . We actually need to look at the search

space defined by .
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A naı̈ve way to generate neg from  is to first enumerate the set S and then

form a predicate rewrite top neg ¬p for each p ∈ S. But this throws away all the

structure in the original predicate rewrite system and with it, associated benefits like

compactness and amenability to search. A better way to generate neg is to simply

invert the search space, and then cut off unnecessary edges. We illustrate this process

with an example. Consider the following predicate rewrite system :

p1  p2

p1  p3

p3  p31

p3  p32.

The first step in defining neg is to invert the predicate space and then negate the

predicates, resulting in the following:

top neg ¬p2

top neg ¬p31

top neg ¬p32

¬p31 neg ¬p3

¬p32 neg ¬p3

¬p2 neg ¬p1

¬p3 neg ¬p1

The search space defined by neg as it stands is a graph. We can convert it back into a

tree by removing all but one predicate rewrites from each group of predicate rewrites

with the same body. Lacking further information, a random choice on which predicate

rewrite to keep can be made. Trimming neg from above, we get the final form:

top neg ¬p2

top neg ¬p31

top neg ¬p32

¬p31 neg ¬p3

¬p2 neg ¬p1.

The predicate rewrite system neg is still not very compact, but the search space de-

fined by this neg does preserve implication relationships between predicates, which

is important for search efficiency.

2.4.3.3 Joining Predicate Rewrite Systems

We will have occasion to talk about the joining of two or more predicate rewrite sys-

tems. We use the set notation for this purpose. For example, to join two predicate

rewrite systems 1 and 2, we write 1 ∪ 2. The intended meaning is to get a
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new rewrite system  (= 1 ∪ 2) such that S = S1
∪ S2

. Depending on

the actual rewrite systems, this operation may involve more than a simple syntactic

concatenation of 1 and 2. What needs to be done in each instance should be clear

from the context. In any case, the well-definability of 1 ∪ 2 is never in ques-

tion: we can always define it to be the collection of all predicate rewrites of the form

top  p where p ∈ S1
∪ S2

.

2.5 Data Types and Transformations

This section contains a listing of some generic transformations for different data types.

They are used throughout the text and are collected here for ease of reference. All the

material presented in this section appear previously in [130]; they are given here for

completeness of presentation.

Sets

Example 2.5.1. We have encountered the transformation setExists1 in Example 2.3.4.

More generally, for n > 1, one can define

setExistsn : (a→ Ω)→ · · · → (a→ Ω)→ {a} → Ω

by

setExistsn p1 . . . pn t = ∃x1. · · · ∃xn. (p1 x1) ∧ · · · ∧ (pn xn) ∧

(x1 ∈ t) ∧ · · · ∧ (xn ∈ t) ∧ (x1 6= x2) ∧ · · · ∧ (xn−1 6= xn).

Note the overlap between (domCard b) ◦ (> 0) and (setExists1 b). Typically, setExistsn
is used for small values of n, say, 1, 2 or 3, while domCard is used in conjunction with

(> n) for larger values of n. ◭

Multisets

Multisets (also known as bags) are a useful generalization of sets. A straightforward

approach to multisets is to regard a multiset as a function of type µ→ Nat , where µ is

the type of elements in the multiset and the value of the multiset on some item is its

multiplicity, that is, the number of times it occurs in the multiset.

Example 2.5.2. Consider the transformation

domMcard : (a→ Ω)→ (a→ Nat)→ Nat

domMcard b t = mcard (λx.if (b x) then (t x) else 0),

where mcard computes the cardinality of a multiset. Thus, for each b : µ→ Ω,

(domMcard b) : (µ→ Nat)→ Nat
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is a function on multisets whose elements have type µ that computes the cardinality

of the submultiset of elements of the argument that satisfy the predicate b.

One can obtain a predicate by composing (domMcard b) with, say, a predicate

(> N), for some N > 0. This gives the predicate (domMcard b) ◦ (> N), which is true

of a multiset iff the cardinality of the submultiset of elements satisfying the predicate

b is strictly greater than N . ◭

Example 2.5.3. Multisets also support the analogue of the transformation setExistsn .

The transformation msetExistsn , for n > 1, is defined as follows.

msetExistsn : (a→ Ω)→ · · · → (a→ Ω)→ (a→ Nat)→ Ω

msetExistsn b1 . . . bn t = ∃x1. · · · ∃xn.(b1 x1) ∧ · · · ∧ (bn xn) ∧

((t x1) > 0) ∧ · · · ∧ ((t xn) > 0) ∧ (x1 6= x2) ∧ · · · ∧ (xn−1 6= xn).

◭

Graphs

To represent graphs, we adopt the standard mathematical definition G = (V,E),

where V is the set of vertices and E, the set of edges. Each vertex is uniquely labelled

by a number and each edge is represented as an unordered pair of the two vertices it

connects. We are thus led to the following type declarations:

Label = Nat

Graph ν ε = {Label × ν} × {(Label → Nat)× ε}.

Here, ν is the type of the information at a vertex, and ε is the type of the information

on an edge. To avoid the need for explicit references to the label type, we introduce

two type constructors Vertex and Edge such that the type of a vertex is Vertex ν ε and

the type of an edge is Edge ν ε.

Example 2.5.4. The following are some transformations on graphs. For brevity, we

omit the exact definitions, giving instead only high-level descriptions.

vertices : Graph ν ε→ {Vertex ν ε}

edges : Graph ν ε→ {Edge ν ε}

vertex : Vertex ν ε→ ν

edge : Edge ν ε→ ε

connects : Edge ν ε→ (Vertex ν ε→ Nat)

(subgraphs k) : Graph ν ε→ {Graph ν ε}.

Here, vertices returns the set of vertices of a graph, edges returns the set of edges

of a graph, vertex returns the information at a vertex, edge returns the information

on an edge, connects returns the unordered pair of vertices joined by an edge, and
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(subgraphs k) returns the set of all (connected) subgraphs containing k vertices of a

graph. ◭

2.6 Related Work

There is a long tradition of logical methods in machine learning, going back to the

works of Plotkin, Michalski, and Vere in the 1970s. Such learning methods are now

primarily studied in the field of Inductive Logic Programming (ILP) [144]. [174] con-

tains an interesting historical account of the development of the field.

Driven by research on Prolog, first-order clausal logic has always been the prin-

cipal knowledge representation language in ILP. The field has grown considerably in

the last fifteen years, however, and different new representation formalisms are now

being investigated. The representation formalism based on higher-order logic out-

lined in this chapter is a recent addition to the family of languages now studied in

ILP. It was introduced and motivated in [76], [30], [31], and more recently in book

form in [130]. The main ideas of the formalism are not completely new, of course.

The use of higher-order logic for inductive learning has previously been considered

in [146]. The use of functions for learning has also been explored; see [95] and [74].

A detailed comparison of the higher-order approach adopted here and the first-order

approach traditionally studied in ILP can be found in Sect. 7.1.

The individual’s whole experience is built upon

the plan of his language.

Henri Delacroix
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Chapter 3

Classification

Crude classifications and false generalizations

are the curse of organized life.

George Bernard Shaw

3.1 Introduction

Classification is the simplest and best-studied problem in machine learning, funda-

mental to many other learning tasks of higher complexity. Having a good grip of its

underlying concepts is therefore important, and this forms the subject matter of the

present chapter.

The main classification learning algorithms are presented in Section 3.2. This is

followed by fairly thorough analysis of their behaviour in the remaining sections, or-

ganized around three central themes.

The first of these concerns the approximation, or representational, properties of the

learning algorithms. This is addressed in Section 3.3, where we describe some natural

Alkemic predicate classes, state a few of their properties, and explore relationships

between them.

The second, treated in Section 3.4, is about error estimation (or sample complexity)

issues. There, we state some generalization bounds suitable for use with ALKEMY and

present new techniques for characterizing the complexity of function classes definable

using predicate rewrite systems.

The third, discussed in Section 3.5, is connected with optimization issues. Ques-

tions there are computational in nature, and are related to the effectiveness and effi-

ciency with which certain search problems can be solved. In particular, we consider

what are appropriate optimization criteria for the learning algorithms presented in

Section 3.2 and examine their optimality with respect to these goals.

We conclude in Section 3.6 by bringing together results presented in the earlier

sections to make some formal learnability statements in the PAC and agnostic PAC

learning models.

Throughout the chapter, we will always assume that we are dealing with binary

classification problems. We appeal to machine learning reduction techniques [19] in

making this decision. In that view of the world, solutions to many different forms

27
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of classification tasks, including multi-class, cost-sensitive, and importance weighted

classification problems can be reduced to operations involving subroutine calls to a bi-

nary classification algorithm. The performance of these meta-algorithms can in turn

be bounded in terms of the performance of the underlying binary classification al-

gorithm. Thus, in a rather strong sense, it is quite sufficient to understand binary

classification well.

3.2 Learning Algorithms

Induction of decision trees from data has had a long history of development, dating

back to the 1960’s. In that time, many algorithms have been proposed and tried out.

Two of the most established among these are implemented in ALKEMY, and we de-

scribe them in this section.

The first is a variant of the standard top-down induction algorithm. We describe

it in two stages. In the first stage, presented in §3.2.1, we describe the decision-stump

learning algorithm, which is a special case of the general decision-tree learning algo-

rithm. The aim is to flesh out some of the central concepts in ALKEMY in a clean-room

environment. The top-down induction algorithm is then presented in §3.2.2 as a re-

cursive algorithm around the basic stump learning procedure.

The second, discussed in §3.2.3, is a variant of Rivest’s covering algorithm [169]

for learning decision lists. We built on ideas presented in [184] in the design of that

algorithm.

3.2.1 Learning Stumps

The decision-stump learning algorithm takes as input

1. a training set z ∈ (X × {0, 1})m of (arbitrary) size m,

2. a predicate rewrite system  defining predicates over X,

and produces as output a hypothesis h : X → {0, 1} of the form

h(x) = if (p x) then c1 else c2,

where p ∈ S, and c1, c2 ∈ {0, 1}. Such rules are called decision stumps.

The aim of learning is to find in S the predicate that, with proper labellings,

achieves the highest accuracy on the training set. This notion is made precise in

§3.2.1.1. In §3.2.1.2, we exploit structures in S to give a search space pruning re-

sult. The learning algorithm is given in §3.2.1.3; it forms the basis of the decision-tree

learning algorithm described in §3.2.2.

3.2.1.1 Predicate Selection

We now give some basic definitions, following [130]. Assume there are two classes.

Let E be a (non-empty) set of examples,N the number of examples in E , ni the number

of examples in E in the ith class, and pi = ni/N , for i = 1, 2.
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Definition 3.2.1. We define the majority class of E , denoted maj (E), to be the class to

which the greatest number of examples in E belong. (Ties are broken arbitrarily.)

Definition 3.2.2. We define the accuracy,AE , of a set E of examples byAE = pM , where

M is the index of the majority class of E .

The accuracy is the fraction of examples which are correctly classified on the basis

that the majority class gives the classification. AE lies in the range [1/2, 1], where larger

values correspond intuitively to purer sets of examples.

If E is a set of examples, then a predicate p induces a partition (E1, E2) of E , where

E1 is the set of examples that satisfy p and E2 is the set of examples that do not satisfy

p. We now define the accuracy of a partition of a set of examples.

Definition 3.2.3. Let P = (E1, E2) be a partition of a set E of examples. We define the

accuracy, AP , of the partition P by

AP =
|E1|

|E|
AE1

+
|E2|

|E|
AE2

.

Thus AP is the weighted average of the accuracies of the individual sets of exam-

ples in the partition. It is equal to the total number of examples correctly classified

in each of E1 and E2 divided by |E|. AP lies in the range [1/2, 1], where larger values

correspond to partitions that classify more accurately.

Given a set of examples, the goal of learning is to seek a predicate in the search

space that has the highest accuracy. In the case of ties, the predicate with the lowest

entropy, defined below, is preferred. Similar measures like the Gini index can be used.

We will have more to say on this tie-breaking mechanism in §3.2.2.

Definition 3.2.4. We define the entropy, EN E , of a set E of examples by

EN E = −p1 log(p1)− p2 log(p2),

where p1 and p2 are the fractions of examples in the two classes.

Definition 3.2.5. Let P = (E1, E2) be a partition of a set E of examples. We define the

entropy, EN P , of P by

ENP =
|E1|

|E|
EN E1

+
|E2|

|E|
EN E2

.

Useful information about accuracy and entropy, including their relationships to

other commonly used predicate selection functions, can be found in [75] and [80].

3.2.1.2 Predicate Pruning

Next we introduce a measure for partitions that is crucial for pruning the search space

of predicates. The result in this section is due to [130]. It works in the more general

case of n > 2 classes, and is formulated as such.
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A predicate derivation step takes a predicate p and constructs a new predicate p ′

by strengthening p. Thus the new predicate p′ implies p and the partition (E ′1, E
′
2) of E

induced by p′ has the property that E ′1 ⊆ E1, where E1 ⊆ E is the set of examples that

satisfy p. These considerations lead to the following definition.

Definition 3.2.6. Let E be a set of examples and (E1, E2) a partition of E . We say a

partition (E ′1, E
′
2) of E is a refinement of (E1, E2) if E ′1 ⊆ E1.

We now introduce the important measure of classification refinement bound.

Definition 3.2.7. Let P = (E1, E2) be a partition of a set E of examples, where ni is the

number of examples in E in the ith class and nj,i is the number of examples in Ej in

the ith class, for j = 1, 2 and i = 1, 2. We define the classification refinement bound, BP ,

of the partition P by

BP = (max
i
{ni + max

k 6=i
n1,k})/|E|.

We will show below that BP is an upper bound for the accuracy of any refinement

of P. The intuitive idea behind the definition of BP is that the refinement of P having

the greatest accuracy can be obtained by moving all examples in one class from E1

across to E2. Here is an example to illustrate the concept of classification refinement

bound. In the following, we denote by (n1, n2) a set of examples with ni examples

from the ith class, for i = 1, 2.

Example 3.2.8. Let E = (6, 9) and suppose P = ((2, 1), (4, 8)). Then AP = 10/15 and

BP = 11/15. If Q = ((0, 9), (6, 0)), then AQ = BQ = 15/15. ◭

Proposition 3.2.9 ([130]). Let E be a set of examples and P a partition of E . If P ′ is a

refinement of P, then AP ′ ≤ BP . In particular, AP ≤ BP .

Proof. Let P be (E1, E2) and P ′ be (E ′1, E
′
2), where E ′1 ⊆ E1. Let n1,i be the number of

examples in E1 in the ith class and M ′
2 the index of the majority class of E ′2. Consider

the partition Q obtained from P ′ by moving across any remaining examples from

class M ′
2 in E ′1 to E ′2. Clearly AP ′ ≤ AQ, since the examples so moved will be correctly

classified after the move. But AQ ≤ BP , since AQ ≤ ({nM ′
2
+ maxk 6=M ′

2
n1,k})/|E| and

BP = (maxi {ni + maxk 6=i n1,k})/|E|. Hence the result.

Proposition 3.2.9 is used by the learning system to prune the search space in its

search for the best partition of the examples. During this search, the system records

the best partition P found so far and its associated accuracy AP . When investigating

a new partition Q, the quantity BQ is calculated. According to the proposition, if

BQ ≤ AP , then the partition Q and all its refinements can be safely pruned. Here is

an example to illustrate how this works.

Example 3.2.10. Let the set of examples be (6, 9). Suppose the best partition found so

far is P = ((6, 3), (0, 6)), which has accuracy 12/15. Suppose that later on in the search

the partition Q = ((2, 4), (4, 5)) is being investigated. Note that BQ = 11/15. Since

BQ < AP , the proposition shows thatQ and its refinements can be pruned.
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On the other hand, consider the partition R = ((6, 5), (0, 4)), for which BR =

15/15. ThusR has refinements, which could be found by the system, whose accuracies

exceed that of P. (The refinements actually investigated depend upon the hypothesis

language, of course.) ThusR should not be pruned. ◭

3.2.1.3 Searching

We now move on to the search algorithm. We have seen in §2.4.1 how the set of pred-

icates defined by a predicate rewrite system can be enumerated. Two algorithms are

given for that purpose. What is needed for searching are variations of those algo-

rithms that instead return a single predicate: the one deemed best by the predicate

selection rule. Construction of the output decision stump is straightforward given the

selected predicate.

Figure 3.1 gives the search version of Algorithm II (Figure 2.3); we will refer to it

as the LR search algorithm in the following. Algorithm I (Figure 2.2) can be similarly

altered, and we will refer to it as the SeenSet search algorithm.

The accuracy, classification refinement bound, and entropy of a predicate referred

to in Figure 3.1 are defined with respect to the partition of examples induced.

Definition 3.2.11. Let E be a set of examples and p a predicate. We define the accuracy,

Ap, of p by Ap = AP , where P is the partition of E induced by p. Likewise, we define

the classification refinement bound, Bp, of p by Bp = BP and the entropy, EN p, of p by

EN p = ENP .

There are three inputs to the algorithm: the set of training examples; a predicate

rewrite system ; and a prune parameter P . We assume  is monotone and satisfies

all the conditions necessary for ensuring uniqueness and completeness of predicate

derivations. (See [130, §4.6] for more details.) We also assume S is finite.

The prune parameter P is a percentage; it causes predicates with classification

refinement bounds lower than P to be pruned and thus removes predicates that do

not have the potential for achieving high accuracy. In the default mode, the parameter

is initially set at 0%. As better accuracies are obtained during search, the value of the

parameter is updated. This kind of pruning is safe. However, for large search spaces,

it is common to set a high initial value for P .

The open list is decreasingly ordered by the refinement bounds of predicates.

(Predicates with the same refinement bound are decreasingly ordered by accuracy.)

The refinement bound plays a crucial role in directing the search towards promising

predicates, those which have the potential for being strengthened to produce splits

with high accuracy. In this regard, the function Insert takes a predicate and the open

list as arguments and returns a new open list with the predicate inserted in the appro-

priate place.

The function Redexes takes a standard predicate p and returns all the redexes in p.

Clearly, a predicate with no redexes in it should not be inserted into the open list.

The third line in the while loop is a simple optimization. Since p could have been

inserted into the open list early on in search while P was still low and has become
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function Predicate(E ,, P ) returns a predicate;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

openList := [top];

predicate := top;

accuracy := AE ;

entropy := EN E ;

while openList 6= [] do

p := head(openList );

openList := tail(openList);

if Bp < accuracy then continue;

for each LR redex r via r  b, for some b, in p do

q := p[r/b];

if q is regular then

if Aq > accuracy then

predicate := q;

accuracy := Aq ;

entropy := EN q;

if Aq > P then P := Aq;

if Aq = accuracy ∧ EN q < entropy then

predicate := q;

entropy := EN q;

if Bq > P ∧ Bq > Aq ∧ Redexes(q) 6= ∅ then

openList := Insert(q, openList );

return predicate ;

Figure 3.1: Algorithm for finding a predicate that maximizes accuracy
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irrelevant in the mean time, checking Bp against accuracy at this point can avoid un-

necessary computation, especially towards the end of the open list.

Incomplete Search Algorithms

Incomplete searches are useful when the predicate space is too large for an exhaustive

search. ALKEMY implements two incomplete search strategies. They can be used with

either forms of predicate enumeration, but experience indicates that, in general, they

work better in conjunction with the SeenSet algorithm. This is because under this

scheme there are (usually) multiple ways to arrive at the same predicate. The chance

of finding good predicates quickly is thus higher.

The first of these incomplete search algorithms is beam search, where we keep

only a small number of the most interesting predicates for strengthening at any one

stage. Two open lists, one for the current iteration, and one for the next, are required

for this to work.

The second is a form of resource-bounded greedy depth-first search algorithm. A

parameter cutout can be set such that if successively cutout predicates are investigated

without finding one strictly better than the current best predicate, then the algorithm

terminates and returns the best predicate found so far. Every time a new best predicate

is found, the cutout parameter is reset to its initial value.

Besides these two, it is easy to incorporate other search strategies. For example, if

accuracy is an issue and there is no harsh constraints on search time, one can imple-

ment a strategy whereby a minimum accuracy is specified by the user, and the system

does not terminate until a predicate meeting that target accuracy is found. For another

example, consider real-time applications where there is a hard limit on response time.

In this case, the learner should try to do the best it can within the specified time.

3.2.2 Learning Trees

Having laid the groundwork in the previous section, we now proceed with the top-

down induction algorithm. Let X be the set of individuals and  a predicate rewrite

system defining predicates over X. A decision tree on X with node functions in S

is a binary tree where each non-terminal node is labelled with a predicate in S, and

each terminal node is labelled with an element from {0, 1}. A tree defines a function

f : X → {0, 1} in the usual way. To find the value of f(x) for some arbitrary x ∈ X, we

push it down the tree until a leaf node l is reached; the label of l then gives the value

of f(x). At each non-terminal node, we push x down the left subtree if (p x) = 1;

otherwise we push it down the right subtree.

The top-down induction algorithm is given in Figures 3.2 and 3.3. In our imple-

mentation, the cost complexity pruning algorithm of CART [32] is used for tree post-

pruning. Any other post-pruning technique can be employed.

The use of accuracy for stump learning makes perfect sense, but its use here for

tree induction goes againsts conventional wisdom. Two criticisms stated in [32, §4.1]

against accuracy are as follows.
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function Learn(E ,, P ) returns a decision tree;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

tree := BuildTree(E ,,P)

label each leaf node of tree by its majority class;

tree := Postprune(tree);

return tree ;

Figure 3.2: Decision-tree learning algorithm

function BuildTree(E ,, P ) returns a decision tree;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

tree := single node (with examples E);

p := Predicate(E ,, P );

if Ap = AE ∧ EN p = EN E then return tree ;

tree.predicate := p;

E+ := { (x, y) ∈ E : (p x) };

E− := { (x, y) ∈ E : ¬(p x) };

tree.left := BuildTree(E+,, P );

tree.right := BuildTree(E−,, P );

return tree ;

Figure 3.3: Tree building algorithm
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Dataset |S| Searched

Mutagenesis 535 108 (20.19%)
East West 2073 892 (43.03%)
Chemicals 56,837 2821 (4.96%)

Musk-1 1,679,615,641 2,914,727 (0.17%)

Table 3.1: Efficiency of the predicate pruning mechanism

Criticism 1. The use of accuracy can result in premature termination of tree growth.

This is because tree nodes that are relatively pure, with examples coming from one

predominant class, often cannot be split with a strict increase in accuracy.

Criticism 2. The accuracy heuristic does not take future growth into account in choos-

ing the current best split. We use the example in [32, §4.1] to illustrate this point. Con-

sider a set E = (400, 400) of 800 examples. Which of the following two is the better

partition of E?

P1 = ((300, 100), (100, 300)); or

P2 = ((200, 400), (200, 0)).

P2 is intuitively the more appealing of the two, with potential to result in a smaller

tree. But accuracy can’t differentiate between them.

Criticisms 1 and 2 notwithstanding, in the context of ALKEMY, as shown in §3.2.1.2,

the use of accuracy admits a simple and effective predicate pruning mechanism that

warrants its reconsideration here. The pruning mechanism described has been shown

to work well in many different applications. Table 3.1 gives an indication of its ef-

fectiveness. In it, we list four problems taken from [130, §6.2]. For each, we give the

size of the predicate search space |S| and the number of predicates actually tested in

a complete search of the predicate space aided by pruning. The percentage of the

predicate space searched is also given.

It is not clear whether more commonly used functions like entropy admit similar

(efficiently computable) pruning mechanisms. (See the remark at the end of this sec-

tion.) Assuming not, then in the context of ALKEMY we can expect accuracy to be a

better predicate selection function compared to other more commonly used functions.

To backup this claim, we examine two cases, the first when an exhaustive search of

the predicate space is computationally feasible, and the second when it is not.

In the first case, with the benefit of pruning, computing the most accurate predi-

cate can be expected to be a lot cheaper than computing the one with, say, the low-

est entropy. Assuming accuracy and entropy both yield reasonably accurate decision

trees and that their relative performances are not too far apart – we will come back

to examine this shortly – then adopting accuracy as the predicate selection function is

the better strategy, especially if time efficiency is an issue.
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In the second case, we must resort to incomplete searches. Given the same amount

of time, we can expect the predicate chosen using, say, entropy in the absence of a

pruning mechanism to be, in all likelihood, worse than the predicate chosen using

accuracy in the presence of pruning simply because a smaller percentage of the pred-

icate space is actually searched. Further, a predicate with high accuracy would quite

naturally have low entropy.

To advocate the use of accuracy as a viable predicate selection function, we need to

address the two criticisms stated earlier, both of which are valid arguments. Criticism

1 has a theoretical basis, as shown in [100] (see also §3.5.2). Criticism 2, being an in-

tuitive argument, is weaker but persuasive nonetheless. The solution adopted here is

simple: we employ accuracy as the main predicate selection function and use entropy

to break ties between equally accurate predicates. We name this scheme Acc ∗. Crit-

icism 1 is thus addressed because in the case where no predicate in the search space

can achieve a strict increase in accuracy, splits can still be made in accordance with

entropy, which we know behaves well. Criticism 2 is also resolved. In the example

given, Acc∗ will pick P2 over P1, as desired.

One final question remains: Is a concave function like entropy, as a predicate se-

lection function, always going to outperform Acc∗? We investigate this empirically.

Tables 3.2 and 3.3 show the accuracies (estimated using 10-fold cross validations) ob-

tained using two tree-growing methods on eight datasets taken from the UCI repos-

itory. The first algorithm uses Acc∗; the second, entropy. Tree post-pruning is done

using the cost-complexity pruning method of CART [32]. The first set of results, shown

in Table 3.2, gives the accuracies of the induced classifiers in the absence of tree post-

pruning. The second set, shown in Table 3.3, shows the benefits of tree post-pruning.

A X is shown if the entropy-based algorithm is significantly more accurate; a × is

shown if the Acc∗-based algorithm is better.

It seems safe to conclude that the performance of Acc∗ is comparable to most other

predicate selection functions for the following reasons. The experiment above cer-

tainly suggests that Acc∗ is comparable to entropy. We know from experience that

entropy and the Gini index have more-or-less similar behaviour. To top it off, it is

shown in [141] and [35] that the Gini index is as good as any other known predicate

selection function for the purpose of tree induction. In fact, the general agreement

from [141] and [35] is that the exact predicate selection function used doesn’t really

matter, and it is tree post-pruning that holds the key to the final performance.

To verify the usefulness of the modification to accuracy, we also pitted Acc ∗ against

(plain) accuracy on the eight datasets. The results are shown in Table 3.4. The exper-

iment shows that Acc∗ performs at least as well as, and usually better than, accuracy

in all except one dataset after tree post-pruning.

Remark. Whether or not commonly used functions like entropy admit efficient prun-

ing mechanisms remains an unresolved question in this thesis. It seems that the con-

cavity of these functions is important. This is the property exploited in a similar work

on efficient association rule mining reported in [143]. (See also [79].) The general

technique employed in [143] may well be applicable to the solution of our problem.
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Dataset Acc∗ Ent Ent > Acc∗

Audiology 0.735 0.765 X

Lenses 0.833 0.833
Mushroom 1.000 1.000

Votes 0.947 0.942
Monks-1 0.894 0.886
Monks-2 0.692 0.692
Monks-3 0.884 0.876

Mutagenesis 0.820 0.840

Table 3.2: Acc∗ vs Entropy (w/o tree post-pruning)

Dataset Acc∗ Ent Ent > Acc∗

Audiology 0.710 0.755 X

Lenses 0.850 0.850
Mushroom 0.999 0.999

Votes 0.959 0.956
Monks-1 0.920 0.887 ×
Monks-2 0.634 0.638
Monks-3 0.935 0.935

Mutagenesis 0.820 0.809

Table 3.3: Acc∗ vs Entropy (with tree post-pruning)

Dataset Acc∗ Acc Acc∗ > Acc

Audiology 0.710 0.725
Lenses 0.850 0.683 X

Mushroom 0.999 0.999
Votes 0.959 0.956

Monks-1 0.920 0.792 X

Monks-2 0.634 0.603 X

Monks-3 0.935 0.935
Mutagenesis 0.820 0.804

Table 3.4: Acc∗ vs Accuracy (with tree post-pruning)
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3.2.3 Learning Lists

In addition to the top-down induction algorithm, ALKEMY implements an algorithm

that learns decision lists. A decision list is a kind of decision tree where splits only

ever occur at the false branches of decision nodes. More formally, let X be the set of

individuals and  a predicate rewrite system defining predicates over X. A decision

list L on X with node functions in S is a list of pairs

L = (p1, v1), (p2, v2), . . . , (pr, vr)

where pj ∈ S and vj ∈ {0, 1} for j ∈ {1, . . . , r}. If pr is top, then we sayL is a complete

decision list. Assuming L is complete, it defines a function as follows: for any x ∈ X,

L(x) is defined to be vj , where j is the least index such that (pj x) = 1. For complete

decision lists, we call the last node (top, vr) the default node, and vr the default value.

We introduce some notation before presenting the main algorithm.

Definition 3.2.12. Let p be a predicate, and E a set of examples. We define the coverage

of p over E , cov(p, E), by

cov (p, E) = {(x, y) ∈ E : (p x) = 1}.

Definition 3.2.13. A set E of examples is pure if ∀(x1, y1), (x2, y2) ∈ E , y1 = y2.

An empty set is vacuously pure.

Definition 3.2.14. Let L1 = (p1, v1), . . . , (pm, vm) and L2 = (q1, l1), . . . , (qn, ln) be two

decision lists. We define the concatenation of L1 and L2, denoted L1 : L2, by

L1 : L2 = (p1, v1), . . . , (pm, vm), (q1, l1), . . . , (qn, ln).

The standard separate-and-conquer algorithm for learning decision lists was in-

troduced by [169] and shown to work in the PAC model [193]. As is standard in PAC

analysis, two fairly strong assumptions were made in the design of that algorithm:

1. the target function can be represented as a decision list of the given boolean

features; and

2. the training sample is free of noise.

We consider here the problem of learning decision lists when these assumptions do

not hold, a common scenario in practical applications.

Rivest’s algorithm works by iteratively picking out and removing pure subsets

from the training examples until a list that covers the whole training set is obtained or

until no such pure subsets can be found. In the presence of noise, seeking only pure

subsets at every iteration probably wouldn’t work very well; for example, the scheme

would rule out a predicate that covers 100 positive examples and 1 negative example,

accepting instead predicates that cover singleton sets.

To overcome this problem, we can modify the covering algorithm to allow for

some impurity in the nodes. A natural extension suggested in [184] is adopted here.
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Let K ∈ R+ be a cost parameter. Given training examples E = P ∪ N , where P is

the set of positive examples and N the negative examples, we define the utility of a

predicate p with respect to E by

Up(E ,K) = max{|cov (p, P )|, |cov (p,N)|} −Kmin{|cov (p, P )|, |cov (p,N)|}.

The algorithm works by picking the predicate with the highest utility in the search

space at each step, with ties broken in some arbitrary way. The algorithm is given in

Figure 3.4. We can recover Rivest’s algorithm by setting K to∞.

function Cover(E ,,K) returns a decision list;

inputs: E , a set of examples;
, a predicate rewrite system;

K, misclassification cost;

D := empty decision list;

R := E ;

while true do

C := {q ∈ S : cov(q,R) 6= ∅ ∧ cov(q,R) 6= R ∧ Uq(R,K) <∞};

if C = ∅ then return D : (top,maj (R));

p := arg maxq∈C{Uq(R,K)};

D := D : (p,maj (cov(p,R)));

R := R \ cov(p,R);

Figure 3.4: Decision-list learning algorithm

A few notes on the candidate set C . Not every predicate in S can be considered

for extending D. Predicates that cover no examples are clearly unacceptable. We also

do not admit predicates that cover the whole set R; this is to avoid having to make

a decision on the label of the (empty) default node if such a predicate is chosen. The

third condition Uq(R,K) < ∞ caters for the special case when K = ∞. Besides these

conditions, it is also common to rule out predicates that do not cover some (user-

specified) minimum number of examples.

The termination condition for Cover is actually not easy to get right. Some ver-

sions of the covering algorithm will stop as soon as R becomes pure. There is, how-

ever, a problem with this approach: R may never become pure while remaining non-

empty. Indeed, some existing algorithms overlook this problem and can potentially

run into infinite loops and/or end up deciding on a default value on the basis of an

empty set. The solution adopted here is to continue splitting as long as non-empty,

strict subsets of R can still be picked out. In the case when R does become (non-

vacuously) pure, the output of Cover would be functionally equivalent to the output

of a similar algorithm that stops when R is pure, since the additional nodes will all

map to the same default value. Proper termination for Cover is guaranteed by this
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next result.

Proposition 3.2.15. Given a non-empty finite training set E , a predicate rewrite system ,

and a positive K, Cover will terminate after a finite number of steps with a non-empty R.

Proof. We use the following loop invariant: If R 6= ∅ ∧ C 6= ∅, thenR becomes strictly

smaller but non-empty after every iteration. Clearly, R is non-empty to begin with.

Further, C cannot be non-empty forever since E is finite.

There are a few possible variations to Cover . We can place a (user-specified) limit

on the maximum number of iterations to allow tradeoffs between error and complex-

ity. Another form of early-stopping is to impose a minimum purity level for splits

to occur. Obviously, one can also have different misclassification cost parameters for

positive and negative examples.

We now address the problem of finding the predicate with the highest utility in

the candidate set. Search versions of either Algorithm I or II in §2.4.1 can be used for

this purpose. The definition of Up admits a simple way to do predicate pruning.

Definition 3.2.16. Given training examples E and a predicate rewrite system , we

define the utility refinement bound of a predicate p ∈ S with respect to E and  to be

the largest utility that can be achieved by a refinement of p.

Proposition 3.2.17. Given a training set E = P ∪N and a predicate rewrite system , the

utility refinement bound of a predicate p ∈ S is given by max{|cov (p, P )|, |cov (p,N)|}.

Proof. Straightforward.

Pruning works as follows: Given training examples S and a rewrite system ,

for each predicate p ∈ S, if the utility refinement bound of p is not greater than the

utility of the best predicate found so far, then prune.

Properties of Cover are investigated in §3.5.3. Rivest shows that the algorithm

(when K = ∞) will always return a decision list that achieves 100% accuracy on the

training examples assuming one exists. We will give a slightly more general result.

Other Algorithms It is worth pointing out that there is a bottom-up approach to

learning decision lists as well. In [142] and [38], the authors give algorithms that

construct decision lists in reverse order: the more general cases at the end of the lists

are learned first, and then exceptions to those rules are attached to the front of the

lists. Probabilistic decision lists [87], popular in natural language processing, can also

be learned this way.

3.2.4 Others

We have concentrated on binary classification problems (in the batch learning setting)

up to this point. We end the section with brief remarks on algorithms and techniques

that can be used to extend ALKEMY to handle other kinds of learning tasks. Some of

these are implemented in the system.
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3.2.4.1 Multi-Class Problems

The tree- and list-learning algorithms generalize easily to multi-class problems. One

can also resort to reduction techniques to handle multi-class problems. For details,

see, for example, [19], [62] and [168].

3.2.4.2 Estimating Class Probabilities

In some applications, it is desirable to know the confidence associated with a predic-

tion. Various schemes exists for extracting conditional class membership probabilities

from decision tree models; see, for example, [32, §4.6], [36], [136] and [121].

3.2.4.3 Boosting

It has been shown in many independent studies that boosting algorithms work well in

conjunction with decision trees; see, for example, [163] and [67]. ALKEMY implements

a version of the AdaBoost algorithm [78] called AdaBoost.M1 given in [91]. There are

experimental evidence showing that it works well, but more studies are required.

The problem with using AdaBoost is that we quickly lose comprehensibility of

the final hypothesis as the number of boosting iterations increases. The alternating

decision tree algorithm proposed in [77] and [138] seems to be able to achieve a better

balance between accuracy and comprehensibility, and is worthy of more investigation.

3.2.4.4 On-line Learning of Alkemic Trees

ALKEMY also has an on-line learning mode. The algorithms and their analyses are

reported in full in Chapter 5, we give only a summary here. The basic idea is that

we maintain a fixed window of a certain size. As each new example is encoun-

tered, it is inserted into the current tree using a function called AddExample . If the

window is full, the oldest example is removed from the tree using a function called

RemoveExample . The two functions have the following property. They employ some

sufficient optimality-testing conditions to check whether parts of the tree have be-

come potentially sub-optimal according to the tree-building measures as a result of

the update, and mark as dirty all those nodes that needs to be re-examined. There is a

function Retrain that can be used to rebuild all the dirty subtrees. The function Retrain

has the property that the tree computed is exactly identical to the tree that would be

produced by the batch algorithm using the examples in the current window. For that

reason, we say the on-line algorithm is lossless with respect to the batch algorithm.

3.3 Function Classes and Their Relationships

Suppose we are given a predicate rewrite system  and suspect that the true concept

is a boolean combination of some predicates in S. How do we define a suitable

hypothesis space? There are three ways to do it.
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1. One can enrich  with predicate rewrites specifying different possible combi-

nations of predicates and learn a decision stump.

2. Alternatively, one can stick with  and learn a decision tree (or list). A decision

tree is nothing but a boolean function of the predicates appearing in it. The

space of decision trees we search is thus equivalent to a certain class of boolean

combinations of predicates in S.

3. Or one can do both, enrich  and learn a tree (or list).

What is the best way forward? What are the tradeoffs involved?

To get a handle on these questions, we need to understand the different predi-

cate classes that can be defined using predicate rewrite systems in combination with

learning algorithms, and relationships between them. This is the subject matter of

the section. Information given here provides guidance on how one might go about

selecting algorithms and crafting predicate rewrite systems in applications.

3.3.1 Basic Setup

We assume all predicate rewrite systems are finite.

Definition 3.3.1. Let X be a set of individuals and S = {p1, p2, . . . , pn} a finite set of

predicates over X. We define B(X,S) by

B(X,S) = {S|x : x ∈ X}

where S|x = ((p1 x), (p2 x), . . . , (pn x)).

Definition 3.3.2. A basic hypothesis language is a pair (X,) where X is a set of indi-

viduals and  is a predicate rewrite system defining predicates over X.

Given a basic hypothesis language (X,),B(X,S) is in general a strict subset of

{0, 1}#(). This is (partly) because there are implication relationships between pred-

icates in S, and these restrict the values related predicates can take. In particular, if

two predicates p and q in S are such that p logically implies q, then they must obey

the constraint ∀x ∈ X, (p x) 6 (q x).

Intuitively, the  in a basic hypothesis language (X,) defines the basic set of

features on individuals in X. What we would like to do is to define function classes

that would allow us to consider various boolean combinations of the basic features

defined by . This will be done in the next subsection. Here, we first define the

largest possible class of functions that can be obtained from boolean combinations of

predicates in S. This is done indirectly through the feature spaceB(X,S) induced

by the basic hypothesis language.

Definition 3.3.3. Let (X,) be a basic hypothesis language. We define BF(X,) to

be the set of all boolean functions over B(X,S).

Definition 3.3.4. Given a basic hypothesis language (X,), we say a class F of pred-

icates over X is equivalent to BF(X,), denoted F ∼ BF(X,), if
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1. for every p ∈ F , there exists f ∈ BF(X,) such that ∀x ∈ X, (p x) = f(S|x);

2. for every f ∈ BF(X,), there exists p ∈ F such that ∀x ∈ X, f(S|x) = (p x).

One can show equivalence between BF(X,) and the set P(X,) of all predi-

cates over X that can be formed by conjoining (in syntactically-correct manner) any

number of predicates from S using the boolean connectives {∧,∨,¬} (lifted to the

predicate level) and brackets. In that sense, BF(X,) captures the largest possible

subset of the set of all predicates over X that we can consider if we restrict ourselves

to looking at X through the glass filter that is . A predicate class that is equivalent

to BF(X,) is thus as rich as P(X,).

3.3.2 Basic Class Definitions

We now give some class definitions and state some of their properties.

Definition 3.3.5. Given a basic hypothesis language (X,), the class k-CNF() is

defined to be the set of all predicates over X that can be represented in the form

∧n(∨k1
p1,1 . . . p1,k1

) (∨k2
p2,1 . . . p2,k2

) · · · (∨kn
pn,1 . . . pn,kn

) (3.1)

where n ∈ N, ki 6 k, and pi,j ∈ S ∪ Sneg
for i = 1, . . . , n and j = 1, . . . , ki.

Analogously, we define the class k-DNF() to be the set of all predicates over X that

can be represented in the form

∨n(∧k1
p1,1 . . . p1,k1

) (∧k2
p2,1 . . . p2,k2

) · · · (∧kn
pn,1 . . . pn,kn

) (3.2)

where n ∈ N, ki 6 k, and pi,j ∈ S ∪ Sneg
for i = 1, . . . , n and j = 1, . . . , ki.

Note that k-CNF() is the set of all distinct predicates over X that can be repre-

sented in the form of (3.1), not the set of all syntactically-distinct predicates over X

having the form of (3.1). This comment applies to k-DNF() and every other class

we define below.

Observation 3.3.6. Let (X,) be a basic hypothesis language. Then

k-CNF() = {¬p | p ∈ k-DNF() }; and

k-DNF() = {¬p | p ∈ k-CNF() }.

Observation 3.3.7. Let (X,) be a basic hypothesis language. Then

k-DNF() = k-CNF() ∼ BF(X,)

when k = #().

Definition 3.3.8. Given a basic hypothesis language (X,), the class j/k-DT() is

defined to be the set of all predicates over X representable using a decision tree of

at most depth k, where each predicate at the non-terminal nodes is a conjunction of
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at most j predicates from S. Decision stumps are captured as a special case when

k = 1.

Given (X,), j/k-DT() is the class of predicates considered by ALKEMY when we

enrich the predicate rewrite system from  to ′= {top  ∧k top . . . top} ∪ and

learn with the top-down tree-induction algorithm, with an additional restriction on

the depth of trees.

Observation 3.3.9. Let (X,) be a basic hypothesis language. 1/k-DT() ∼ BF(X,)

when k = #().

Proof. It is easy to check Part 1 of Definition 3.3.4. We show Part 2 here. Suppose

S = {p1, p2, . . . , pn}. Consider the complete depth-k decision tree T with predicate

pi appearing at every non-terminal node at depth i. Every function in BF(X,) can

be represented using T by appropriate labelling of its terminal nodes. (Only the labels

of terminal nodes that correspond to an entry in B(X,S) matters, of course.)

Definition 3.3.10. Given a basic hypothesis language (X,), the class k-DL() is

defined to be the set of all predicates over X representable using a decision list where

each predicate in the list is a conjunction of at most k predicates from S∪ Sneg
.

Given (X,), k-DL() is the class of predicates considered by ALKEMY when we

enrich the predicate rewrite system from  to

′= {top  ∧k top . . . top} ∪ ∪neg

and learn with the covering algorithm.

As seen earlier in §2.4.3.2, generating neg from  can be a cumbersome affair.

This motivates the consideration of monotone decision lists, defined next.

Definition 3.3.11. Given a basic hypothesis language (X,), the class k-MDL() is

defined to be the set of all predicates over X representable using a decision list where

each predicate in the list is a conjunction of at most k predicates from S.

Observation 3.3.12. Let (X,) be a basic hypothesis language. Given a predicate p in

k-DL(), we can obtain ¬p by switching all the labels in p. This implies that k-DL() is

closed under negation. The same is true for k-MDL().

It is known that both k-DL() and k-MDL() are universal representations.

Proposition 3.3.13. Let (X,) be a basic hypothesis language. Then

k-DL() = k-MDL() ∼ BF(X,)

when k = #().

Proof. To see that k-DL() ∼ BF(X,), observe that k-DNF() ⊆ k-DL(), and

note k-DNF() ∼ BF(X,) when k = #(). For a proof of the universality of

k-MDL(), see Proposition 1 in [89].
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3.3.3 Relationships

Relationship between Trees and Lists

Proposition 3.3.14 ([169]). Let (X,) be a basic hypothesis language. We have for all

k ∈ {1, . . . ,#()}, 1/k-DT() ⊆ k-CNF() ∩ k-DNF()

Proof. Given a decision tree T in 1/k-DT(), one can create an equivalent predicate

in k-DNF() by creating a conjunction of predicates for each leaf labelled 1 in T , and

joining them together in a disjunction. To create an equivalent formula in k-CNF(),

create a conjunction of predicates for each leaf labelled 0 in T , join them together in a

disjunction, then negate the whole formula and rewrite.

Proposition 3.3.15 ([169]). Let (X,) be a basic hypothesis language. We have for all

k ∈ {1, . . . ,#()}, k-CNF() ∪ k-DNF() ⊆ k-DL()

Proof. It is clear that k-DNF() is a subset of k-DL(). By Observations 3.3.6 and

3.3.12, k-CNF() is also a subset of k-DL().

In light of Propositions 3.3.14 and 3.3.15, it is no surprise that j/k-DT() is a

subset of jk-DL() since one can show that j/k-DT() ⊆ jk-DNF(). What is sur-

prising is perhaps the fact that the extra predicates afforded by neg are not needed.

Proposition 3.3.16. Let (X,) be a basic hypothesis language. ∀j, k ∈ {1, . . . ,#()},

j/k-DT() ⊆ jk-MDL().

Proof. This is a straightforward generalization of Theorem 6 in [89]. The convention is

that left branches in a tree correspond to true branches, and right branches correspond

to false branches. Given a tree T in j/k-DT(), we can construct an equivalent list

L in jk-MDL() as follows. For each leaf li, 1 6 i 6 m, in T from left to right, con-

struct a node (tli , oli) where tli is the conjunction of all left-branching j-conjunctions

of predicates in the path from the root to the leaf li. If there are no left-branches in the

path to a leaf, which is the case for the rightmost leaf, use the predicate top. Each t li is

clearly a conjunction of at most jk predicates. It is not hard to verify that the decision

list L = (tl1 , ol1), (tl2 , ol2), . . . , (tlm , olm) defines the same predicate as T .

There is a related result that doesn’t restrict the depth of trees. In [71], the authors

defined a certain class of rank-r decision trees and gave an efficient learning algorithm

for it. Informally, the rank of a tree T is the height of the largest completely balanced

subtree in T ; it measures how (un)balanced a decision tree is. [27] shows that this

class is also a subset of k-DL.

Relationship between k-DL, k-MDL, k-CNF and k-DNF

Under the (strong) assumption that B(X,S) = {0, 1}#() (we will come back to

examine this shortly), one can show that for all 1 6 k < #(),

1. (k-CNF() ∪ k-DNF()) ⊂ k-DL() — See [169, Thm. 2].
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2. k-MDL() ⊂ k-DL() — Suppose S = {p1, p2, . . . , pn}. The predicate

s = ¬(∧n p1 p2 . . . pn) = ∨n ¬p1 ¬p2 . . .¬pn (3.3)

can be represented in k-DL() (in fact, 1-DL() suffices) but not in k-MDL().

3. k-DNF() * k-MDL() — The predicate s given in (3.3) is in k-DNF().

4. k-CNF() * k-MDL() — The predicate ¬s is in k-CNF() but can’t be in

k-MDL() because k-MDL() is closed under negation.

5. k-MDL() * k-DNF() — Let p1, . . . , pk+1 be predicates in S. The predicate

h = (∧k p1, . . . pk, 0), (∧k p2 . . . pk+1, 1), (top , 0) = (∧k+1 ¬p1 p2 . . . pk+1) (3.4)

is in k-MDL() but not in k-DNF().

6. k-MDL() * k-CNF() — The negation of the predicate h given in (3.4) is in

k-MDL() but not in k-CNF().

The assumption B(X,S) = {0, 1}#() is, above all else, an assumption on the

the relative independence between predicates in S. It is also an assumption on

the richness of the individual space X. Why do we need it? Note that, in each of

the six cases above, the truth of the statement is demonstrated with the construc-

tion of a particular predicate that can’t possibly exist in a certain class. Such non-

existence arguments usually rely on the fact that there is some kind of structure in

B(X,S). The exact form of that structure has to be realized with an assumption, and

B(X,S) = {0, 1}#() is the simplest, albeit strongest, assumption one can make.

Can we do without an assumption on B(X,S)? The answer is probably no. If

there is no structure in B(X,S), then we cannot possibly demonstrate that a certain

predicate p does not exist in a function class H defined on top of B(X,S) since one

of the predicates in S can very well turn out to be p, in which case p must be inH.

Another way to see the need for an assumption on B(X,S) is to consider the

two classes k-MDL() and k-DL(). We show in (2) above that k-MDL() is a

strict subset of k-DL(). This is natural and we expect it to be true. But note that the

relationship does not actually hold if  is already closed under negation, in which

case k-MDL() = k-DL(). What all this means in practice is that (blindly) enrich-

ing a predicate rewrite system  may not actually get one a strictly richer class of

functions, and that the exact structure of S (with respect to X) must be taken into

account when performing such operations.

Relationship between Lists and Linear Threshold Functions

This next result suggests an interesting link between covering algorithms and statisti-

cal learning techniques like (kernelized) perceptrons and support vector machines. It

is included here for interest.

Definition 3.3.17. Given a basic hypothesis language (X,), the class LT() is de-
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fined to be the set of all predicates over X that can be represented in the form

f(x) = sgn

(

n
∑

i=1

wi(pi x) + b

)

where n = #(), wi, b ∈ R, pi ∈ S and sgn(·) is the signum function.

Proposition 3.3.18 ([2]). Given (X,), we have 1-DL() ⊆ LT().

Remark. Most of the results given in this section are reformulations of well-known

results in the study of boolean functions. The contribution here is really the realization

that boolean function theory is relevant to the study of ALKEMY. (For this, I credit the

propositionalization ([122],[123], [116]) viewpoint in ILP.) The subsequent adaptation

of the theory and some of its results to the setting where the full hypercube {0, 1}n is

not available (see §3.3.1) is actually not hard.

3.4 Generalization Bounds

This section deals with arguably the most important issue in classification learning,

that of generalization. Specifically, we want to understand the relationship between

the true and empirical errors of hypotheses produced by ALKEMY under standard

assumptions on the data-generating process. The size of the training data and the

complexity of the predicate class used are important parameters in this kind of inves-

tigation.

In what follows, log denotes logarithm to base 2, ln denotes the natural logarithm,

and ⌈·⌉ and ⌊·⌋ denote, respectively, the ceiling and floor functions. The set of natural

numbers {1, 2, 3, . . .} is denoted N.

We start with a reminder of some basic concepts. Let X be an arbitrary set and F

a class of predicates over X. The growth function of F , ΠF : N → N, is defined by

ΠF (n) = max{|F|x| : x ∈ X
n}, where

F|x = {(f(x1), . . . , f(xn)) : f ∈ F}.

Given x ∈ Xn, if |F|x| = 2n, then we say x is shattered by F . (Equivalently, we say a

subset Y of X is shattered by F if each subset Z of Y can be picked out by a predicate

in F , i.e., there exists f ∈ F such that ∀z ∈ Z. f(z) = 1 and ∀z ∈ Y \ Z. f(z) = 0.) The

Vapnik-Chervonenkis (VC) dimension of F is defined by

VCD(F) = max{n : ΠF (n) = 2n}

or∞ if no such maximum exists.

We give a few useful facts about VC dimension here. All of these results, with the

possible exception of Proposition 3.4.4, are well-known.
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Proposition 3.4.1. Let F be a predicate class with VC dimension d. Then for all positive

integers m,

ΠF (m) 6

d
∑

i=0

(

m

i

)

.

This, together with the fact that

d
∑

i=0

(

m

i

)

<
(em

d

)d

for m > d > 1, shows that the growth function for a predicate class F with VC dimen-

sion d satisfy

ΠF (m)

{

= 2m if m 6 d;

< (em
d )d if m > d.

Proposition 3.4.1, often called Sauer’s Lemma, shows that the behaviour of the

growth function of a predicate class is strongly constrained by its VC dimension.

Proposition 3.4.2. Let F be a finite predicate class. Then VCD(F) 6 ⌊log |F|⌋.

Proof. Observe that we need at least 2d predicates to shatter a set of d elements.

Proposition 3.4.3. Let F and G be two classes of predicates over some set X. If F ⊆ G, then

VCD(F) 6 VCD(G).

Proof. The set that is shattered by F is shattered by G.

Proposition 3.4.4. Let F and G be two classes of predicates over some set X. Then,

VCD(F ∪ G) 6 VCD(F) + VCD(G) + 1.

Proof. If the VC dimension of either F or G is∞, then the bound holds trivially. As-

sume now that VCD(F) = d1 < ∞ and VCD(G) = d2 < ∞. Since ΠF ∪G(m) 6

ΠF (m) + ΠG(m), it is clear that

VCD(F ∪ G) 6 max{m : ΠF (m) + ΠG(m) > 2m}. (3.5)

The maximum exists because form > max{d1, d2}, both ΠF (m) and ΠG(m) grow only

polynomially. We claim that the RHS of inequality (3.5) is bounded bym = d1 +d2+1.

To see this, observe that

ΠF (m) + ΠG(m) 6

d1
∑

i=0

(

m

i

)

+

d2
∑

i=0

(

m

i

)

=

d1
∑

i=0

(

m

i

)

+
m
∑

i=m−d2

(

m

i

)

by Sauer’s Lemma, and this is less than 2m ifm > d1 +d2+1 since
∑m

i=0

(

m
i

)

= 2m.
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Proposition 3.4.5. Let F be a class of predicates over some set X with VC dimension d.

Define Fneg = {¬f : f ∈ F}. Then VCD(Fneg) = d.

Proof. Observe that a set is shattered by F iff it is shattered by Fneg.

Propositions 3.4.5 and 3.4.4 together imply that closing a predicate class H under

negation would raise the VC dimension of the resulting class to at most 2VCD(H)+1.

Proposition 3.4.6. Suppose F1,F2, . . . ,Fk are classes of predicates over some set X with

VCD(Fi) = di < ∞ for each i. Let bk : {0, 1}k → {0, 1} be an arbitrary boolean function,

and

H = { bk-(f1, f2, . . . , fk) : fi ∈ Fi }

where each bk-(f1, f2, . . . , fk) : X → {0, 1} is defined by

bk-(f1, f2, . . . , fk)(x) =

{

1 if bk (f1(x), f2(x), . . . , fk(x)) = 1;

0 otherwise.

Then VCD(H) 6 2
(

d
ln 2 ln

(

2d
ln 2

)

−
∑k

i=1 di log di

)

where d =
∑k

i=1 di.

Proof. We follow the proof strategy in [185]. Suppose S ⊆ X with cardinality m is

shattered byH. Clearly,

ΠH(m) 6

k
∏

i=1

ΠFi
(m) 6

k
∏

i=1

(

em

di

)di

.

Since S is shattered, 2m 6 ΠH(m). Taking logs we get

m 6 log(em)
k
∑

i=1

di −
k
∑

i=1

di log di (3.6)

=
d

ln 2
ln(em)−

k
∑

i=1

di log di (3.7)

6
d

ln 2

(

m ln 2

cd
+ ln

(

ced

ln 2

)

− 1

)

−
k
∑

i=1

di log di. (3.8)

To bound ln(em) in the last step, we have used the inequality 1 ln a 6 ab− ln b− 1 for

all a, b > 0 with a = em and b = ln 2/ced for some constant c > 1. Putting c = 2 and

solving for m gives the desired result.

More facts about VC dimension, including the proof of Proposition 3.4.1, can be

found in standard texts like [3] and [103].

1This can be obtained from the inequality ∀x > 0, lnx 6 x − 1, an elementary result of calculus, by
putting x = ab.
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We now state two error bounds that can be used to analyse Alkemic decision

trees. The first comes from classical VC theory and is presented in §3.4.1. The sec-

ond, described in §3.4.2, is a more recent result that can be obtained from modern

data-dependent analysis.

3.4.1 Classical Bounds

Assume that X is the input space. Let D be a distribution on X × {−1,+1}, and S

a finite subset of X × {0, 1}. We denote by P(x,y)∼D[E] the probability under D of

an event E, and by P(x,y)∼S [E] the empirical probability of E, i.e., the proportion of

points in S that lie in E.

The following is a result due to Vapnik and Chervonenkis [195].

Theorem 3.4.7 ([3]). SupposeH is a set of predicates over X and D is a probability distribu-

tion on X × {0, 1}. For 0 < ǫ < 1 and m a positive integer, we have

Dm{|erD(h)− êr(h)| > ǫ for some h ∈ H} 6 4ΠH(2m)exp(−
ǫ2m

8
)

where erD(h) = P(x,y)∼D(h(x) 6= y) and êr(h) is the empirical error of h on the sample.

The theorem states that for a predicate classH that is not too complex, given a large

enough random sample, the empirical and true errors for every predicate inH are close

with high probability. The key parameter governing this phenomena is the growth

function ΠH(2m) of H. The bound is trivial if ΠH(2m) grows exponentially in m; but

if ΠH(2m) grows only polynomially, the bound goes to zero exponentially quickly. By

Sauer’s Lemma, the latter condition is assured ifH has finite VC dimension.

Theorem 3.4.7 can be restated (modulo slight modification in the proof) in the fol-

lowing more usable form.

Theorem 3.4.8 ([53]). Let H be a predicate class with VC dimension d. For any probability

distribution D onX×{0, 1}, with probability 1−δ over m random examples S, any predicate

h ∈ H that makes k errors on S satisfy

P(x,y)∼D(h(x) 6= y) 6
2k

m
+

4

m

(

d log
2em

d
+ log

4

δ

)

provided d 6 m.

We now give a bound on the VC dimension of decision trees with node functions

in some predicate class U . In ALKEMY, U is defined using a predicate rewrite system.

This result is probably known in one form or another, but I have not seen it spelled

out before, hence this derivation.

Assume top ∈ U and consider the set DT (U , k) of all trees with depth at most

k. We can concentrate on the subset DT ′(U , k) of DT (U , k) consisting of completely-

balanced trees with exactly 2k leaf nodes since every tree T in DT (U , k) with less than

2k leaf nodes has an equivalent tree T ′ in DT ′(U , k), where T ′ is just T with extra
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top-labelled non-terminal nodes attached. To bound the VC dimension of DT ′(U , k),

we partition it into n = 22k

mutually exclusive sets {DT ′(U , k, πi)}i=1...n and bound

the VC dimension of each set in turn. Here, πi ∈ {0, 1}
2k

and DT ′(U , k, πi) consists

of all the trees in DT ′(U , k) with leaf nodes labelled from left to right by πi. By

Proposition 3.3.14, we can bound VCD(DT ′(U , k, πi)) using Proposition 3.4.6 since

each πi corresponds to a boolean function involving m(πi)k predicates from U , where

m(πi) = min{t(πi), f(πi)}, t(πi) is the number of 1 in πi, and f(πi) the number of 0 in

πi. Denoting VCD(U) by d and applying Proposition 3.4.4, we get

VCD(DT (U , k)) 6

n
∑

i=1

(

m(πi)kd

ln 2
ln

2m(πi)kd

ln 2
−m(πi)kd log d

)

+ n,

which is finite if d is finite.

3.4.2 Data-Dependent Bounds

As shown above, generalization bounds for decision trees obtained from classical VC

theory suggest that the amount of data needed for learning should grow with the size

of the tree; see also [71] and [73]. More recent data-dependent bounds show that this

need not be the case. In [86], starting from margin bounds for two-layer neural net-

works (see [12] and [178]), the authors show how decision trees with node functions

in some predicate class U can be represented as thresholded convex combinations of

predicates in U and from that obtain bounds for decision trees that are qualitatively

different from Theorem 3.4.8. The result is quite instructive and we outline its devel-

opment here. For more details, the reader is referred to [86] and [138].

For a class H of {−1,+1}-valued functions defined on some set X, we denote

by co(H) the convex hull of H, i.e., the set of [−1,+1]-valued functions of the form
∑

i aihi, where ai > 0,
∑

i ai = 1, and hi ∈ H.

Theorem 3.4.9 ([86]). LetD be a distribution onX×{−1,+1},H1, . . . ,Hk predicate classes

with VCD(Hi) = di, and δ > 0. With probability at least 1 − δ over a training set S of m

examples chosen according to D, every function f ∈ co(∪k
i=1Hi) and every θ satisfy

P(x,y)∼D [yf(x) 6 0] 6 2P(x,y)∼S [yf(x) 6 θ]+

O

(

1

m

(

1

θ2
(d logm+ log k) log

mθ2

d
+ log

1

δ

))

,

where d =
∑

i aidji
, and the ai’s and ji’s are defined by f =

∑

i aihi, hi ∈ Hji
, ji ∈

{1, . . . , k}.

The interesting twist in Theorem 3.4.9 is that multiple base classes {Hi}
k
i=1 can be

used, and we only pay a complexity price involving the ‘average’ VC dimension of

these base classes. For a proof of the theorem, see [138, §2.1]. The argument follows

the same line of reasoning as that used for Theorems 1 and 2 in [178]. The faster rate

of convergence to 2P(x,y)∼S [yf(x) 6 θ] can be obtained using a similar argument used

in [138, Lemma 1.3].
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We next show that decision trees can be represented as thresholded convex com-

binations of functions. For a tree T with N leaves, we denote by σi ∈ {−1,+1} the

label assigned to leaf i, and define the leaf functions hi : X → {0, 1} by hi(x) = 1 iff x

reaches leaf i. A decision tree T can be represented in the equivalent functional form

T (x) = sgn(f(x)), where sgn(α) is the signum function that returns 1 iff α > 0, and

f(x) =

N
∑

i=1

wiσihi(x),

with wi > 0 and
∑N

i=1 wi = 1. Given any x, the only non-zero term in the sum is the

one satisfying hi(x) = 1, with σi giving the class, andwi some measure of ‘confidence’.

Let U be the node functions. We assume that U is closed under negation and that

top ∈ U . Define the class of leaf functions for leaves up to depth j by

Hj = {∧r u1 . . . ur : ui ∈ U , r 6 j}.

Let ki denote the depth of leaf i, so hi ∈ Hki
, and let k = maxi ki. A straightforward

application of Proposition 3.4.6, with the constant c in its proof set to 2e ln 2, gives

VCD(Hj) 6 2jVCD(U) ln(2ej). (3.9)

Plugging (3.9) into Theorem 3.4.9 and collapsing log terms and constants, we have for

fixed δ > 0, there is a constant c such that for any distribution D, with probability at

least 1− δ over the sample S,

P(x,y)∼D [T (x) 6= y] 6 2P(x,y)∼S [yf(x) 6 θ] +
d̄

θ2

c

m
VCD(U) log2m log k

where d̄ =
∑N

i=1 widi.

Different choices of the wi’s and the θ will yield different estimates of the error.

Given a sample S and a tree T , let Pi = P(x,y)∼S [hi(x) = 1], Qi = P(x,y)∼S [yσi =

−1|hi(x) = 1] and P ′
i = Pi(1 − Qi)/(1 − P(x,y)∼S [T (x) 6= y]). One can easily check

that P ′
i ∈ [0, 1] and

∑N
i=1 P

′
i = 1. Let P ′ = (P ′

1, . . . , P
′
N ) and assume without loss of

generality that P ′
1 > . . . > P ′

N . A natural choice is wi = P ′
i and P ′

j+1 6 θ < P ′
j for

some j ∈ {1, . . . ,N}. This yields the bound

P(x,y)∼D [T (x) 6= y] 6 2

N
∑

i=j+1

P ′
i +

d̄

θ2

c

m
VCD(U) log2m log k.

To get the best bound, we need to optimize the RHS of the inequality over the choices

of j and θ; this can be computed cheaply given P ′.

There are ways to restate the bound in more qualitative terms. For example, [138,

§2.3] gives an approach to optimizing the selection of wi’s and θ by making a reason-

able and empirically-tested assumption on the distribution of P ′. We restate here the

approach taken in [86]. In that paper, the bound was reformulated in terms of Neff ,
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defined byNeff = N(1−ρ(P ′, U)) where ρ(P ′, U) =
∑N

i=1(P
′
i −1/N)2 is the quadratic

distance between P ′ and the uniform probability vector U = (1/N, . . . , 1/N). For con-

sistent trees, Theorem 3.4.10 can be established. Theorem 3.4.11 applies to inconsistent

trees.

Theorem 3.4.10 ([86]). For a fixed δ > 0, there is a constant c that satisfies the following.

Let D be a distribution on X × {−1,+1}. Consider the class of decision trees of depth up to

k, with decision functions in U . With probability at least 1 − δ over the training set S of size

m, every decision tree T that is consistent with S satisfies

P(x,y)∼D [T (x) 6= y] 6 c

(

Neff VCD(U) log2m log k

m

)1/2

.

Theorem 3.4.11 ([86]). For a fixed δ > 0, there is a constant c that satisfies the following.

Let D be a distribution on X × {−1,+1}. Consider the class of decision trees of depth up to

k, with decision functions in U . With probability at least 1 − δ over the training set S of size

m, every decision tree T satisfies

P(x,y)∼D [T (x) 6= y] 6 P(x,y)∼S [T (x) 6= y] + c

(

Neff VCD(U) log2m log k

m

)1/3

.

In both cases, Neff is a data-dependent quantity. Thus the same tree can be simple

for one P ′ and complex for another.

The bounds provided by Theorems 3.4.10 and 3.4.11 are qualitatively different

from that provided by Theorem 3.4.8, and they can be significantly better especially

for large trees.

3.4.3 Some Tools for Calculating VC Dimensions

As shown, the VC dimension of node functions is an important parameter in the gen-

eralization behaviour of Alkemic decision trees. To understand the nature of learn-

ing with ALKEMY, we need to develop methods to calculate the VC dimensions of

(more-or-less arbitrary) predicate classes definable using predicate rewrite systems.

The problem seems difficult at first sight; in fact, it was listed as an open research

question in [130, Ex 6.6]. But recent progress has shown that solutions to some impor-

tant aspects of the general problem are actually rather straightforward. These results

are reported next.

We first describe the development of some basic tools in this section. Armed with

these, we will then proceed in §3.4.4 to analyse five illustrative predicate rewrite sys-

tems selected from [130]. We remark that some of the tools developed here have ap-

plications beyond ALKEMY.

For the most part, we will abstract away from predicate rewrite systems and just

work on simple predicate classes defined on ‘collections’ of natural numbers. As we

shall see, this is a useful simplification since there is a straightforward mapping be-

tween natural numbers and arbitrary finite sets that we can exploit. The results are
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organized into sections on composition of functions, tuples, and sets and multisets.

In what follows, sets with k elements are called k-sets; subsets with k elements are

called k-subsets.

3.4.3.1 Compositions of Functions

Proposition 3.4.12. Suppose X1 and X2 are two arbitrary sets. Let f be a function from X1

to X2, and G a predicate class, where each g ∈ G is a predicate over X2. Define f ◦G by

f ◦G = {f ◦ g : g ∈ G}.

Then VCD(f ◦G) 6 VCD(G).

Proof. If VCD(G) =∞, then the bound clearly holds. Assume VCD(G) = d <∞. Sup-

pose VCD(f ◦G) > d. Then there exists a set {x1, x2, . . . , xd+1} ⊆ X1 that is shattered

by f ◦G. Now, it is necessary that f(xi) 6= f(xj) if i 6= j. (Otherwise, there is no way to

distinguish between xi and xj). This implies that the set {f(x1), f(x2), . . . , f(xd+1)} is

shattered by G. But this contradicts the fact that VCD(G) = d.

The VC dimension of f ◦G can be strictly smaller than that of G, since f can restrict

the domain of functions in G and reduce the size of the biggest set that is shattered by

G. If VCD(G) =∞, this is one useful way to control G.

Next a related question. Let F and G be two function classes, where each f ∈ F is

a function from X1 to X2, and each g ∈ G is a predicate over X2. Define F ◦G by

F ◦G = {f ◦ g : f ∈ F , g ∈ G}.

Could it be that VCD(F ◦G) 6 VCD(G)? This is not true, as shown next.

Example 3.4.13. LetF = {min,max, sum} be the set of functions from all finite subsets

of N to N defined as follows: min and max return, respectively, the minimum and

maximum number of a set; and sum returns the sum of the numbers in a set. Let G

be the class of intervals on N. It is known that VCD(G) = 2. The VC dimension of

F ◦G is at least 3 since the set {X1 = {1, 2, 3},X2 = {3, 4},X3 = {2, 3}} is shattered

by F ◦G. The key observation here is that we can use functions in F to map distinct

individuals in 2N to the same number. For example, to label X1 and X3 true, and X2

false, we can use max to nullify the difference betweenX1 and X3, resulting in the set

{max(X1),max(X2),max(X3)} = {3, 4}. The desired labelling can then be achieved

using G. ◭

3.4.3.2 Predicate Classes on Tuples

This next result is a recast of Exercise 6.5 in [130].

Proposition 3.4.14. Suppose m > 1. Let Fm be the following class of predicates

Fm = {top} ∪ {∧k fi1,j1 . . . fik,jk
: k ∈ N, il ∈ {1, . . . ,m}, jl ∈ N}
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where each fi,j : Nm → {0, 1} is defined by

fi,j (x1, . . . , xm) =

{

1 if (xi = j);

0 otherwise.

VCD(Fm) = m.

Proof. We first show that VCD(Fm) > m. The set X = {X1, . . . ,Xm} where Xi ∈ Nm

has value 2 at the i-th component and value 1 everywhere else is shattered by Fm. It

is easy to pick out the empty set, the whole set X, the 1-subsets and (m − 1)-subsets.

To pick out a subset S = {Xi1 , . . . ,Xin : 2 6 n 6 m − 2} ⊂ X, use the predicate

∧m−n fi1,1 . . . fim−n,1 where ij are the components where all the elements in S have

the same value 1.

We next show VCD(Fm) 6 m. Consider an arbitrary set Y ⊂ Nm with m + 1

elements. We claim that there is no way to pick out all m-subsets of Y . This is because

there are
(m+1

m

)

= m + 1 such subsets, and we need to use at least one component to

pick out each, but there are only m components available for use.

Proposition 3.4.14 has been known for a long time in another form. The upper

bound was given in [72], and the lower bound in [151]. Essentially the same argu-

ments were used.

The condition m > 1 is needed here since VCD(Fm) = 2 if m = 1.

Observation 3.4.15. In the proof of Proposition 3.4.14, we never needed conjunction of more

than m-2 fi,j’s to shatter a set of size m. This implies that if k in the definition of Fm is

restricted to the range {1, . . . ,m− 2}, VCD(Fm) would still be m.

Proposition 3.4.16. Suppose m > 1. Let Gm be the following class of predicates

Gm = {bottom} ∪ {∧k gi1,j1 . . . gik,jk
: k ∈ N, il ∈ {1, . . . ,m}, jl ∈ N}

where each gi,j : Nm → {0, 1} is defined by

gi,j (x1, . . . , xm) =

{

1 if (xi 6= j);

0 otherwise.

Then VCD(Gm) =∞.

Proof. For each n ∈ N, the set

Xn = {(1, 1, 1, . . . , 1), (2, 1, 1, . . . , 1), . . . , (n, 1, 1, . . . , 1)}

is shattered. We only need the first component. The 1’s in the remaining components

are just place-fillers.
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3.4.3.3 Predicate Classes on Sets and Multisets

One of the distinguishing features of our knowledge representation formalism is the

admission of sets and multisets for data modelling. We now look at some predicate

classes defined on sets.

Proposition 3.4.17. Let F∀ be the class of predicates F∀ = {fi,j : i, j ∈ N, j > i} where each

fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{

1 if ∀x ∈ t. i 6 x 6 j;

0 otherwise.

Then VCD(F∀) = 2.

Proof. It is easy to show that VCD(F∀) > 2. Assume there exists a set of three elements

S = {X,Y,Z} that is shattered by F∀. Clearly, none of the elements in S can be the

empty set, which evaluates to 1 for each f ∈ F∀. Further, each element in S must

be finite. (Shattering is impossible otherwise.) Denote by max(A) and min(A) the

biggest and smallest numbers in a (finite) set A of numbers and define the range of A

by range(A) = {min(A), . . . ,max(A)}. We have

∀A,B ∈ S, A 6= B ⇒ range(A) * range(B)

since if range(A) ⊆ range(B), there is no way to make B true without also making

A true. Without loss of generality, assume min(X) < min(Y ) < min(Z). This implies

max(X) < max(Y ) < max(Z). Now, there is no fi,j ∈ F∀ such that fi,j(X) = 1,

fi,j(Z) = 1, and fi,j(Y ) = 0 since any (i, j)-interval that covers both min(X) and

max(Z) must also cover every number in the range {min(Y ), . . . ,max(Y )} ⊇ Y .

Proposition 3.4.18. Let F∃ be the class of predicates F∃ = {fi,j : i, j ∈ N, j > i} where each

fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{

1 if ∃x ∈ t. i 6 x 6 j;

0 otherwise.

Then VCD(F∃) =∞.

Proof. It is sufficient to show that the subset F ′
∃ = {fi,i : i ∈ N} of F∃ has infinite VC

dimension. For each n ∈ N, we can construct a set {X1,X2, . . . ,Xn} that is shattered

by F ′
∃ as follows. Enumerate all the subsets of N = {1, 2, . . . , n}, assigning them

numbers from 1 to 2n. For instance, when n = 3 we get

1 2 3 4 5 6 7 8

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
.

Now define Xi to be the set of all numbers assigned to a subset of N having i as a

member. Continuing with our example for n = 3, we obtain the set

{X1 = {2, 5, 6, 8}, X2 = {3, 5, 7, 8}, X3 = {4, 6, 7, 8}}.
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It is clear that {X1,X2, . . . ,Xn} constructed this way is shattered by F ′
∃.

There are different ways one can constrain F∃. For example, by restricting the

domain of each fi,j to sets of numbers with some maximum cardinality m, we can cut

down the VC dimension of the class to at most 2m.

The next result is quite informative, in light of Proposition 3.4.18.

Proposition 3.4.19. Let F = {fi : i ∈ N} and G = {gi : i ∈ N} be predicate classes where

each fi : 2N → {0, 1} is defined by

fi(t) =

{

1 if ∃x ∈ t. x > i;

0 otherwise,

and each gi : 2N → {0, 1} is defined by

gi(t) =

{

1 if ∃x ∈ t. x 6 i;

0 otherwise.

Then VCD(F) = VCD(G) = 1. Further, VCD(F ∪ G) = 2.

Proof. It is easy to construct examples to show that VCD(F) > 1, VCD(G) > 1 and

VCD(F ∪ G) > 2. Simple indirect arguments show that larger shatterable sets do not

exist.

Careful examination of the essential difference between Proposition 3.4.18 and

Proposition 3.4.19 led to the development of Proposition 3.4.21 below. As we shall

see, it is a useful tool for analysing many different predicate rewrite systems.

Definition 3.4.20. Let X be a set and F a class of predicates over X. We say a set

S ⊆ X is disintegrated by F if for every x ∈ S, there exists an f ∈ F such that f(x) = 1

and f(y) = 0 for all y ∈ S \ {x}.

Proposition 3.4.21. Let X be a set and F a class of predicates over X. Let G = {gf : f ∈ F}

be the class of predicates where each gf : 2X → {0, 1} is defined by

gf (t) =

{

1 if ∃x ∈ t. f(x) = 1;

0 otherwise.

If there exists a finite S ⊆ X such that |S| > 2 and S is disintegrated by F , then VCD(G) >

⌊log |S|⌋.

Proof. Proceeding as in Proposition 3.4.18, we can assign a different element of S to

each subset of N = {1, 2, . . . , ⌊log |S|⌋}. DefiningXi as the set of all elements assigned

to a subset of N in which i occurs gives us a subset of 2X that is shattered by G.

As a simple application of Proposition 3.4.21, we give this next result for sets of

tuples of constants. It is a handy tool for obtaining lower bounds on the VC dimension

of many predicate rewrite systems.
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Proposition 3.4.22. Let N be a finite subset of N satisfying |N | > 2. Suppose m > n > 0

and let Gm,n be the class of predicates

Gm,n = {g{(il,jl)}16l6k
: k ∈ {1, . . . , n}, il ∈ {1, . . . ,m}, jl ∈ N}

where each g{(il,jl)}16l6k
: 2Nm

→ {0, 1} is defined by

g{(il ,jl)}16l6k
(t) =

{

1 if ∃(x1, . . . , xm) ∈ t. (xi1 = j1) ∧ · · · ∧ (xik = jk);

0 otherwise.

Then

VCD(Gm,n) >

{

⌊m log |N |⌋ if n = m;

⌊log(
∑n

k=1

(m
k

)

(|N | − 1)k)⌋ otherwise.

Proof. Let

Fm,n = {f{(il,jl)}16l6k
: k ∈ {1, . . . , n}, il ∈ {1, . . . ,m}, jl ∈ N, i1 < · · · < ik}

where each f{(il,jl)}16l6k
: Nm → {0, 1} is defined by

f{(il,jl)}16l6k
(x1, . . . , xm) =

{

1 if (xi1 = j1) ∧ · · · ∧ (xik = jk);

0 otherwise.

We use Proposition 3.4.21 to get the lower bounds. When n = m, we can use for S the

whole set Nm, which is clearly disintegrated by Fm,m. When n < m, we construct S

as follows. Pick an x ∈ N at random and consider the following subset of Fm,n:

Fm,n,x = {f{il,jl}16l6k
: k ∈ {1, . . . , n}, il ∈ {1, . . . ,m}, jl ∈ N \ {x}, i1 < · · · < ik}.

For each predicate f{(il,jl)}16l6k
∈ Fm,n,x add to S the tuple that has value jl at the il-th

component, and x everywhere else. (For instance, when m = 5, k = 2,N = {1, 2, 3}

and x = 3, given f{(1,2),(3,1)}, we add (3, 3, 1, 3, 2) to S.) It’s not hard to see that each

element in S can be picked out by the predicate that generated it. Further,

|S| = |Fm,n,x| =
n
∑

k=1

(

m

k

)

(|N | − 1)k.

The condition |N | > 2 ensures that |S| > 2 in both cases.

We next look at multisets. The difference between a set and a multiset is that an el-

ement can occur multiple times in a multiset. Some of the results given for sets clearly

carry over to multisets with little change. The multiplicity of elements allowed in

multisets can sometimes be exploited, as done in this next result. First some notation.

Let A be a multiset of elements from some set X. In the following, we denote by

#(A,x) the multiplicity of x ∈ X in A. Further, we denote by N0 the set {0} ∪ N.
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Definition 3.4.23. Let A and B be multisets of elements from some set X. We define

the pairwise maximum between A and B, denoted A ⊔ B, as follows: A ⊔ B is the

multiset that contains, for all x ∈ X, max{#(A,x),#(B,x)} occurrences of x. For

example, {1, 1, 2, 2, 2} ⊔ {1, 2, 2, 2, 2, 3, 3, 3} = {1, 1, 2, 2, 2, 2, 3, 3, 3}.

Proposition 3.4.24. Suppose X and Y are non-empty finite subsets of N. Let F be the class

of predicates F = {fi,j : i ∈ X, j ∈ Y } where each fi,j : N0
N → {0, 1} is defined by

fi,j(t) =

{

1 if #(t, i) > j;

0 otherwise.

Let d ∈ N. If |Y | > d+ 1 and |X| >
(

d
i

)

for all i ∈ {1, . . . , d}, then VCD(F) > d.

Proof. The proof is in two stages. In the first stage, we show that given a function

ψ from the powerset of D = {1, . . . , d} to N0
N satisfying a certain property, we can

construct a set Z = {Z1, . . . , Zd} that is shattered by F . In the second stage, we show

that ψ exists and give a simple algorithm for constructing it.

Stage 1 We denote by (x, y) the multiset that contains y occurrences of x and nothing

else. Assume ψ satisfies the following property: For all S ⊆ D, we have

1. ψ(S) = (x, y) for some x, y ∈ N, and

2. for all A ⊆ D not equal to S, if ψ(A) = (x, z) for some z ∈ N and |A| ≥ |S|, then

S ⊂ A and y > z.

Given such a function ψ, define Zi =
⊔

{ψ(S) : S ⊆ D, i ∈ S} for each i ∈ D. We now

argue that the set Z = {Z1, . . . , Zd} so-constructed is shattered by F . Specifically, we

show that for all S ⊆ D, fx,y(Zi) = 1 if i ∈ S and fx,y(Zi) = 0 otherwise, given that

ψ(S) = (x, y).

Consider an arbitrary S ⊆ D with ψ(S) = (x, y). If i ∈ S, by construction, Zi

contains at least y occurrences of x and fx,y(Zi) = 1. Consider now the case when

i /∈ S. If #(Zi, x) = 0, then fx,y(Zi) = 0 as desired. If #(Zi, x) > 0, then there exists

A ⊆ D such that i ∈ A and ψ(A) = (x, z) for some z ∈ N. We can assume without

loss of generality that A is the set with the largest z. If |A| ≥ |S|, then by the property

of ψ, we have y > z and S ⊂ A, which implies fx,y(Zi) = 0. If |A| < |S|, then by the

property of ψ, we have z > y and A ⊂ S. (Simply substitute the set A for the variable

S and the set S for the variable A in the statement of the property of ψ.) This case can’t

arise since A ⊂ S and i ∈ A together imply i ∈ S, contradicting i /∈ S.

Stage 2 It suffices to show that one such ψ exists. We will give a more general re-

sult that shows that not only does ψ exists, we can actually find many instances of it

efficiently using well-studied algorithms in graph theory.

Given X and Y both non-empty finite subsets of N, we first use the Label algo-

rithm given below to label the subsets of D. For each S ⊆ D, we then define ψ(S) to

be the label assigned to S. To get some intuition, we first give a high-level description
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of the labelling algorithm. Conceptually, we first lay out in a sequence the subsets of

D in groups, starting from the empty set (group 0), followed by the 1-subsets (group

1), the 2-subsets (group 2), . . . , and finally finishing at D (group |D|). The algorithm

starts by labelling the largest group and then iteratively label the next two largest

unlabelled groups until every subset of D has a label.

We now give the algorithm. The variables l, u and m are integers. In the algo-

rithm, we denote by Y [i] and X[i] the i-th largest elements in Y and X. The condition

|X| ≥
(d

i

)

for all i comes about because of Step 2. The condition |Y | ≥ d + 1 comes

from the fact that there are d + 1 groups of subsets of D. Example 3.4.27 below gives

a concrete example of the labelling.

Alg. Label

1. l← 1; u← 1; m← min{i : ∀j.
(d
j

)

6
(d

i

)

};

2. Label the m-subsets of D with (X[i], Y [⌈d/2 + 1⌉]) in increasing order of i.

3. If m− l < 0, goto Step 6;

4. C ← the (m− l + 1)-subsets of D;

5. For each (m− l)-subset S of D

(a) Pick an L ∈ C with label (x, Y [m]) such that S ⊂ L and label S with

(x, Y [m+ 1]);

(b) C ← C \ L;

6. If m+ u > d, terminate;

7. C ← the (m+ u− 1)-subsets of D;

8. For each (m+ u)-subset S of D

(a) Pick an L ∈ C with label (x, Y [m]) such that L ⊂ S and label S with

(x, Y [m− 1]);

(b) C ← C \ L;

9. l← l + 1; u← u+ 1; Goto Step 3;

By design, the function ψ constructed from a labelling obtained by Label, assum-

ing it terminates, satisfies the condition stated earlier. We now show that the Label

algorithm always terminate successfully. For that, we need to show that Steps 5(a)

and 8(a) can always be performed for each S. We will show this for Step 5(a); the ar-

gument for Step 8(a) is similar. What we are trying to do is in fact to find a matching in

a bipartite graph. The vertices of the graph consists of the (m−l) and (m−l+1)-subsets

of D, with the (m− l)-subsets forming the first partition, and the (m − l + 1)-subsets

the second. There is an edge from an (m − l)-subset A to an (m − l + 1)-subset B iff

A ⊂ B. By the choice of m, we have

no. of (m− l)-subsets =

(

d

m− l

)

6

(

d

m− l + 1

)

= no. of (m− l + 1)-subsets.

Thus we seek a matching of cardinality
(

d
m−l

)

.
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To show that such a matching exists and can be found efficiently, we introduce a

concept from graph theory.

Definition 3.4.25. A vertex cover of a graph G = (V,E) is a set U ⊆ V

such that every edge of G is incident with a vertex in U .

We make use of the following known result. For a proof, see, for example, [60].

Theorem 3.4.26 (König 1931). The maximum cardinality of a matching in a

bipartite graph G is equal to the minimum cardinality of a vertex cover of G.

The set of (m−l)-subsets with cardinality
( d
m−l

)

is clearly a vertex cover. A straightfor-

ward indirect argument shows that there is no smaller vertex cover. The existence of

our desired matching then follows from Theorem 3.4.26. There are efficient network

flow algorithms for finding (all) such matchings; see, for instance, [159, Chap. 10] and

[50, Chap. 27].

Finally, the labelling algorithm will always terminate at Step 6 by the choice of m

in Step 1.

Example 3.4.27. Suppose X = {1, . . . , 6} and Y = {1, . . . , 5}. Let F be as defined

in Proposition 3.4.24. To construct a set Z = {Z1, Z2, Z3, Z4} that is shattered by F ,

we first label the subsets of D = {1, 2, 3, 4} according to the Label algorithm. One

acceptable labelling is the following.

∅ (1, 5)

{1} (1, 4), {2} (4, 4), {3} (2, 4), {4} (3, 4)

{1, 2} (1, 3), {1, 3} (2, 3), {1, 4} (3, 3), {2, 3} (4, 3), {2, 4} (5, 3), {3, 4} (6, 3)

{1, 2, 3} (1, 2), {1, 2, 4} (5, 2), {1, 3, 4} (2, 2), {2, 3, 4} (6, 2)

{1, 2, 3, 4} (1, 1)

Based on the function ψ obtained from the labelling, we construct

Z = { Z1 = {1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5},

Z2 = {4, 4, 4, 4, 1, 1, 1, 5, 5, 5, 6, 6},

Z3 = {2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 1, 1},

Z4 = {3, 3, 3, 3, 5, 5, 5, 6, 6, 6, 2, 2, 1} }.

It can be easily verified that Z is shattered by F . ◭

Observation 3.4.28. It is possible to weaken the condition on |Y | in Proposition 3.4.24 using

a more scrupulous grouping of the subsets, especially for large values of d. We note here a

simple way to weaken that to |Y | > d − 1 by treating the empty set as part of the 1-subsets,

and the whole setD as part of the (d−1)-subsets during labelling. Labelling is possible because

the empty set, being a subset of every other set, is connected to all the 2-subsets; and the set D,

being a superset of every other set, is connected to all the (d− 2)-subsets.
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3.4.4 Five Illustrations

Building on the results presented in the previous section, we now analyse some in-

structive examples of predicate rewrite systems taken from [130, Chap. 6]. For each

illustration, we will briefly introduce the problem and give details on the way indi-

viduals are represented and the hypothesis language used. Unimportant details like

training examples have been left out for brevity; readers can consult [130] or [31] for

more information. We will also revert back to the notation introduced in Chapter 2.

3.4.4.1 Tennis

The first illustration is a simple problem due to Quinlan (see [162]) that involves learn-

ing the concept of playing, or not playing, tennis, according to the weather.

Representation of Individuals The types Outlook , Temperature , Humidity , Wind

and the type synonym Weather are defined as follows.

Sunny ,Overcast ,Rain : Outlook

Hot ,Mild ,Cool : Temperature

High,Normal ,Low : Humidity

Strong ,Medium,Weak : Wind

Weather = Outlook ×Temperature ×Humidity ×Wind

The function playTennis to be learned has signature playTennis : Weather → Ω.

Predicate Rewrite System

top  ∧2 top top;

top  projOutlook ◦ top; top  projTemperature ◦ top;

top  projHumidity ◦ top; top  projWind ◦ top;

top  (= Sunny); top  (= Overcast); top  (= Rain);

top  (= Hot); top  (= Mild); top  (= Cool );

top  (= High); top  (= Normal ); top  (= Low);

top  (= Strong); top  (= Medium); top  (= Weak);

Proposition 3.4.29. VCD(S) = 4.

Proof. This follows from Proposition 3.4.14 and Observation 3.4.15.

3.4.4.2 Musk

This is the Musk problem introduced in [63]. Briefly, the problem is to determine

whether or not a molecule has a musk odour. The molecules generally have many

different conformations and, presumably, only one conformation is responsible for
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the activity. Each conformation is a tuple of 166 floating-point numbers, where 162

of these numbers represent the distance in angstroms from some origin in the confor-

mation out along a radial line to the surface of the conformation and the other four

numbers represent the position of a specific oxygen atom. For convenience, we dis-

cretized the floating-point numbers into 13 intervals, resulting in the following.

Representation of Individuals

−6,−5, . . . , 5, 6 : Distance

Conformation = Distance × · · · ×Distance

Molecule = {Conformation}.

Here the product type Distance×· · ·×Distance contains 166 components. The function

musk to be learned has signature musk : Molecule → Ω.

Predicate Rewrite System

top  setExists1 (∧3 top top top)

top  proj i ◦ (= j) where i ∈ {1, 2, . . . , 166}, j ∈ {−6,−5, . . . , 6}

Here, a macro language is used to represent all predicate rewrites of a certain form.

We will use this notation whenever it is convenient to do so.

Proposition 3.4.30. VCD(S) = 30.

Proof. We have VCD(S) 6 ⌊log |S|⌋ = ⌊log 1, 679, 615, 641⌋ = 30 by Proposition

3.4.2. We have the lower bound

VCD(S) > ⌊log(

3
∑

k=1

(

166

k

)

(12)k)⌋ = ⌊log 1, 295, 658, 552⌋ = 30

by Proposition 3.4.22.

3.4.4.3 Climate

Consider next the problem of deciding whether a climate in some country is pleasant

or not. The climate is modelled by a multiset. Each item in a multiset is a term char-

acterizing the main features of the weather during a day and the multiplicity of the

item is the number of times during a year a day with those particular weather features

occurs.

Representation of Individuals We use the same representation for Weather as in

the Tennis problem. A climate is modelled as a multiset Climate = Weather → Nat

and the function pleasant to be learned has signature pleasant : Climate → Ω.
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Predicate Rewrite System

top  (domMcard top) ◦ (> 0);

top  ∧4 (projOutlook ◦ top) (projTemperature ◦ top)

(projHumidity ◦ top) (projWind ◦ top);

top  (= Sunny); top  (= Overcast); top  (= Rain);

top  (= Hot); top  (= Mild); top  (= Cool );

top  (= High); top  (= Normal ); top  (= Low);

top  (= Strong); top  (= Medium); top  (= Weak);

(> i)  (> i+ 50) where i ∈ {0, 50, . . . , 300}.

Proposition 3.4.31. 8 6 VCD(S) 6 11.

Proof. We have VCD(S) 6 ⌊log |S|⌋ = ⌊log 2057⌋ = 11 by Proposition 3.4.2. We

use Proposition 3.4.24 and Observation 3.4.28 to establish the lower bound. All the

tuples of type Weather can be numbered and form the set X as in Proposition 3.4.24,

with |X| = 81. Each predicate in S of the form

(domMcard (∧4 (projOutlook ◦ (= A)) (projTemperature ◦ (= B))

(projHumidity ◦ (= C)) (projWind ◦ (= D)))) ◦ (> j)

is equivalent to some fi,j+1 as defined in Proposition 3.4.24, where i is the labelling

number of (A,B,C,D). There are 81 ways to instantiate the variables A,B,C and D.

The variable j can take on values in the set Y = {1, 51, 101, 151, 201, 251, 301, 351}.

The largest d satisfying |Y | > d− 1 and |X| >
(

d
i

)

for all i is d = 8.

3.4.4.4 East-West Challenge

We now examine the East-West challenge, a problem involving lists we introduced

earlier in Example 2.2.4.

Proposition 3.4.32. Let  be as in Example 2.4.6. 10 6 VCD(S) 6 13.

Proof. We have VCD(S) 6 ⌊log |S|⌋ = ⌊log 10661⌋ = 13 by Proposition 3.4.2. To es-

tablish the lower bound, we proceed in the same way as Proposition 3.4.22, but taking

into account the different domains of the components in Car . An element from each

component is reserved as a default value, in the same way an x ∈ N is used in Propo-

sition 3.4.22. From that, we get a set Z of Car objects that can be used to construct a

shatterable set D of sets of Car objects, where |D| = ⌊log |Z|⌋ by Proposition 3.4.21.

Clearly, one can recover a Train object from each element in D. A straightforward

counting exercise yields |Z| = 1175, giving the lower bound ⌊log |Z|⌋ = 10.

3.4.4.5 Chemicals

The next illustration involves learning a theory to predict whether a given chemical

molecule has a certain property.
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Representation of Individuals We use an undirected graph to model a molecule –

an atom is a vertex in the graph and a bond is an edge. The type Element is the type

of the (relevant) chemical elements; the type Bond is the type of the chemical bonds

between atoms.

Br , C,Cl , F,H, I,N,O, S : Element

S,D, T,R : Bond

We also make the following type synonyms.

AtomType = Nat

Charge = Float

Atom = Element ×AtomType × Charge

Float here is the type of floating-point numbers. The vertices of a graph have type

Atom and the edges have type Bond , leading to the following definition.

Molecule = Graph Atom Bond .

The function active to be learned has signature active : Molecule → Ω.

Predicate Rewrite System

top  (subgraphs 3) ◦ (setExists1 top)

top  ∧2 (vertices ◦ (domCard top) ◦ (> 0)) (edges ◦ (domCard top) ◦ (> 0));

top  ∧2 (connects ◦ (msetExists2 top top)) (edge ◦ top);

top  vertex ◦ projAtomType ◦ top;

top  (= 3); top  (= 22); top  (= 27); top  (= 38);

top  (= 40); top  (= 45); top  (= 195);

top  (= S); top  (= D); top  (= T ); top  (= R);

(> 0)  (> 1).

Proposition 3.4.33. 8 6 VCD(S) 6 12.

Proof. We have VCD(S) 6 ⌊log |S|⌋ = ⌊log 8137⌋ = 12 by Proposition 3.4.2. We

use Proposition 3.4.21 to establish the lower bound. Consider the subset of predicates

in S of the form

(subgraphs 3) ◦ (setExists1 (∧2

(vertices ◦ (domCard (vertex ◦ projAtomType ◦ (= X))) ◦ (> 0)))

(edges ◦ (domCard (∧2 (connects ◦ (msetExists2 (vertex ◦ projAtomType ◦ (= Y ))

(vertex ◦ projAtomType ◦ (= Z))))

(edge ◦ (= B)))) ◦ (> 0))),
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whereX,Y,Z are variables of type AtomType satisfying the constraintsX 6= Y ,X 6= Z

and Y 6 Z , and B is a variable of type Bond taking a value in the set {S,D, T}. There

are 7 ·
(6+2−1

2

)

· 3 = 441 such predicates. For each such predicate, we construct a graph

of the form

({(1, (C,X, 0.142)), (2, (C, Y, 0.142)), (3, (C,Z, 0.142)}, {(〈1, 2〉, R), (〈2, 3〉, B)}).

Using this set of graphs, which is disintegrated by the set of all predicates derivable

from the second predicate rewrite using , we construct a set D of sets of graphs as

in Proposition 3.4.18. For each element g inD, we put all the (sub)graphs in g together

to form a graph with |g| disconnected components, after appropriate relabelling of the

vertices. It can be checked that the set of graphs constructed this way is shattered by

S. The cardinality of the set is ⌊log 441⌋ = 8.

3.4.5 Tighter Bounds

Let us recap the general procedure used to analyse the predicate rewrite systems. In

all but one example, we establish an upper bound by counting the size of the predicate

class. A lower bound is then given by an explicit construction of a set of individuals

that is shattered by the predicate class in question, making use of the rich structures

available. Interestingly, the upper and lower bounds are never too far apart. Now one

would expect that it is possible to do a lot better than a naı̈ve counting of the predicate

class; apparently not. It turns out that a body of work culminating in [7] in the field of

ILP came up with the same general conclusion for first-order predicate classes. What

are we to make of these results?

It was shown in [182] (see also [3, Chap. 5]) that for a predicate class with high

VC dimension, there exist distributions that will force the learning algorithm to re-

quire a large training sample to obtain good generalization. This, together with the

results presented in the previous section, implies that, in general, the true errors of

hypotheses in the rich predicate classes used by ALKEMY cannot be easily estimated

from empirical data, and that, in the worst case, the number of training data needed

grows with the size of the predicate classes used. The problem is that if we don’t make

any assumption on the underlying distribution, then we must be prepared to accept

the possibility that everything can conspire against the learning algorithm. The more

structures we introduce into the representation of individuals and the hypothesis lan-

guage, the more structures there are to be exploited for producing bad cases.

However, learning with predicate classes that have high VC dimensions is possible

if the underlying distribution is benign, and this information can be obtained from the

training data. For instance, [181] shows that the VC dimension of a predicate class on

the training sample can be used as a measure of how helpful the distribution is in

identifying the target concept, and gives error bounds in terms of that. More recently,

[14] gives error bounds in terms of the Rademacher and Gaussian complexities of

predicate classes, and these can be estimated from the training data. PAC-Bayes and

PAC-MDL bounds, which are also data-dependent results, can also help us obtain
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tighter bounds. Some relevant work along this line of investigation include [134] and

[170]. Such data-dependent analysis can yield error bounds that are much tighter than

those given in §3.4.1 and §3.4.2.

Another way forward is to accept the negative worst-case results and seek, instead,

positive average-case results, possibly along the line of [147].

3.5 Optimization Issues

Up until this point, we have been concerned with information-theoretic questions.

This section deals with computation issues. We analyse the search behaviour of the

three main algorithms presented in Section 3.2. For each algorithm, we state

1. the desired optimization goal;

2. the optimality of the algorithm with respect to the optimization goal; and

3. the time and space complexities of the algorithm.

Different techniques – the tricks of the trade so to speak – that can be used to speed

up search in practice are also discussed.

3.5.1 The Stump Algorithm

3.5.1.1 Optimization Goal

Given a predicate rewrite system , the set of all decision stumps that can be formed

using  is exactly the set S ∪ Sneg
. As we have seen in Section 3.4, if the VC

dimension of S ∪ Sneg
is finite, in the presence of sufficiently many examples, the

true and empirical errors of every stump will be close with high probability. This

suggests that picking the decision stump with the lowest empirical error is a good

winning strategy.

3.5.1.2 Optimality

In the default pruning mode, ALKEMY conducts an exhaustive search of the hypothe-

sis space. The output decision stump is thus guaranteed to be the best on the training

data according to the optimization goal.

Incomplete Searches Sometimes an exhaustive search is impossible and we have to

resort to incomplete searches. Several such algorithms are given in §3.2.1.3. There

is a rich body of work on understanding the behaviour of such algorithms (see, for

example, [172] for a survey and references), we will not dwell on them here except

to remark that, in practice, it is often sufficient to just find an acceptably-accurate

decision stump in a reasonable amount of time.
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3.5.1.3 Time and Space Complexities

In considering computational complexity issues, we will focus on the LR search al-

gorithm (Figure 3.1). The SeenSet algorithm tends to behave poorly when the search

space is massive, and its use is largely restricted to quick incomplete searches.

Given a predicate rewrite system  and a set of examples E = {(xi, yi)}
N
i=1 as

input, the worst-case time complexity of learning is

#()
∑

i=1

N
∑

j=1

cost(pi, xj)

where cost(p, x) is the computational cost of evaluating (p x). Thanks to pruning, the

cost in actual applications is usually a lot lower, often by orders of magnitude. There

is, however, not much one can say about the effectiveness of pruning in general; it is

largely an application-dependent factor.

The space complexity is dominated by the size of the open list and this is at all

times smaller than the number of predicates in S without a redex. This number can

usually be bounded by a simple function of the number of predicate rewrites in 

whose body has no redex. Computationally, it is a small quantity of little concern.

The worst-case time complexity of the learning algorithm is quite bad. We now

outline a few techniques and strategies that can alleviate the computational burden.

Estimating the Prune Parameter Having a good initial value for the prune param-

eter can cut down search time significantly. A simple way to do this is to use the

SeenSet search algorithm in conjunction with one of the incomplete search strategies

proposed to find a good decision stump quickly, and then to use its accuracy as the

initial value for the prune parameter.

Predicate Evaluation If the cost of predicate evaluation is the dominating factor, the

following optimization procedure is worthwhile. Consider two predicates p and q in

the search space. If q is a descendant of p, then q is stronger than p and we have for all

x, (p x) = 0 implies (q x) = 0. This fact can be used to save time. As learning proceeds,

a complete evaluation record of certain predicates are stored in a data structure. To

evaluate each new predicate r on a set of individuals, we locate in the data structure

its closest ancestor s in the predicate search space and compute only those individuals

evaluated to 1 by s; the rest can be assigned 0 without further ado.

The decision on which predicates to keep is another instance of the space-time

complexity tradeoff question. Obviously, predicates with no redexes should not be

kept. The number of predicates kept also shouldn’t be so large that the cost of finding

the closest ancestor outweighs the potential saving in predicate evaluation time.

How much speed are we likely to gain from this algorithm? Experiments suggest

that a performance boost of around 20–30% can be achieved.

More details about the algorithm can be found in §3.5.2.3.
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Predicate Rewrite Pruning Sometimes pruning can be done at the predicate rewrite

level, which is a lot more effective than pruning at the predicate level. We make use

of the following simple fact.

Proposition 3.5.1. Let E be a set of examples and Pi, 1 6 i 6 n, partitions of E . If P is a

refinement of every Pi, then AP 6 min16i6nBPi
.

Proof. By part (a) of Proposition 3.2.9, AP 6 BPi
for 1 6 i 6 n.

We illustrate the technique with two examples.

Example 3.5.2. Consider the following predicate rewrite system

top  ∧k top . . . top

top  p1 top  p2 . . . top  pn

where each top in the body of the first rewrite can be instantiated with any one of the

pi’s. Given training examples, by Proposition 3.5.1, the accuracy of every predicate

in S of the form ∧k pi1 . . . pik is upper-bounded by minj∈{i1,...,ik}Bpj
. Knowing this,

one can compute the accuracy and refinement bound of each pi in a preprocessing

step. We can then safely throw away all the predicate rewrites whose body pi has a

refinement bound lower than maxj Apj
since if Bpi

< maxj Apj
, then all conjunctions

involving pi will have accuracy lower than maxj Apj
and therefore not worth investi-

gating. ◭

Example 3.5.3. Consider the following predicate rewrite system

top  setExistsk top . . . top

top  p1 top  p2 . . . top  pn

where each top in the body of the first rewrite can be instantiated with any one of

the pi’s. Define si = setExists1 pi. Given training examples, by Proposition 3.5.1, the

accuracy of every predicate in S of the form setExistsk pi1 . . . pik is upper-bounded

by minj∈{i1,...,ik}Bsj
. This means we can perform predicate rewrite pruning in the

same fashion as in Example 3.5.2 by calculating the accuracy and refinement bound

of each si in a preprocessing step. ◭

Notice that the individual components in the two examples are similar in form;

the components in Example 3.5.2 actually have the form ∧1 pi.

Parallelization of Search Advances in parallel computing are making it possible for

us to tackle problems hitherto unimaginable. In a recent ILP position paper [158], the

authors identified parallelization of search using cheap cluster computers [37] as a

target area for further research. We show here how the flexibility of predicate rewrite

systems can be exploited to parallelize certain kinds of large-scale ‘embarrassingly-

parallel’ search problems.
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The method is best illustrated with an example. Consider again the predicate

rewrite system shown in Example 3.5.2. The size of the search space is O(nk), which

can be very large for non-trivial values of k and n. To search effectively using a cluster

computer, we can partition the search space into many different independent parts by

partially expanding out the first predicate rewrite as follows.

top  ∧k p1 top . . . top

top  ∧k p2 top . . . top

. . .

top  ∧k pn top . . . top

top  p1 . . . top  pn

A master-slave architecture [200] can then be employed to dish out the different sub-

spaces for parallel processing by slave processors. The subspaces are non-overlapping

if we use the LR search algorithm. As defined, the subspaces are not equally big. This

can cause load balancing problems in the sense that a small number of processors

may end up working on a large subset of the space, hence delaying the overall run-

ning time unnecessarily. The solution is to simply create more partitions by further

expansion.

The communication overhead required under this scheme is minimal, and linear

speedup can be expected. This technique was implemented by Wu on Bunyip, a prize-

winning Beowulf cluster 2 to solve the musk problem [63]. For more details, see [31].

3.5.2 The Top-Down Tree-Induction Algorithm

3.5.2.1 Optimization Goal

Occam’s razor stipulates that the simplest, most accurate hypothesis is to be preferred

over more complex ones. The generalization bounds presented in Section 3.4 also

suggest that finding the smallest, most accurate decision tree is intuitively a reason-

able inductive bias. There are contentions, both experimental and theoretical, on the

validity of such claims (see, for example, [17], [150] and [198]), but lacking a better

idea, we will adopt this as the optimization goal.

3.5.2.2 Optimality

We start by stating two well-known negative results. The first, due to [97], states that,

in the propositional setting, the problem of finding the smallest decision tree consis-

tent with a training set, assuming one exists, is NP-complete. Since the propositional

setting is a special case of our general setting, one can conclude that the corresponding

problem for ALKEMY is also computationally hard.

2See http://tux.anu.edu.au/Projects/Beowulf.
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The second observation is that the greedy top-down induction algorithm will not

always return a reasonable classifier even when an accurate one exists in the hypoth-

esis space, a weakness exposed in naked form in this next example.

Example 3.5.4. Consider the target function

parity : {0, 1} × {0, 1} → {0, 1}

parity (t1, t2) = (t1 ∧ t2) ∨ (¬t1 ∧ ¬t2)

that computes the parity of the two input variables. Assume that the hypothesis space

consists of all predicates of the form proj i ◦ (= j) for i ∈ {1, 2} and j ∈ {0, 1}. Given

the complete set of examples

{((1, 1), 1), ((0, 0), 1), ((0, 1), 0), ((1, 0), 0)},

the algorithm will return the default classifier that predicts 1 (or 0) for every individual

because no meaningful first split can be found. This follows from this next fact about

strictly concave functions.

Proposition 3.5.5 ([32]). Let H(p1, . . . , pj) be a strictly concave function where 0 6 pi 6 1

and
∑

i pi = 1. Let E = (E1, . . . , Ej) be a set of examples, where Ei denotes the subset of

E with class label i. Let P = (E1, E2) be a partition of E where both E1 = (E1,1, . . . , E1,j)

and E2 = (E2,1, . . . , E2,j) are non-empty. Denoting by qi = |Ei|/|E|, ri = |E1,i|/|E1|, and

si = |E2,i|/|E2|, the reduction in impurity from the partition P is given by

H(q1, . . . , qj)−
|E1|

|E|
H(r1, . . . , rj)−

|E2|

|E|
H(s1, . . . , sj) > 0

with equality if and only if qi = ri = si for i = 1 . . . j.
◭

The top-down induction algorithm does, however, have the following nice prop-

erty. A training set E free of inconsistently-labelled examples will be classified per-

fectly by the algorithm if the predicate space H is rich enough to split every impure

subset of E (or at least those actually encountered in search) with a strict decrease in

impurity. In fact, ifH is such that significant decreases can be achieved at every stage,

a small accurate tree can be expected. This well-known observation has actually been

formalized in [100]. For the convenience of the reader, we restate the result here. The

paper [61] contains more discussion about it.

The result was established in the PAC setting [193]. However, the authors of [100]

remark that Definition 3.5.6 below can be extended to the case of probabilistic concept

learning [101], and Theorem 3.5.7 continues to hold in that more general setting.

First some notation. Let T be a decision tree. We denote by leaves(T ) the leave

nodes of T . Each l ∈ leaves(T ) has a weight w(l) denoting the probability that a

randomly drawn x reaches l, and a value q(l) denoting the probability that f(x) = 1

given that x reaches l, where f is the target function. The function H(q) is the node
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function TopDown(E , F,N) returns a decision tree;

inputs: E , a set of examples;
F , a class of predicates;
N , a positive integer;

T := single node (with examples E);

for t = 1 to N do

∆best := 0;

for each (l, h) ∈ leaves(T )× F do

∆ := H(T )−H(T (l, h));

if ∆ > ∆best then

∆best := ∆; lt := l; ht := h;

T := T (lt, ht);

return T ;

Figure 3.5: Algorithm TopDown(E , F, N)

impurity function, and the impurity of a tree T is defined by

H(T ) =
∑

l∈leaves(T )

w(l)H(q(l)).

If l is a leaf node of T and h is a predicate, we denote by T (l, h) the tree that is the same

as T except that node l is split using h. Figure 3.5 shows a variant of the top-down

tree induction algorithm used in the analysis.

Definition 3.5.6 ([100]). Let f be any predicate over the input space X. Let F be any

class of predicates over X. Let γ ∈ (0, 1/2]. We say f γ-satisfies the Weak Hypothesis

Assumption (WHA) with respect to F if for any distribution P over X, there exists

h ∈ F such that Px∼P [h(x) 6= f(x)] 6 1/2− γ.

Theorem 3.5.7 ([100]). Let F be any class of predicates, let γ ∈ (0, 1/2], and let f be any

target function that γ-satisfies the WHA with respect to F . Let E be a set of examples, and let

T be the tree output by TopDown(E , F,N). Then for any ǫ, the error of T on E is less than ǫ

provided that

N >

(

1

ǫ

)c/(γ2ǫ2 log(1/ǫ))

if H(q) = 4q(1− q)

for some constant c > 0; or provided that

N >

(

1

ǫ

)c log(1/ǫ)/γ2

if H(q) = −q log(q)− (1− q) log(1− q)
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function Evaluate(p, x) returns the value of (p x);

inputs: p, a predicate;
x, an individual;

if ptable [p][x] 6= undefined then return ptable [p][x];

q := ancestor(p, ptable);

if ptable [q][x] = 0 then ptable[p][x] := 0;

else ptable [p][x] := (p x);

return ptable [p][x];

Figure 3.6: Predicate evaluation algorithm

for some constant c > 0.

In essence, the theorem states that the error on the training set approaches zero as

N increases provided the WHA is satisfied. Two remarks are in order here.

First, the bound on N is independent of the size of E . This means the true error of

the output tree can be bounded using Theorem 3.4.8.

Second, the proof of Theorem 3.5.7 will not go through if the error functionH(q) =

min(q, 1 − q) is used. This is the reason we introduce the use of entropy to break ties

between equally-accurate predicates in ALKEMY. (See §3.2.2.) The original algorithms

presented in [31] and [130] do not have this feature.

It is interesting to see how Definition 3.5.6 captures the conditions given earlier for

the top-down induction algorithm to produce an accurate tree (on the training set).

Note that a partition that satisfies the equality condition in Proposition 3.5.4 will not

raise the accuracy of the original set. Under the WHA, this can never happen because

we assume that the accuracy can always be improved.

Besides the development of Kearns and Mansour, there are other attempts to for-

malize what can be learned with the top-down induction algorithm. One example is

[148]. It would be useful to clarify the relationship between the class of lookahead

functions as defined in [148] and pairs (f, F ) satisfying the weak hypothesis assump-

tion as defined in Definition 3.5.6.

3.5.2.3 Time and Space Complexities

The time complexity of a simple-minded implementation of the top-down induc-

tion algorithm is just the cost of learning a stump multiplied by the number of non-

terminal nodes in the output tree. There is, however, scope for improvements, espe-

cially when the computational cost is dominated by expensive predicate evaluations.

Figure 3.6 gives a table-lookup algorithm to speed up this part of learning. The basic

idea is to keep a record of all (or some) predicate evaluations the first time they are

computed. Subsequent repeat evaluations then involve only a (relatively inexpensive)

table lookup operation.
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The algorithm takes as input a predicate p and an individual x and returns the

value of (p x). The data structure ptable is a #() × |E| table that stores the values

of (p x) for each p and x. It is initialized by setting every entry of top to 1 and every

other entry to undefined . The ancestor function in line 2 finds the closest ancestor of p

in the predicate search space which has at least one defined entry. The third line works

because for all x, (q x) = 0 implies (p x) = 0. This point has earlier been discussed in

§3.5.1.3.

To realize the (conceptual) algorithm, we need to find a way to encode predicates

for efficient indexing in, and retrieval from, ptable . We now give a simple scheme.

Every predicate is encoded using a vector of non-negative integers. The root node

of the search tree is encoded with the 1-dimensional vector [1]. The y-th child q of

a predicate p is encoded with the (n + 1)-dimensional vector [x, y], where [x] is the

n-dimensional vector encoding for p. Under this scheme, checking whether q is a

descendant of p is a simple matter of checking whether the encoding of p is a prefix of

the encoding of q. Predicate indexing in ptable can be done in O(1) time by defining a

bijection from Nn to N, where n is the biggest vector dimension needed to encode the

predicates. (Predicates with smaller encoding vectors are padded with zeros at the

end.)

In practice, the dimension of ptable is a lot smaller than #() × |E| since a large

number of predicates in S will usually be pruned during learning, and these won’t

go into ptable . The insertion of predicates into ptable is also not orderly, a process

determined completely by the search algorithm. For these reasons, ptable is actually

implemented as a hash map in ALKEMY. This way, memory usage can be controlled

easily. Also, with a good hash function, the retrieval time would be close to O(1).

Assuming ptable can fit in memory, it is straightforward to show that every predi-

cate evaluation (p x) is computed at most once by Evaluate throughout learning. This

would in turn imply that the cost of learning decision trees is not much higher than

the cost of learning decision stumps.

The memory requirement of this algorithm is large. One can cut the size of ptable

in half by storing only the smaller subtree induced by each predicate, and pay a small

price for the value lookup operation. Of course, even that can be too big to fit into

physical memory. In that case, one can always impose a limit on the number of predi-

cate entries in ptable . This effectively turns the algorithm into a kind of caching mech-

anism.

A word of caution on the predicate encoding scheme. It works well with the LR

search algorithm, less so with the SeenSet search algorithm. In the latter case, a pred-

icate with multiple paths to it can be recorded multiple times in ptable if it is reached

via different paths at different times. The algorithm would still be correct, but memory

consumption would be unnecessarily large.

The space complexity of learning without the table-lookup algorithm is dominated

by the size of the open list, which is negligible. The space complexity of learning with

the table-lookup algorithm, however, can be massive.
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3.5.3 The Covering Algorithm

3.5.3.1 Optimization Goal

Reasoning as in §3.5.2.1, the goal here is to produce the smallest, most accurate de-

cision list given the training examples. We’ll next see how successfully this can be

achieved.

3.5.3.2 Optimality

Under standard complexity-theoretic assumptions, the problem of finding the small-

est, most accurate decision list is computationally difficult. This is because one can

show that two special cases of the general problem are hard. Specifically, in the propo-

sitional setting,

1. the problem of computing the smallest consistent decision list given a set of

examples, assuming a consistent list exists, is NP-hard (see [169]); and

2. there is no polynomial-time algorithm for the problem of computing the most

accurate decision list given a set of (potentially noisy) examples unless P=NP

(see §3.6.4.2).

With these in mind, we now state some properties of the Cover algorithm pre-

sented in §3.2.3. We consider two cases corresponding to the misclassification cost

parameter K having infinite and finite values. First some basic definitions.

We’ll adopt the notation and terminology introduced in §3.2.3. Unless indicated

otherwise, all decision lists referred to below are complete decision lists.

Definition 3.5.8. Given a set E of training examples and a decision list L, we say L is

properly labelled with respect to E if every node t in L is labelled with the majority class

of the subset of examples from E falling in t. (Ties are broken arbitrarily.)

Definition 3.5.9. Given training examples E , the accuracy Acc(L, E) of a decision list

L on E is defined to be the number of examples in E correctly classified by L.

Definition 3.5.10. Given a set E of training examples and a decision list L, we define

the covered examples of L, denoted cov(L, E), as the examples falling in the non-default

node(s) of L. Likewise, we define the default examples of L, denoted default(L, E), as

the examples falling in the default node of L.

Definition 3.5.11. Let L1 = (p1, v1), . . . , (pm, vm) and L2 = (q1, l1), . . . , (qn, ln) be two

complete decision lists. We define the extension of L1 by L2, denoted L1 + L2, by

L1 + L2 = (p1, v1), . . . , (pm−1, vm−1), (q1, l1), . . . , (qn, ln).

Class 1 Decision Lists

We now investigate properties of Cover when the misclassification cost K is ∞. In

the following, we assume that all decision lists have node functions in some set H of

predicates.



76 Classification

Definition 3.5.12. Given a set E of training examples, a properly labelled decision list

is called a Class 1 decision list with respect to E if the subset of examples covered by

each node, except perhaps the default node, is pure.

Definition 3.5.13. Given training examples E , we say a Class 1 decision list L with

respect to E is maximal if no predicate in H (the class of node functions) covers a non-

empty pure strict subset of default(L, E).

Definition 3.5.14. Given training examples E , we say a Class 1 decision list L is optimal

on E if no other Class 1 decision list has accuracy higher than L on E .

Decision lists returned by Cover when K =∞ are, by definition, maximal Class 1

decision lists. We now show that these lists are, in fact, also optimal.

First, a simple lemma.

Proposition 3.5.15. Let L1 and L2 be two Class 1 decision lists. Given training examples E ,

we have

Acc(L1 + L2, E) > Acc(L2, E).

Proof. Let X0 and X ′
0 be the number of examples labelled 0 in default(L2, E) and

default(L1 + L2, E), respectively. Similarly, let X1 and X ′
1 be the number of exam-

ples labelled 1 in default(L2, E) and default(L1 + L2, E). Further, let i be the index of

the majority class in default(L2, E). We have the following.

Acc(L2, E) = |cov(L2, E)|+Xi (3.10)

Acc(L1 + L2, E) = |cov (L2, E)| + (X0 −X
′
0) + (X1 −X

′
1) +X ′

i (3.11)

To see (3.11), observe that every example in cov(L2, E) must fall into cov(L1 + L2, E);

also, some examples in default(L2, E) can fall into cov(L1, E). Given that X0 > X ′
0 and

X1 > X ′
1, it’s easy to verify that Acc(L1 + L2, E)−Acc(L2, E) > 0.

Let E be a set of training examples, and T an optimal Class 1 decision list on E .

After every iteration in the processing of E using Cover , T remains optimal on the

still uncovered examples R. This is true independently of the way predicates are

chosen at every step. To see this, let D be the decision list under construction. If

there is a Class 1 decision list T ′ satisfying Acc(T ′, R) > Acc(T,R), then we will have

Acc(D : T ′, E) > Acc(D : T, E) = Acc(T, E), contradicting the optimality of T .

Proposition 3.5.16. Let E be a set of training examples and L a Class 1 decision list with

respect to E . If L is maximal, then L is optimal on E .

Proof. LetD be an arbitrary Class 1 decision list with respect to E . Since L is maximal,

we have Acc(L, E) > Acc(L +D, E) > Acc(D, E) by Proposition 3.5.15.

The converse is not true, of course – there are optimal Class 1 decision lists that are

not maximal. This is clear since splitting a node that is already pure does not increase

the accuracy.
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Proposition 3.5.17. Given training examples E , the decision list L returned by Cover when

K =∞ is an optimal Class 1 decision list on E .

Proof. Cover ensures thatL is a maximal Class 1 decision list. The optimality of L then

follows from Proposition 3.5.16.

Rivest shows in [169, §5.2] that the covering algorithm will always find a consistent

(100% accuracy) decision list assuming one exists. Proposition 3.5.17 is, in essence, a

simple generalization of that result, since a consistent decision list is clearly a Class 1

decision list with respect to the training examples.

One can state a more informative result.

Proposition 3.5.18. Let E be a set of training examples, and let L1 and L2 be two maximal

Class 1 decision lists with respect to E . Then cov(L1, E) = cov(L2, E).

Proof. Since L1 is maximal, we have cov(L2, E) ⊆ cov(L1, E). A similar reasoning

gives cov(L1, E) ⊆ cov(L2, E).

In other words, all maximal (hence optimal) Class 1 decision lists cover exactly

the same set of examples. This implies that the only difference two distinct predicate

selection rules can make is in the length of the output decision lists, nothing else.

This begs the obvious question: how good is the greedy strategy? The next exam-

ple shows that it can be very bad.

Example 3.5.19. Suppose we have training examples

E = {(x1, 0), (x2, 1), (x3, 1), . . . , (xk, 1), (xk+1, 1)}.

Suppose also that the predicate space is {q, p1, p2, . . . , pk}, where cov(pi, E) = {(xi, vi)}

and cov (q, E) = {(x1, 0), (x2, 1), . . . , (xk, 1)}. For large k, the list (p1, 0), (q, 1), (top , 0)

is clearly the smallest optimal Class 1 decision list. But Cover can get very unlucky

and pick the ‘wrong’ predicate at each step and end up with the list

(p2, 1), (p3, 1), . . . , (pk, 1), (q, 0), (top , 1),

whose size is of the order of |E|. ◭

Doing an m-step lookahead, that is, growing the list m nodes at a time doesn’t help.

The same construction, with q covering m 0-labelled examples in addition to k − m

1-labelled examples, shows that a big list whose size is of the order of |E| can again be

generated.

In summary, Cover can find an accurate Class 1 decision list assuming one exists,

but no guarantee on the size of the returned list can be given without further condi-

tions on the training examples and the predicate space.

Remark. Example 3.5.19 answers an (unstated) question in [184]. The algorithm pro-

posed in that paper constructs decision lists using data-dependent features generated

from the training examples. Sample compression bounds [125] for these lists can be
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established and the size of the list is a parameter in these bounds. The size of classi-

fiers can be bounded for the related set-covering machine [135], but it wasn’t known

whether the size of decision lists generated by the algorithm in [184] can be bounded.

Example 3.5.19 shows that this can’t be done.

Class 2 Decision Lists

We now examine properties of Cover when K is finite.

Definition 3.5.20. Given a set E of training examples, a properly labelled decision list

is called a Class 2 decision list with respect to E if it is not a Class 1 decision list with

respect to E .

One hopes that a similar optimality result like Proposition 3.5.17 holds, but it is

easy to see that this is not true.

Example 3.5.21. SupposeK = 0.5, and that

E = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 0), (x6, 0), (x7, 0)}.

Suppose further that the predicate space contains only two predicates p and q, and

cov (p, E) = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 0), (x6, 0)};

cov (q, E) = {(x5, 0), (x6, 0)}.

Cover will return the list L = (p, 1), (top , 0) with accuracy 5, but the optimal list is

Lopt = (q, 0), (p, 1), (top , 0) with accuracy 7. This construction can be adapted for

arbitrary K values. ◭

In practice, we seldom need the most accurate decision list; often a reasonably ac-

curate decision list is quite sufficient. There are experimental evidence in [135] show-

ing that Cover is good at finding high-accuracy hypotheses when K is finite.

3.5.3.3 Time and Space Complexities

Decision-list learning and decision-tree learning have similar time and space com-

plexities and all the comments in §3.5.2.3 apply here. The main difference between

the two algorithms is in the pruning mechanism. In general, one can expect prun-

ing to be less effective in decision-list learning; somehow, covering a big largely-pure

subset of examples seems harder than getting a high-accuracy partition.

3.6 PAC Learnability

In this section, we bring together results presented so far in this chapter to make some

formal learnability statements in the PAC [193] and agnostic PAC [92] learning mod-

els. We are primarily interested in establishing whether the stump-, list- and tree-

learning algorithms presented in Section 3.2 qualify as effective and efficient learning

algorithms in the formal models.
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We start with a reminder of some basic concepts in §3.6.1. Conditions for the gener-

ation of polynomially-computable predicates, a requirement for efficient learnability,

are given in §3.6.2. We address the PAC-ness of the stump-, list-, and tree-learning

algorithms in §3.6.3. Similar analyses in the agnostic PAC setting are given in §3.6.4.

3.6.1 PAC Learning

LetX be the set of individuals andH a set of predicates over X. A learning algorithm

L is said to be a probably approximately correct (PAC) learning algorithm forH if it satisfies

the following: given any ǫ, δ ∈ (0, 1), there is an integer m(ǫ, δ) such that for all m >

m(ǫ, δ), for any t ∈ H and any probability distribution µ on X, with probability at

least 1− δ, given a sample of size m drawn independently according to µ and labelled

with t, the error of the function h ∈ H output by L with respect to t and µ defined by

erµ(h, t) = µ{x ∈ X : h(x) 6= (t x)}

is less than ǫ. The number m(ǫ, δ) is called the sample complexity of learning H.

The algorithm L is said to be an efficient PAC learning algorithm if, in addition to the

above, it runs in time polynomial in 1/ǫ, 1/δ, the size of the encoding of instances in

X, and the size size(t) of the encoding of the target function t. In the following, for

finite function classesH, we shall assume that size(t) = log |H| for all t ∈ H.

The emphasis in PAC analysis has always been on efficient learnability. This is

because the class of all predicates over a finite domain X, which is what we have on

digital computers, being finite, has a PAC learning algorithm.

Theorem 3.6.1 ([29]). LetH be a finite set of predicates overX. LetL be a consistent learning

algorithm for H in the sense that given any sample (x1, . . . , xm) ∈ Xm labelled by some

t ∈ H, L will output a hypothesis h ∈ H satisfying h(xi) = t(xi) for i = 1, . . . ,m. Then L

is a PAC learning algorithm for H with sample complexity

m(ǫ, δ) 6
1

ǫ
ln

(

|H|

δ

)

.

In the PAC setting, the important question is thus not whether one can learn, but

whether one can learn quickly and economically.

Remark. For learning to be possible, finiteness of H can be replaced with finiteness

of the VC dimension of H. Our decision to stick with finite predicate classes here is

partly motivated by the results in §3.4.3, where we show that in the rich language

setting of ALKEMY, the VC dimension of predicate classes is usually not too much

lower than the simple upper bound given by the logarithm of the size of the predicate

class.

3.6.2 Generating Efficiently-Computable Predicates

As pointed out in [46], polynomial computability of concept classes is a prerequisite

for efficient PAC learning. In fact, it is defined as part of the condition for efficient
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PAC learnability in [103]. This is justifiable. In [177], it is shown that if a predicate

class H contains concepts that cannot be evaluated in polynomial time, then under

reasonable complexity-theoretic assumptions, there cannot exists efficient PAC learn-

ing algorithms forH.

We now give a sufficient condition on predicate rewrite systems that will ensure

the production of only polynomially-computable predicates. Predicate classes defined

on such restricted rewrite systems can then be shown to contain only predicates that

can be efficiently evaluated.

In the following, the concept of an algorithm is assumed to be realized by some

standard model of computation like Turing machines. Also assumed is an appropriate

encoding scheme for the set of individuals X, together with a function for computing

the size of the encoding of every x ∈ X, denoted |x|.

Definition 3.6.2. A function r : α → σ is said to be polynomial-time computable if there

exists an algorithm A that computes r and a polynomial p(n) such that the number of

steps required by A to compute (r x) for any input x : α is at most p(|x|).

The following is a standard result in computability theory. See, for instance, [55].

Proposition 3.6.3. Let f : α → σ and g : σ → φ be polynomial-time computable functions.

Then the function f ◦ g is polynomial-time computable.

Definition 3.6.4. A transformation f having a signature of the form

f : (̺1 → Ω)→ · · · → (̺k → Ω)→ α→ σ

is said to be polynomial-time computable qua transformation if f p1 . . . pk is polynomial-

time computable given that each pi, 1 6 i 6 k, is polynomial-time computable.

Proposition 3.6.5. Let T be a set of transformations, and let ST be the set of all standard

predicates that can be formed using transformations in T . If every f ∈ T is polynomial-time

computable qua transformation, then every p ∈ ST composed of a finite number of transfor-

mations is polynomial-time computable.

Proof. The proof is by induction on the number of transformations in p. Suppose the

result holds for standard predicates that have< m transformations and p hasm trans-

formations. By definition, p has the form (f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

). By

the inductive hypothesis, each pi,j , 1 6 i 6 n, 1 6 j 6 ki, is polynomial-time com-

putable. Since each fi, 1 6 i 6 n, is polynomial-time computable qua transformation,

it follows that each fi pi,1 . . . pi,ki
, 1 6 i 6 n, is polynomial-time computable. By

Proposition 3.6.3, compositions of polynomial-time computable functions yield an-

other polynomial-time computable function.

A corollary of Proposition 3.6.5 gives the desired condition. In defining a predicate

rewrite system , if we restrict ourselves to transformations that are polynomial-

time computable qua transformation, then we can be assured that every p ∈ S is

polynomial-time computable since S ⊆ ST and all the predicates we will ever con-

struct have a finite number of transformations in them.
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Given a predicate rewrite system  composed entirely of transformations that

satisfy Definition 3.6.4, it is easy to see that k-DL() and j/k-DT(), the two predi-

cate classes we actually use in ALKEMY, contain only concepts that can be evaluated

in polynomial time. Computationally, the hardest predicates in k-DL() are the deci-

sion lists that are made up of all possible predicates in S, located in different internal

nodes. Given that ∧k and ¬ are both polynomially-computable qua transformation,

in the worst case, an individual x that evaluates to false for all predicates in the list

will take time O
(

(#()
k

)

|x|r
)

= O((#())k|x|r) for some constant r. This is clearly a

polynomial in |x|. A similar argument shows that the hardest functions in j/k-DT()

take time O(j|x|s) = O(|x|s) for some constant s.

How restrictive is the condition? Most natural transformations can be computed

efficiently in the sense of Definition 3.6.4; this is true of even seemingly complex trans-

formations. We give two examples here.

Example 3.6.6. Consider the transformation

(subgraphs k) : Graph v ǫ→ {Graph v ǫ}

that returns the set of all connected subgraphs of size k in a given graph. To see that

(subgraphs k) is polynomial-time computable qua transformation, observe that the

number of connected subgraphs of size k in a graph G containing m vertices is at

most
(

m
k

)

, which is the number of connected subgraphs of size k in a complete graph

with m vertices. A simple algorithm that first generates all
(

m
k

)

= O(mk) (possibly

disconnected) subgraphs of size k and then proceeds to pick out the connected ones

is clearly a polynomial-time algorithm, since checking the connectivity of a graph is a

polynomial-time operation. ◭

Example 3.6.7. Consider next the transformation setExistsn introduced in Section 2.5.

An algorithm for setExistsn works as follows: Given a set x, first compute Si, the

subset of x satisfying pi for each i ∈ {1, . . . , n}. If any of the Si’s is empty, return false.

If each Si has size greater than or equal to n, return true. Otherwise, try to form a set

of size n by taking an element from each Si. Return true if such a set can be found.

Return false otherwise. The first step can be computed in time polynomial in |x| if

each pi is polynomial-time computable. The second step of checking the existence of

a desired subset of x satisfying the definition can be done, in the worst case scenario,

by enumerating all n-tuples that can be formed by taking an element from each Si.

This step requires nn = O(1) time. (Note that n is not an input to setExistsn, and nn

is really a constant.) This completes the argument that setExistsn is polynomial-time

computable qua transformation. ◭

In principle, one can write down transformations that are believed not to have

polynomial-time algorithms, for example by coding well-known NP-hard problems in

transformations; in practice, however, such computationally-difficult transformations

are seldom, if ever, needed.
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3.6.3 PAC Learnability of Stumps, Lists, and Trees

3.6.3.1 Stump Learning

Proposition 3.6.8. Let X be the set of individuals and  a predicate rewrite system. The

stump algorithm is a PAC learning algorithm for 1/1-DT() with sample complexity

m(ǫ, δ) 6
1

ǫ
ln

(

2#()

δ

)

.

Proof. This is a restatement of Theorem 3.6.1. The stump algorithm is clearly a consis-

tent learning algorithm. Further, |1/1-DT()| 6 2#(). Note here that 1/1-DT()

is the number of distinct predicates representable as a stump, not the number of syn-

tactically distinct stumps.

However, the stump algorithm is not an efficient PAC learning algorithm for the

class 1/1-DT(). As we saw in §3.5.1.3, the time complexity of the algorithm is a

function of #() in the worst case. For it to qualify as an efficient PAC algorithm, the

running time must be bounded by a polynomial in size(t) 6 log 2#(). This is not at

all surprising; one cannot expect an exhaustive search algorithm to be computation-

ally efficient.

In principle, the class of predicates learnable with stumps is a significant class of

functions since the predicate rewrite system can be made arbitrarily complex. Many

results in Section 3.3, together with some of the optimization techniques presented in

Section 3.5, can be used to guide the process of crafting predicate rewrite systems for

learning using the stump algorithm.

3.6.3.2 List Learning

We next analyse the Cover algorithm (Figure 3.4).

Proposition 3.6.9 ([169]). Let (X,) be a basic hypothesis language. Then

ln |k-DL()| = O(#()t)

for some constant t that is a function of k.

Proof. |k-DL()| is clearly upper-bounded by the number of syntactically-distinct de-

cision lists that can be formed. There are C =
∑k

i=1

(2#()
i

)

distinct conjunctions of

at most k predicates from S ∪ Sneg
. These can be ordered in C! ways, and each

conjunction can either be missing, labelled 0, or labelled 1. The number |k-DL()| is

thus upper-bounded by O(3CC!). Taking logs, we get ln(|k-DL()|) = O(#()t) for

some constant t.

Proposition 3.6.10 ([169]). LetX be the set of individuals and  a predicate rewrite system.

The algorithm Cover with K = ∞ is a PAC learning algorithm for k-DL() with sample
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complexity

m(ǫ, δ) 6
1

ǫ
(O(#()t) + ln

1

δ
).

Proof. This follows from Theorem 3.6.1, Proposition 3.5.17, and Proposition 3.6.9.

Proposition 3.6.9 gives us the number of distinct representations of functions in

k-DL(). If we use a (suboptimal) coding scheme based on the number of dis-

tinct representations in k-DL() (as opposed to the number of distinct functions in

k-DL()), which we may have to do since the equivalence of two decision lists can-

not be decided in polynomial time unless P=NP (see [89]), then we may assume that

for all t ∈ k-DL(), size(t) is a polynomial in #(). Under this assumption, if the

predicate rewrite system  is made up of only transformations that satisfy Definition

3.6.4 and that the sample complexity of learning k-DL() is a polynomial in the size

of the encoding of instances in X, then Cover with K = ∞ is in fact an efficient PAC

learning algorithm for k-DL() since it runs in time polynomial in #() andm(ǫ, δ).

Given (X,), k-DL() is one of the largest subset of BF(X,) for which an

efficient PAC learning algorithm exists. As indicated in Section 3.3, many predicate

classes, some of which are defined independently of decision lists, have been shown to

be a subset of k-DL(), and therefore efficiently learnable using the Cover algorithm

with appropriate enrichment of .

3.6.3.3 Tree Learning

Example 3.5.4 shows that the top-down induction algorithm cannot be a PAC learning

algorithm for j/k-DT(). It turns out that this algorithm can be analysed in the weak

learning framework. Under the weak hypothesis assumption (see Definition 3.5.6),

Theorem 3.5.7 shows that the algorithm can construct a decision tree with arbitrarily

low error on the training examples, and this is sufficient to guarantee PAC learnabil-

ity. This development is sketched in §3.5.2.2; the reader is referred to [100] for more

details.

Another relevant piece of work on PAC-learnability of decision trees is [34].

3.6.4 Agnostic PAC Learning

We now consider the learnability of Alkemic function classes in the more realistic

agnostic PAC setting [92]. In the agnostic PAC setting, we do not presuppose the

existence of a target function but assume that examples are generated independently

according to an unknown probability distribution P onX×{0, 1}. The aim of learning

is similar, but instead of trying to find a function in the predicate spaceH that approx-

imates the target function arbitrarily well, we seek a function in H that is arbitrarily

close to the function t∗ ∈ H that has the smallest true error with respect to P .

The correct (and, in fact, only) strategy in the agnostic PAC setting is simple: find

the h ∈ H that achieves the lowest empirical error on the training examples. (See, for

details, [3, Chap. 23] or [92].) An algorithm that can achieve this goal for a predicate



84 Classification

class H is called an agnostic PAC learning algorithm for H. If, in addition, the algo-

rithm runs in time polynomial in the usual key parameters, then it is said to be an

efficient agnostic PAC learning algorithm forH.

3.6.4.1 Stumps

The stump algorithm conducts an exhaustive search of the predicate space and finds

the one with the lowest empirical error. It is therefore an agnostic PAC learning algo-

rithm. However, it is not an efficient agnostic PAC learning algorithm.

3.6.4.2 Lists

We have seen that the Cover algorithm is not particularly effective at achieving the

goal of finding the decision list with the smallest empirical error given a set of train-

ing examples. In fact, this is to be expected since one can show that the problem of

agnostic PAC learning k-DL() is computationally hard. This is because we can show

that there is no efficient algorithm for the corresponding problem in the propositional

setting, which is a special case of the general problem, unless P=NP.

The argument is an adaptation of the proof for [3, Thm 24.2]. Consider the follow-

ing two decision problems.

1. VERTEX-COVER

Instance: A graph G = (V,E) and an integer k 6 |V |.

Question: Is there a vertex cover U ⊆ V such that |U | 6 k?

2. DL-FIT

Instance: z ∈ ({0, 1}n × {0, 1})m and an integer k between 1 and m.

Question: Is there h ∈ 1-DL(n) such that êr(h, z) 6 k/m?

In the definition of DL-FIT, 1-DL(n) is the class of decision lists (see the beginning of

§3.2.3) over {0, 1}n with node functions in H = {top} ∪ {hi,j : 1 6 i 6 n, j ∈ {0, 1}}

where each hi,j : {0, 1}n → {0, 1} is defined by

hi,j(x) =

{

1 if xi = j

0 otherwise.

Further, êr(h, z) is defined to be |{(x, y) ∈ z : h(x) 6= y}|/m, in other words, the

number of errors h makes on the set z of examples.

It is known that VERTEX-COVER is NP-hard [81]. We now show that given an

instance of VERTEX-COVER, we can construct (in polynomial time) an instance of DL-

FIT (of a size polynomially related to that of the instance of VERTEX-COVER) in such a

way that the answer to the constructed DL-FIT problem is the same as the answer to

the original VERTEX-COVER problem.

Consider an instance G = (V,E) of VERTEX-COVER where |V | = n and |E| = r.

We assume that each vertex in V is labelled with a number from {1, 2, . . . , n} and we

denote by ij an edge in E connecting vertex i and vertex j. The size of the instance is
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Ω(r+n). We construct z(G) ∈ ({0, 1}n×{0, 1})r+n as follows. For any two integers i, j

between 1 and n, let ei,j denote the binary vector of length n with ones in positions i

and j and zeroes everywhere else. The sample z(G) consists of the labelled examples

(ei,i, 1) for i = 1, 2, . . . , n and, for each edge ij ∈ E, the labelled example (ei,j , 0). The

size of z is (r+n)(n+1), which is polynomial in the size of the original VERTEX-COVER

instance.

Example 3.6.11. Consider the graph G = {{1, 2, 3, 4}, {11, 12, 13, 14, 23, 33}}. Then

z(G) = {(1000, 1), (0100, 1), (0010, 1), (0001, 1),

(1000, 0), (0010, 0), (1100, 0), (1010, 0), (1001, 0), (0110, 0)}.

Proposition 3.6.12. Given any graphG = (V,E) with n vertices and r edges and any integer

k 6 n, let z(G) be as defined above. Then there is h ∈ 1-DL(n) such that êr(h, z(G)) 6

k/(n + r) if and only if there is a vertex cover of G of cardinality at most k.

The proof of Proposition 3.6.12 makes use of the following result.

Proposition 3.6.13 ([2]). 1-DL(n) ⊆ LT (n).

Here, LT (n) is the class of linear threshold functions over {0, 1}n. Formally, LT (n) is

the set of of all functions from {0, 1}n to {0, 1} that can be represented in the form

f(x) = sgn

( n
∑

i=1

wixi − b

)

where wi, b ∈ R and sgn(x) evaluates to 1 if x ≥ 0, and 0 otherwise.

Proof. (of Proposition 3.6.12)

(→) Suppose there is such an h ∈ 1-DL(n). By Proposition 3.6.13, there is an h′ ∈

LT (n) that is equivalent to h. We represent h′ by its weights w = (w1, w2, . . . , wn, b).

We construct a subset U of V as follows.

1. For each (ei,i, y) ∈ z(G), if h′(ei,i) = 0, then include i in U .

2. For each (ei,j , 0) ∈ z(G), i 6= j, if h′(ei,j) = 1, then include either one of i, j in U .

The set U so-constructed contains at most k vertices since êr(h′, z(G)) = êr(h, z(G)) 6

k/(n + r). We now show that U is a vertex cover for G. Consider an arbitrary edge

ij in E. If either h′(ei,i) = 0 or h′(ej,j) = 0 then we’re done. Suppose not, that is,

h′(ei,i) = h′(ej,j) = 1. Then we may deduce that

wi > b and wj > b.

This implies that h′(ei,j) = 1. Because of the way U is constructed, it follows that at

least one of the vertices i, j is in U . Since ij is an arbitrary edge, we conclude that U is

indeed a vertex cover.
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(←) Suppose U = {i1, . . . , i|U |} ⊆ V is a vertex cover of G and |U | 6 k. We define

h ∈ 1-DL(n) to be

h = (hi1,1, 0), . . . , (hi|U|,1, 0), (top , 1).

We claim that êr(h, z(G)) 6 k/(n + r). Observe that if ij ∈ E, then since U is a vertex

cover, one of i, j belongs to U and thus h(ei,j) = 0. This means that all the examples

in z(G) arising from the edges of G are correctly classified. Consider now examples

in z(G) of the form (ei,i, 1). We have h(ei,i) = 0 if i ∈ U and h(ei,i) = 1 otherwise. It

follows that

êr(h, z(G)) =
|U |

n+ r
6

k

n+ r
.

Given that z(G) can be computed from G in time polynomial in the size of G, we

have therefore established the following.

Proposition 3.6.14. DL-FIT is NP-hard.

Now, if there is an algorithm that, given a set E of examples, computes in polyno-

mial time arg minh∈1-DL(n) êr(h, E), then it can be used to solve DL-FIT in polynomial

time. By Proposition 3.6.14, such an algorithm cannot exists unless P=NP.

3.6.4.3 Trees

The efficient learnability of decision trees remains one of the longest-standing open

problems in computational learning theory; see [99]. We will give some relevant ref-

erences here.

There are hardness results on the problem of computing the smallest decision trees

given training examples; see [97] and [54]. It is not known whether the problem of

computing the most accurate decision tree given a set of training examples is hard.

An efficient agnostic PAC learning algorithm is given in [10] for small (depth-two)

decision trees. The algorithm given in the paper conducts an exhaustive search of the

tree space in a clever way.

3.6.5 Learning In Practice

This is all very fine in theory but almost worthless in practice.

Donald Knuth [112]

The study of PAC and agnostic PAC learnability has yielded mostly negative re-

sults. This is hardly surprising given the stringent definition of what qualifies as suc-

cessful learning. Information-theoretically, a lot of examples may be needed for valid

generalization under arbitrary distribution. Computationally, the implied strategy of

finding the function with the lowest empirical error is hard for most non-trivial func-

tion classes.
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In practice, we seldom need to find the best possible hypothesis. The normal sce-

nario is that we are given a set of training examples and required to come up with

one reasonably-accurate hypothesis (not necessarily the best one). To accomplish our

task, we have at our discretion the choice of the hypothesis language, the function

class, and the learning algorithm. The tools we actually need are:

1. error bounds that are tight and easily computable;

2. principled model selection strategies; and

3. a good understanding of phenomena surrounding small-sample learning.

Significant progress has been achieved in all three areas, although much more work

needs to be done for the techniques and tools developed to be widely-applicable. For

advances in error bounds, see [14], [119] and [120]. For studies in model selection, see

[102] and [13]. For work on small-sample learning, see [36] and [113].

3.7 Related Work

On the learning setting By design, learning in our higher-order logic setting can be

readily understood as a direct generalization of attribute-value learning. As shown

throughout the chapter, this similarity in nature between the two allows many results

and algorithms in propositional learning to be immediately applicable in our setting.

In that sense, learning in higher-order logic is closely related to the learning from inter-

pretations [59] setting in ILP. In both frameworks, there is a clear separation between

descriptions of different individuals. (In the more standard learning from entailment

[144] setting, training data and background knowledge are all lumped together in one

logic program.) This separation of information admits simpler analysis and, more im-

portantly, makes tractable learning possible. (Compare the positive result of [59] with

the negative PAC-learning results for the learning from entailment setting. See also

[23, §4.7] and [57].) In the learning from interpretations setting, there is a price in sep-

arating examples from one another in that recursive predicates cannot be learned. In

the higher-order setting, this limitation can be overcome by introducing into the hy-

pothesis language higher-order functions like foldr that package up recursion into

convenient forms.

On structural decision tree learning There are quite a few decision-tree systems that

learn from structured data of one form or another. These include KATE [133], RIPPER

[45], STRUCT [196], S-CART [118], TILDE ([24], [23]), TRITOP and its predecessor IN-

DIGO ([85], [84]), and the LINUS/DINUS [122] family of learners.

KATE is probably the first decision-tree system that learns from structured data. It

uses a frame-based language that is equivalent to first-order predicate calculus.

RIPPER works with an attribute-value language that is extended with set-valued

features. The language used is a strict subset of the language of ALKEMY.

The underlying language for TILDE and S-CART is Prolog. In that setting, training

examples, background knowledge, and the tree induced are all logic programs. Vari-
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ables are shared across decision nodes down true branches in trees induced by these

two systems. For that reason, the search space can change from node to node.

ALKEMY is closest in nature to the class of algorithms that learn from proposi-

tionalized knowledge. Such systems include TRITOP and the LINUS/DINUS family of

learners. For more information on propositionalization approaches to structure learn-

ing, see [117], [116] and [115].

On sample complexity bounds Lower bounds on the number of examples required

for learning have been studied in ILP. See [8], [104] and [7]. The results presented

in §3.4.3 are closely related to these work. The fact that the same general conclu-

sion was obtained from the analyses of two very different knowledge representation

formalisms tells us something about the sample complexity of learning with rich ex-

pressive languages in general.

On PAC-learnability There is a body of work on the PAC-learnability (and non-

PAC-learnability) of different classes of first-order logic programs. (Not much work

has been done in the more general agnostic PAC setting, however.) Positive results

are usually obtained by analyzing concrete algorithms for variously-restricted classes

of logic programs. Negative results, in turn, are usually shown by reducing known

difficult problems like 3-SAT and the PAC-predictability of boolean formulae in dis-

junctive normal form to different aspects of learning syntactically-restricted logic pro-

grams. See, for a survey, [145], [70], [105], [43], [44], [96] and [6]. All these analyses

have a strong syntactic flavour to them, and the arguments are usually intimately and

intricately linked to the computational model of first-order logic programming. It is

not clear whether these results, which reflect the nature of learning with a first-order

language like Prolog, reflect the nature of learning with rich expressive languages in

general. Results presented in Section 3.6 represent a useful step in our attempt to

understand the learnability of predicate classes in a higher-order logic that uses equa-

tional reasoning as its basic computational model. We hope this kind of analysis, with

more development and subsequent comparison with results in ILP, will lead to better

understanding of the nature of learning with rich expressive languages in general.

Miscellaneous The separation of work in supervised learning into issues of approx-

imation, estimation and computation is popular in learning theory. See, for example,

[11] and [3, §1.1]



Chapter 4

Regression

4.1 Introduction

Besides (binary) classification, regression is another fundamental task in supervised

machine learning, with wide-ranging applications. Extending ALKEMY to do regres-

sion is the subject matter of this chapter.

The basic learning problem is simple to state: Given training examples

((x1, y1), (x2, y2), . . . , (xm, ym)) ∈ (X,R)m

whereX is the individual space, find a function f̂ : X → R (in the form of a regression

tree) that approximates the underlying function f(x) = E(y|x) as well as possible.

The learning algorithms are presented in Section 4.2. Generalization issues are

then discussed in Section 4.3. This chapter is considerably shorter than Chapter 3.

This is partly because many of the approximation and optimization results presented

in Chapter 3 carry over with little change to the regression setting and they are not

repeated here.

4.2 Learning Algorithms

Two algorithms are presented, the first a special case of the second. We start with the

simpler problem of learning regression stumps in §4.2.1. Regression-tree learning is

then presented in §4.2.2 as a recursive algorithm built around the stump algorithm.

The basic learning procedure is standard (see, for example, CART [32]) and we claim

no originality in that part. The main contribution here is the derivation of a predicate

search space pruning result in §4.2.1.2.

4.2.1 Learning Stumps

We now present an algorithm that takes as input

1. a training set z ∈ (X × R)m of arbitrary size m,

2. a predicate rewrite system  defining predicates over X,

89
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and produces as output a hypothesis f : X → R of the form

f(x) = if (p x) then c1 else c2 (4.1)

where p ∈ S, and c1, c2 ∈ R. Such a rule is called a regression stump.

Given training examples E , informally, the aim is to partition E into two clusters

E1 and E2 such that the distances between individuals in different clusters are big, and

the distances between individuals in the same cluster are small. This notion is made

precise in §4.2.1.1. We then give a search space pruning result in §4.2.1.2. Putting the

pieces together gives us the learning algorithm in §4.2.1.3.

4.2.1.1 Predicate Selection

Given training examples E and a predicate rewrite system , each predicate p in S

partitions E into two subsets:

E1 = {(x, y) ∈ E | (p x)} and

E2 = {(x, y) ∈ E | ¬(p x)}.

In coming up with a predicate selection rule, we need to know the regression function

fp associated with p. It has the general form given in (4.1), but what values should c1

and c2 take? In other words, how should E1 and E2 be labelled?

A convenient loss function in the regression setting is the quadratic loss. Adopting

it here, the loss of fp on E can be written as

∑

(x,y)∈E1

(y − c1)
2 +

∑

(x,y)∈E2

(y − c2)
2.

The expression is minimized when c1 and c2 are equal to the averages of the regression

values in E1 and E2, and this implies that E1 and E2 should be labelled as such.

Definition 4.2.1. Given a set of examples E , we define the squared error EE of E by

EE = min
c

∑

(x,y)∈E

(y − c)2.

Definition 4.2.2. Let E be a set of examples, p a predicate, and P = (E1, E2) the parti-

tion of E induced by p. We define the squared error Qp of p by

Qp = QP = EE1
+ EE2

=
∑

(x,y)∈E

(fp(x)− y)
2

Given a predicate rewrite system  and a set of examples E , the goal is thus to

find a predicate in S that minimizes Q. As pointed out in [3, §16.1], this formulation

is well-founded since one can show that

E(f(x)− y)2 = E(E(y|x)− f(x))2 + E(E(y|x)− y)2,
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which implies that choosing a function f to minimize Q is equivalent to finding the

best approximation of the conditional expectation of y given x. See, for more details,

[32, §8.3] and [20, Chap. 7].

Before proceeding, we state here some simple properties of Q and E.

Proposition 4.2.3. Let P = (E1, E2) be a partition of a set E of examples. Then EE > QP .

Proof. We have

EE =
∑

E1

(y − ȳ)2 +
∑

E2

(y − ȳ)2 >
∑

E1

(y − ȳ1)
2 +

∑

E2

(y − ȳ2)
2 = QP

where ȳ, ȳ1 and ȳ2 are the empirical means of the regression values in E , E1 and E2.

Proposition 4.2.4. Let E1 and E2 be sets of examples. Let p be a predicate and Pp(E1) and

Pp(E2) the partitions of E1 and E2 induced by p.

1. If E1 ⊆ E2, then EE1
6 EE2

.

2. If E1 ⊆ E2, then QPp(E1) 6 QPp(E2).

Proof.

1. Let ȳ1, ȳ2 be the empirical means of the regression values in E1 and E2. Then

EE2
=

∑

(x,y)∈E2

(y − ȳ2)
2

=
∑

(x,y)∈E1

(y − ȳ2)
2 +

∑

(x,y)∈E2\E1

(y − ȳ2)
2

>
∑

(x,y)∈E1

(y − ȳ1)
2 +

∑

(x,y)∈E2\E1

(y − ȳ2)
2 > EE1

.

2. Let Pp(E1) = (E11, E12) and Pp(E2) = (E21, E22). Clearly, E11 ⊆ E21 and E12 ⊆ E22.

The result then follows by Part (1).

4.2.1.2 Predicate Pruning

To search through the space of predicates efficiently, we need a way to do predicate

pruning. To do predicate pruning, we need a way to predict the smallest error that

can be obtained by a refinement of a partition P. This motivates the next definition.

Definition 4.2.5. Let E be a set of examples and P = (E1, E2) a partition of E . We define

the regression refinement bound of P by

CP = min
P ′

QP ′

where P ′ is a refinement of P. A refinement P∗ of P that satisfies QP∗ = CP is called

a minimizing refinement of P.
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function RegRefinementBound (P) returns CP ;

input: P = (E1, E2), a partition of a set of examples;

if E1 = ∅ return EE2
;

sort(E1 );

minerr := QP ;

for each i from 1 to |E1| do

E11 := E1[1, i];

E12 := E1[i+ 1, |E1|];

P1 := (E11, E12 ∪ E2);

P2 := (E12, E11 ∪ E2);

minerr := min{minerr , QP1
, QP2

}

return minerr ;

Figure 4.1: Algorithm for calculating CP

The following is the regression analogue of Proposition 3.2.9.

Proposition 4.2.6. Let E be a set of examples and P a partition of E . If P ′ is a refinement of

P, then QP ′ > CP . In particular, QP > CP .

Proof. By the definition of CP .

We now examine the efficient computability of CP . A lower bound for CP can be

easily obtained.

Proposition 4.2.7. Let E be a set of examples and P = (E1, E2) a partition of E . Then

EE2
6 CP . In particular, when E1 = ∅, EE2

= CP .

Proof. Let P∗ = (E∗1 , E
∗
2 ) be a minimizing refinement of P. By Part (1) of Proposition

4.2.4, we have EE2
6 EE∗

2
since E2 ⊆ E

∗
2 . From that, we have

QP∗ = EE∗
1

+ EE∗
2

> EE∗
2

> EE2
.

Clearly, when E1 = ∅, E∗1 = ∅ and E∗2 = E2.

Figure 4.1 shows an algorithm that, given a partition P = (E1, E2), finds the value

of CP . In the algorithm, E [i, j] denotes the subset of E formed from taking the i-th to

j-th element(s). If i > j, we define E [i, j] to be ∅.

The sort function in line 4 in Figure 4.1 is with respect to the following total order

4 on the examples. Examples are first ordered increasingly by their regression values.

Examples with the same regression values are then ordered according to a lexico-

graphic order on the individuals. We denote by max(x,y)(E ,4) and min(x,y)(E ,4) the

largest and smallest examples in E as ordered by 4.
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We now show the value returned by RegRefinementBound on input P is CP . First,

a technical lemma.

Proposition 4.2.8. Let P = (E1, E2), E1 6= ∅, be a partition of a set E of examples. Let

Pmin = (E11, E12 ∪ E2) be a minimizing refinement of P, where E11 ∪ E12 = E1. Then Pmin

must satisfy the following property:

1. ∀(x1, y1) ∈ E11,∀(x2, y2) ∈ E12, y1 6 y2; or

2. ∀(x1, y1) ∈ E12,∀(x2, y2) ∈ E11, y1 6 y2.

Proof. If one of E11 and E12 is empty, then the property holds trivially. Now consider

the case when both E11 and E12 are non-empty. Suppose the property does not hold.

Then there exist (x1, y1) in E11 and (x2, y2) in E12 such that y1 > y2, and (x3, y3) in E12
and (x4, y4) in E11 such that y3 > y4. From that we get

max
y

(E11) > y1 > y2 > min
y

(E12); and (4.2)

max
y

(E12) > y3 > y4 > min
y

(E11). (4.3)

Now we show that we can always pick (x′, e′) from E11 and (x′′, e′′) from E12 and

interchange them to produce another refinement of P with a lower error, thus contra-

dicting the minimality of Pmin .

Let ȳ1 and ȳ2 denote, respectively, the empirical means of the regression values in

E11 and E12 ∪E2. There are two cases to consider, and we state the elements we choose

in each case.

1. If ȳ1 6 ȳ2, pick (x′, e′) to be max(x,y)(E11,4), and (x′′, e′′) to be min(x,y)(E12,4).

We have e′ > e′′ from (4.2).

2. If ȳ1 > ȳ2, pick (x′, e′) to be min(x,y)(E11,4), and (x′′, e′′) to be max(x,y)(E12,4).

We have e′′ > e′ from (4.3).

Now let E ′1 = E11 ∪ {e
′′} \ {e′} and E ′2 = E2 ∪ E12 ∪ {e

′} \ {e′′}. Clearly, P ′ = (E ′1, E
′
2) is

a refinement of P. We have

QPmin
=

∑

(x,y)∈E11

(y − ȳ1)
2 +

∑

(x,y)∈E2∪E12

(y − ȳ2)
2

= (e′ − ȳ1)
2 +

∑

(x,y)∈E11\{e′}

(y − ȳ1)
2 + (e′′ − ȳ2)

2 +
∑

(x,y)∈E2∪E12\{e′′}

(y − ȳ2)
2

> (e′′ − ȳ1)
2 +

∑

(x,y)∈E11\{e′}

(y − ȳ1)
2 + (e′ − ȳ2)

2 +
∑

(x,y)∈E2∪E12\{e′′}

(y − ȳ2)
2

> QP ′ .

We can make the third step because

(e′ − ȳ1)
2 + (e′′ − ȳ2)

2 − [(e′′ − ȳ1)
2 + (e′ − ȳ2)

2] = 2(e′′ − e′)(ȳ1 − ȳ2) > 0
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in both cases. The fourth step follows because e′ 6= e′′. (Recall Definition 4.2.1.1 and

the remark preceding it.)

Proposition 4.2.8 assures us that in trying to compute CP , we can restrict our at-

tention to refinements that are obtainable by cutting a sorted version of E1 into two

halves, and assigning one or the other to the new E2.

Proposition 4.2.9. Given a partition P, RegRefinementBound correctly finds CP .

Proof. Let P be (E1, E2). There are two cases. If E1 = ∅, the algorithm returns EE2
,

which is equal to CP by Proposition 4.2.7. If E1 is non-empty, then one of the minimiz-

ing refinements must satisfy the property stated in Proposition 4.2.8. The algorithm

conducts an exhaustive search of all such partitions and must therefore find CP .

Since the RegRefinementBound algorithm needs to be invoked very frequently dur-

ing search, once for every predicate we test, it is necessary to minimize its computation

time. The algorithm, when implemented naı̈vely, has time complexity O(|E|2), since

there areO(|E|) iterations, and the computation ofQP1
andQP2

in each iteration takes

O(|E|) time. This can be significantly improved. We now give an implementation of

RegRefinementBound that runs in time linear in the size of E .

Proposition 4.2.10. Given a set of examples E and a partition P = (E1, E2) of E , assuming

E1 is sorted according to 4 a priori, CP can be computed in time O(|E|).

Proof. Let ȳ, ȳ1, ȳ2 denote the empirical means of the regression values in E , E1 and E2.

We can rewrite the error function as follows:

QP =
∑

(x,y)∈E1

(y − ȳ1)
2 +

∑

(x,y)∈E2

(y − ȳ2)
2

=
∑

(x,y)∈E1

[(y − ȳ)− (ȳ1 − ȳ)]
2 +

∑

(x,y)∈E2

[(y − ȳ)− (ȳ2 − ȳ)]
2

=
∑

(x,y)∈E1

[(y − ȳ)2 − (ȳ1 − ȳ)
2] +

∑

(x,y)∈E2

[(y − ȳ)2 − (ȳ2 − ȳ)
2]

=
∑

(x,y)∈E1

(y − ȳ)2 − |E1|(ȳ1 − ȳ)
2 +

∑

(x,y)∈E2

(y − ȳ)2 − |E2|(ȳ2 − ȳ)
2

=
∑

(x,y)∈E

(y − ȳ)2 − (|E1|ȳ
2
1 + |E1|ȳ

2 − |E1|2ȳ1ȳ + |E2|ȳ
2
2 + |E2|ȳ

2 − |E2|2ȳ2ȳ)

=
∑

(x,y)∈E

(y − ȳ)2 − (|E1 + E2|ȳ
2 − 2ȳ(|E1|ȳ1 + |E2|ȳ2) + |E1|ȳ

2
1 + |E2|ȳ

2
2)

=
∑

(x,y)∈E

(y − ȳ)2 + ȳ|E|ȳ − (|E1|ȳ
2
1 + |E2|ȳ

2
2)

=
∑

(x,y)∈E

(y − ȳ)2 +
1

|E|
(
∑

(x,y)E

y)2 −





1

|E1|
(
∑

(x,y)∈E1

y)2 +
1

|E2|
(
∑

(x,y)∈E2

y)2



 .

(4.4)
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function RegRefinementBound2 (P) returns CP ;

input: P = (E1, E2), a partition, E1 sorted;

if E1 = ∅ return EE2
;

K :=
∑

(x,y)∈E(y − ȳ)2 + 1
|E|(
∑

(x,y)∈E y)
2;

sum2 :=
∑

(x,y)∈E2
y;

S := prefixSum(E1);

minerr := QP ;

for each i from 1 to |E1| do

QP1
:= K − (1

i (S[i])2 + div(1, |E2|+ |E1| − i)(sum2 + S[|E1|]− S[i])2);

QP2
:= K − (div(1, |E1| − i)(S[|E1|]− S[i])2 + 1

|E2|+i(sum2 + S[i])2);

minerr := min{minerr , QP1
, QP2

}

return minerr ;

Figure 4.2: An efficient implementation of RegRefinementBound .

From that, we can reformulate the optimization problem as

CP = min
P ′

QP ′ =
∑

(x,y)∈E

(y − ȳ)2 +
1

|E|
(
∑

E

y)2 −max
P ′





1

|E ′1|
(
∑

E ′
1

y)2 +
1

|E ′2|
(
∑

E ′
2

y)2





where P ′ = (E ′1, E
′
2) is a refinement of P. Thus we are left with a maximization prob-

lem that can be computed in time linear in the size of E . All that is required are a

few preprocessing steps to compute the sum of all the regression values in E2 and the

prefix sums (S[i] =
∑

16j6i E1[j]) of each element in the sorted E1. Here, E [j] denotes

the regression value of the j-th element in E . The details are given in Figure 4.2. In the

algorithm, the function div(x, y) is defined to be x/y if y 6= 0, and 0 otherwise. Note

that the formula for QP1
and QP2

has the same general form of (4.4).

Each of the preprocessing steps can be done in O(|E|) time. There are O(|E|) itera-

tions in the for loop, and each iteration takesO(1) time. The overall complexity of the

algorithm is thus O(|E|).

Can we avoid conducting an exhaustive search of the solution set? Given the form

of the minimizing refinement, one might conjecture that given a partitionP = (E1, E2),

if ȳ1 < ȳ2, where ȳ1 and ȳ2 denote, respectively, the empirical means of the regression

values in E1 and E2, then the minimizing refinement must be in the set

S1 = {(E ′1, E
′
2) : E ′1 = E1[1, i], E

′
2 = E1[i+ 1, |E1|] ∪ E2, 1 6 i 6 |E1|}

where E1 here is assumed sorted. Similarly when ȳ1 > ȳ2. This is not true, as shown

in the next example.
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Example 4.2.11. Consider the partition

P = ({(x1, 0.3), (x2, 0.5), (x3, 0.98)}, {(x4 , 0.41), (x5 , 0.53), (x6, 0.77), (x7 , 0.9)})

with ȳ1 = 0.59 and ȳ2 = 0.65. The best refinement in the set S1, with error 0.255, is

({(x1, 0.3), (x2, 0.5)}, {(x3 , 0.98), (x4, 0.41), (x5 , 0.53), (x6, 0.77), (x7 , 0.9)}).

The actual minimizing refinement is

({(x3, 0.98)}, {(x1 , 0.3), (x2, 0.5), (x4, 0.41), (x5 , 0.53), (x6, 0.77), (x7 , 0.9)})

with error 0.254. ◭

Another conjecture is that the errors obtained by increasing the index i in both

S1 and S2 (defined similarly to S1, see below) traces a quadratic curve with a single

(local) minimum. This also turns out to be false, as shown in the next example.

Example 4.2.12. Consider the partition

P = ({(x1, 0.29), (x2, 0.36), (x3 , 0.81), (x4, 0.92)}, {(x5 , 0.95)}).

The refinements in the set

S2 = {(E ′1, E
′
2) : E ′1 = E1[i+ 1, |E1|], E

′
2 = E1[1, i] ∪ E2, 0 6 i 6 |E1|}

where E1 is assumed sorted produces the following sequence of errors with increasing

values of i: [0.3001, 0.3938, 0.2689, 0.3202, 0.4009]. ◭

4.2.1.3 Searching

Figure 4.3 gives the main predicate searching algorithm. It is based on the LR pred-

icate enumeration algorithm (Algorithm II, Figure 2.3). The SeenSet enumeration al-

gorithm (Algorithm I, Figure 2.2) can be similarly adapted for use here.

The parameters and subroutine calls in Figure 4.3 have the usual meanings; see

§3.2.1.3 for details. The open list is ordered increasingly in the regression refinement

bounds of predicates. As is usual, we assume that the input predicate rewrite system

is monotone and satisfies all the conditions for ensuring uniqueness and completeness

of predicate derivations.

Given the best predicate returned by RegPredicate , construction of the hypothesis

regression stump is straightforward.

4.2.2 Learning Trees

We now proceed with the top-down tree-induction algorithm. Let X be the set of

individuals and  a predicate rewrite system. A regression tree is a binary tree where

each non-terminal node is labelled with a predicate in S, and each terminal node is

labelled with a real number. A tree defines a function f : X → R in the usual way.
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function RegPredicate(E ,, P ) returns a predicate;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

openList := [top];

predicate := top;

error := EE ;

while openList 6= [] do

p := head(openList );

openList := tail (openList);

if Cp > error then continue;

for each LR redex r via r  b, for some b, in p do

q := p[r/b];

if q is regular then

if Qq < error then

predicate := q;

error := Qq;

if Qq < P then P := Qq;

if Cq 6 P ∧ Qq > Cq ∧ Redexes(q) 6= ∅ then

openList := Insert(q, openList );

return predicate ;

Figure 4.3: Algorithm for finding a predicate to split a node
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function RegLearn(E ,, P ) returns a regression tree;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

tree := RegBuildTree(E ,,P)

label each leaf node of tree by the empirical mean of the regression values;

tree := RegPostprune(tree);

return tree ;

Figure 4.4: Decision-tree learning algorithm

function RegBuildTree(E ,, P ) returns a regression tree;

inputs: E , a set of examples;
, a predicate rewrite system;
P , prune parameter;

tree := single node (with examples E);

p := RegPredicate(E ,, P );

if Qp = EE then return tree ;

tree.predicate := p;

E+ := { (x, y) ∈ E : (p x) };

E− := { (x, y) ∈ E : ¬(p x) };

tree.left := RegBuildTree(E+,, P );

tree.right := RegBuildTree(E−,, P );

return tree ;

Figure 4.5: Tree building algorithm

The top-down tree induction algorithm is given in Figures 4.4 and 4.5. In our

implementation, the error complexity pruning algorithm of [32] is used for tree post-

pruning. Any other post-pruning technique can be employed.

4.2.3 Others

4.2.3.1 Learning Regression Lists

The covering algorithm for learning decision lists can be extended straightforwardly

to regression learning. At each iteration, the predicate that covers the subset of exam-

ples with the lowest squared error is picked. By (the proof of) Proposition 3.3.18, the

resulting regression list is a linear model.

Predicate pruning does not work at all in the case of regression-list learning. Every

predicate that covers a non-empty subset of examples can potentially be strengthened
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to cover only a singleton set, which by definition has zero error. This means no (non-

trivial) predicate can ever be pruned.

4.2.3.2 On-Line Learning

An on-line algorithm for regression-tree learning is presented in Chapter 5. It is simi-

lar in form to the on-line algorithm for classification-tree learning described briefly in

§3.2.4.4. There is a function AddExample that incorporates a new example into an exist-

ing tree and updates the meta-data in the tree. There is also a function RemoveExample

that removes an existing example from a tree. A function Retrain can be used to bring

the tree up-to-date with the current set of training examples.

4.3 Generalization Bounds

In the presence of sufficiently many examples, generalization is assured for finite func-

tion classes. This is a direct consequence of Hoeffding’s inequality.

Definition 4.3.1. LetX be a set and P a probability distribution on X × [0, 1]. Given a

function f : X → [0, 1], we define the error erP (f) of f with respect to P by

erP (f) = E(x,y)∼P (f(x)− y)2.

Given a sample z = ((x1, y1), (x2, y2), . . . , (xm, ym)) ∈ (X × [0, 1])m, we define the

sample error êrz(f) of f on z by

êrz(f) =
1

m

m
∑

i=1

(f(xi)− yi)
2.

Theorem 4.3.2 ([3]). Let F be a finite class of functions mapping from a set X into [0, 1] and

P a probability distribution on X × [0, 1]. For 0 < ǫ < 1 and m a positive integer, we have

Pm{|êr(f)− erP (f)| >
ǫ

2
for some f ∈ F} 6 2|F|e−ǫ2m/2.

For infinite function classes, generalization can be shown to be governed by their

pseudo-dimensions, a quantity analogous to VC dimensions in classification learning.

Facts about pseudo-dimensions, in particular the way they can be used to bound the

covering numbers of function classes, can be found in [3, Part III].

Definition 4.3.3. Let F be a set of functions from X to R and S = {x1, x2, . . . , xm} a

subset of X. Then S is pseudo-shattered by F if there are real numbers r1, r2, . . . , rm
such that for each b = (b1, b2, . . . , bm) ∈ {0, 1}m there is a function fb in F satisfying

sgn(fb(xi)−ri) = bi for 1 6 i 6 m. We say r = (r1, r2, . . . , rm) witnesses the shattering.

Definition 4.3.4. Suppose that F is a set of functions from X to R. Then F has pseudo-

dimension d if d is the maximum cardinality of a subset S ofX that is pseudo-shattered
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by F . If no such maximum exists, we say F has infinite pseudo-dimension. The

pseudo-dimension of F is denoted Pdim(F).

Unsurprisingly, the pseudo-dimensions of some common predicate classes defin-

able using predicate rewrite systems can be large. The analysis is not all that different

from the VC dimension analysis given in §3.4.3. We give one example to illustrate the

kind of reasoning involved.

Proposition 4.3.5. Let F∃ = {fi,x,y : i ∈ N, x, y ∈ [0, 1]} be the set of functions where each

fi,x,y : 2N → [0, 1]

is defined by

fi,x,y(t) =

{

x if ∃z ∈ t.(z = i);

y otherwise.

Then Pdim(F∃) =∞.

Proof. It’s sufficient to restrict attention to a subset ofF∃ defined byF ′
∃ = {fi,1,0 ∈ F∃}.

For each n ∈ N, we construct a set {X1,X2, . . . ,Xn} as in Proposition 3.4.18. For

instance, when n = 3, we have the following:

{X1 = {2, 5, 6, 8}, X2 = {3, 5, 7, 8}, X3 = {4, 6, 7, 8}}.

This set is pseudo-shattered by F ′
∃. The shattering is witnessed by (0.5, 0.5, 0.5).

4.4 Related Work

Both TILDE [23] and S-CART [118] (and its predecessor SRT [114]) support regression

learning. The regression algorithm in S-CART is actually quite sophisticated: multiple

linear step-wise regression is applied to fit a linear model to examples at each leaf

node after the initial tree is grown. This extension to regression-tree induction was

previously suggested in [32, §8.8] and, following [161], such a tree is now commonly

called a model tree.

Another model-tree induction algorithm is Mr-SMOTI [4], which is essentially an

upgrade of the SMOTI algorithm [132] to the multi-relational setting. Model trees in-

duced by Mr-SMOTI are more complex than model trees induced by S-CART: linear

regressions are not limitted to leaf nodes and can be performed at any stage dur-

ing tree construction. Non-terminal regression nodes only have a single child and

all training examples pass through to the child after appropriate transformations of

some attribute values. Mr-SMOTI learns from multiple relations and uses a graphical

language called selection graphs (which is less expressive than Prolog since it cannot

represent recursive concepts) to partition examples at the splitting nodes.

A system that uses the covering approach to learn first-order regression models is

FORS [98].



Chapter 5

Incremental Induction

5.1 Introduction

In applications where data are received in a continuous stream, being able to learn

incrementally is important. The assumption is that it is in general a lot less expensive

to revise existing knowledge than to start anew every time a new example is received.

We study an on-line version of the top-down tree induction algorithm in this chapter.

An on-line version of the covering algorithm can be constructed in a similar fashion.

The basic setting is as follows. At each time point,

1. the learner receives an individual x,

2. makes a prediction ĥ(x) based on the current hypothesis ĥ, and

3. gets the correct label y for x and incurs a loss depending on the discrepancy

between y and ĥ(x).

The central problem here is the hypothesis-update step. For that, we need an algo-

rithm that takes as input a tree and a training example and returns an updated tree

for use at the next time point.

What can be reasonably demanded of the intermediate trees returned by the on-

line algorithm? Preferably, one would like to have a good understanding of the usual

properties associated with a tree, properties like predictive power, compactness, and

comprehensibility. A simple way to achieve that understanding is to require the tree

built by the on-line algorithm on seeing a sequence of examples be functionally equiva-

lent to the tree built by the batch algorithm using the same set of examples. Functional

equivalence is not easy to define. We can settle for a condition that is sufficient to

guarantee functional equivalence, however it is defined, by demanding that the tree

produced by the on-line algorithm on seeing a sequence of examples be identical to

the tree produced by the batch algorithm for the same set of examples, and this is the

approach we take here.

To focus the discussion and motivate some of the design decisions, we begin with

some desiderata (adapted from [191]) for a good on-line tree-induction algorithm.

1. The incremental cost of updating the tree should be lower than the cost of build-

ing the tree from scratch using all the examples seen so far. The cumulative sum

101
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of the incremental costs need not be less since we care only about the cost of

being brought up to date.

2. If the underlying concept is static, the induced tree should stabilize after reach-

ing optimality, that is, in the limit of infinitely long sequences of training exam-

ples, no revision should be needed.

3. The algorithm should be able to track drifting/changing concepts.

4. The memory requirement of the algorithm should not grow with the total num-

ber of examples seen so far.

5. The tree induced should be independent of the order in which the training ex-

amples are presented to the algorithm.

6. The tree should avoid overfitting noise.

To address the first point, we identify some sufficient conditions to detect whether

a certain node in the (current) tree remains optimal with the addition or deletion of an

example and need not be changed. To address the third point, and to a lesser degree,

the fourth point, we employ a moving window to focus on a subset of examples at

any time point. To address the sixth point, we use tree post-pruning.

We are thus lead to the following definition.

Definition 5.1.1. Let E = [(x1, y1), (x2, y2), . . .] be a sequence of examples, W a posi-

tive integer, and Ei,j (i 6 j) the subsequence of E starting from the i-th element and

ending at the j-th element. (If i is less than 1, then Ei,j is defined to be E1,j .) Let

Ei,j be the set formed using Ei,j . Let Hk be the hypothesis generated from E1,k by an

incremental algorithm AlgI . We say AlgI is lossless with respect to a batch algorithm

AlgB if for all k > 0,Hk = AlgB(Ek−W+1,k).

In the definition, W is the size of the moving window.

In the following sections, we will give two incremental tree-induction algorithms,

one for classification and one for regression. Each one is lossless with respect to its

corresponding batch learning algorithm. Both algorithms share a common structure.

We will start with the regression algorithm in Section 5.2. The somewhat easier clas-

sification algorithm is presented in Section 5.3.

5.2 Regression

The goal is to show that given the same sequence of examples, the tree produced by

the on-line algorithm is identical to the one produced by the batch algorithm. We first

state some properties of the batch algorithm in §5.2.1. This is followed by descriptions

of the various component of the incremental algorithm in §5.2.2.

5.2.1 Properties of the Batch Algorithm

In what follows, we denote by Pp(E) the partition of a set E of examples induced by a

predicate p.
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Definition 5.2.1. Let E be a set of examples and S a set of predicates. A predicate p is

a best predicate in S on E if for all q ∈ S, QPp(E) 6 QPq(E).

Note that, given a set of predicates S , there can be multiple best predicates in S on a

given set of examples.

Definition 5.2.2. Let E be a set of examples and  a predicate rewrite system. A

predicate p ∈ S is optimal on E if it is a best predicate in S on E , and it is the first

one encountered in search by the RegPredicate algorithm (Figure 4.3, page 97) using

the default prune parameter.

Let T be a regression tree. Given a tree node t in T , we denote by t.pred the predi-

cate labelling t, and by t.tset the set of examples in t.

Definition 5.2.3. Let E be a set of examples,  a predicate rewrite system, and T a

regression tree built by some algorithm using E and S. We define the optimality of

nodes in T as follows.

1. A non-terminal node t in T is optimal if t.pred is optimal on t.tset .

2. A terminal node t in T is optimal if there is no predicate in S that can split the

node with error lower than Et.tset .

We say T is locally optimal if every node in it is optimal.

The batch algorithm RegLearn (Figure 4.4, page 98) without the final tree post-

pruning step generates regression trees that are locally optimal.

5.2.2 The Incremental Algorithm

Our incremental algorithm, shown in Figure 5.1, is made up of three basic procedures:

a function AddExample for adding a new example to a tree, a function RemoveExample

for removing an existing example from a tree, and a function Retrain for bringing a

tree up to date. The basic idea is simple. In each iteration, an example is received

from the data stream and added to the existing tree. If the window is full, the oldest

example is first removed from the tree, then a call is made to update the tree. Note

that the classification algorithm also has the same structure. In fact, we will reuse

Figures 5.1, 5.2, 5.3 and 5.4 in Section 5.3, with appropriate instantiations of the code

fragments that have been abstracted away. (The literate programming convention

[109] is followed here.)

Every tree node has a boolean attribute called dirty . (When a tree node is first

created by the batch algorithm, dirty is initialized to false .) As examples are added

and removed, parts of the tree become potentially suboptimal, and these are tagged

as such by setting their dirty attributes to true .

Definition 5.2.4. We say a node t in a tree T is clean if t.dirty = false and for all nodes

n in T , if n is an ancestor of t, then n.dirty = false .
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function IncUpdate()

1. T := empty tree;

2. while true do

3. (x, y) := getNextExample();

4. if window buffer is full then

5. (x′, y′) := findOldestExample(T );

6. T := RemoveExample(T, (x′, y′));

7. T := AddExample(T, (x, y));

8. T := Retrain(T );

Figure 5.1: Incremental update algorithm

The methods used for detecting potential suboptimality of tree nodes in both

AddExample and RemoveExample rely heavily on the gap between the best and second

best predicates on a set of examples. Intuitively, if the gap is large, then adding or re-

moving an example will not affect the optimality of the best predicate. This motivates

the next definition.

Definition 5.2.5. Let E be a set of examples and S a set of predicates. We define Q2E

to be QPq(E), where q is a best predicate in S \ {p} on E , and p is a best predicate in S

on E .

It is easy to show that Q2 is well-defined, in the sense that the value assigned is the

same regardless of the choices made of p and q, if there are choices to be made at all.

Proposition 5.2.6. Let E be a set of examples and S a set of predicates. Let p be a best predicate

in S on E . Then for all q ∈ S, if q 6= p then QPq(E) > Q2E .

Proof. By Definition 5.2.5.

Proposition 5.2.7. Let E1 and E2 be sets of examples and let S be a set of predicates. If

E1 ⊆ E2, then Q2E1
6 Q2E2

.

Proof. Let p be a best predicate in S on E1, q a best predicate in S \ {p} on E1, r a

best predicate in S on E2, and s a best predicate in S \ {r} on E2. If s 6= p, then we

have Q2E1
= QPq(E1) 6 QPs(E1) 6 QPs(E2) = Q2E2

by Propositions 5.2.6 and 4.2.4.

Otherwise, if s = p, then r 6= p and we have

Q2E1
= QPq(E1) 6 QPr(E1) 6 QPr(E2) 6 QPs(E2) = Q2E2

by Propositions 5.2.6 and 4.2.4.

For housekeeping, every tree node keeps two variables sqerror and sqerror2 . At

all times, sqerror holds the value of QP where P is the partition of tset induced by

pred , and sqerror2 holds a value that is supposed to be lower or equal to Q2tset .
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function Retrain(T ) returns an updated tree T ′;

input: T , a tree;

if (T.root .dirty = true) then

T := rebuildTree(T.root );

return T ;

if isTerminal(T.root ) then return T ;

T.ltree := Retrain(T.ltree);

T.rtree := Retrain(T.rtree);

return T

Figure 5.2: Algorithm for retraining a tree

Semi-optimal Trees We now define the concept of semi-optimal trees. This is the in-

variant property with which we prove the lossless result. Intuitively, a semi-optimal

tree is a tree that is close to, at varying degrees depending on the situation, being lo-

cally optimal, with appropriate augmentation to indicate the nodes that have become

potentially sub-optimal.

Definition 5.2.8. A tree T is semi-optimal if for every node t in T ,

1. if t is clean, then t is optimal;

2. if t is clean and non-terminal, then t.sqerror2 6 Q2t.tset .

A semi-optimal tree T with only clean nodes is locally optimal.

We want to show that the trees we have immediately after lines 6, 7 and 8 in Fig-

ure 5.1 are all semi-optimal. In the following, we give the Retrain , AddExample and

RemoveExample functions, and show that they are all semi-optimality preserving, that

is, given a semi-optimal tree as input, they all produce a semi-optimal tree as output.

The Retrain Procedure Figure 5.2 shows the Retrain procedure, which works as fol-

lows. It traverses the input tree and rebuilds the first node down each branch whose

dirty attribute is true . Rebuilding is done using the function rebuildTree , which takes

a node and discards the subtree rooted at the node, and then calls the batch learning

algorithm to induce a new subtree based on the set of examples in the original node.

This version of the batch learning algorithm performs the additional work of record-

ing the values of sqerror and sqerror2 during search, where the latter is set to Q2t.tset

for every node t in the tree. This batch algorithm also sets to false the dirty attribute

of every node it constructs.

Proposition 5.2.9. Given as input a semi-optimal tree T , Retrain returns as output a semi-

optimal tree T ′. Furthermore, every node in T ′ is clean.
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function AddExample(T, (x, y)) returns an updated tree T ′;

inputs: T , a tree;
(x, y), an example;

t := T.root ;

while true do

t.tset := t.tset ∪ {(x, y)};

if t.dirty = true then break;

if isTerminal(p) then

〈〈AddExample::Test for Terminal Nodes〉〉

break;

val := (t.pred x);

〈〈AddExample::Test for Non-Terminal Nodes〉〉

if val = true then t := t.ltree ; else t := t.rtree ;

return T ;

Figure 5.3: Algorithm for adding a new example to a tree

Proof. Denote by D the set of all the first nodes down any branch in T whose dirty

attribute is true . T ′ is similar in structure to T except that all the subtrees rooted at

one of the nodes in D get rebuilt using the batch algorithm. The nodes that T ′ and T

share must still satisfy the two conditions of Definition 5.2.8. Furthermore, they are

all clean. Clearly, the new nodes in T ′ generated by the batch algorithm are all clean

and optimal.

Adding An Example Figure 5.3 gives the algorithm for adding an example to a tree.

The general idea of AddExample is this: given a new example, we push it down the

tree, updating the set of examples at each node traversed, and return after setting to

true the dirty attribute of the first node encountered that has the potential to become

sub-optimal.

There are separate tests for checking the optimality of terminal and non-terminal

nodes. The pseudo-code for these have been abstracted away in Figure 5.3. We now

instantiate the missing pieces, starting with the optimality test for non-terminal nodes.

The test is motivated by the following simple observation.

Observation 5.2.10. Let E be a set of examples, (x, y) an example,  a predicate rewrite

system, and E ′ = E ∪ {(x, y)}. Further, let p ∈ S be the optimal predicate on E , and let e be

such that e 6 Q2E . If QPp(E ′) < e, then p remains optimal on E ′.

The statement follows from the fact that Q2E ′ must be larger than or equal to Q2E (by

Proposition 5.2.7), and hence is strictly larger than QPp(E ′). Translating this condition

into code, we obtain the following.
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〈〈AddExample::Test for Non-Terminal Nodes〉〉≡

if val = true then subtree := t.ltree ; else subtree := t.rtree ;

t.sqerror := t.sqerror + Esubtree.tset∪{(x,y)} − Esubtree.tset ;

if (t.sqerror > t.sqerror2 ) then

t.dirty := true ;

break;

The first two lines compute QPp(E ′). Recall also that t.sqerror2 6 Q2E since t is clean.

The optimality test for terminal nodes is based on the following fact.

Observation 5.2.11. Let E be a set of examples, (x, y) an example, and E ′ = E ∪ {(x, y)}.

Let S be a set of predicates, and ȳ be 1
|E|

∑

(x,y)∈E y. If y = ȳ and there is no predicate in S

that can partition E with error less than EE , then there is no predicate in S that can partition

E ′ with error less than EE ′ .

This is easy to see, since EE ′ = EE = QPp(E) 6 QPp(E ′) for all p ∈ S by Proposition

4.2.4. From the above, we get the following.

〈〈AddExample::Test for Terminal Nodes〉〉 ≡

if y 6= average(t.tset \ {(x, y)}) then t.dirty := true ;

The function average takes as input a set of examples and returns the average of the

regression values in the set.

We now show AddExample preserves semi-optimality of trees.

Proposition 5.2.12. Given as input a semi-optimal tree T and an example (x, y), the function

AddExample returns as output a semi-optimal tree T ′.

Proof. Denote by Naff the nodes of T traversed by (x, y), and by Nrest all the other

nodes. Denote by n the last node in Naff traversed. T ′ is identical in structure to

T , except that the nodes in Naff have their examples updated, and n.dirty can now

be true . We first note that all the nodes in Nrest remains untouched and satisfy the

semi-optimality conditions by the semi-optimality of T .

We now show that the nodes in Naff satisfy condition 1 of Definition 5.2.8. Every

node t ∈ Naff \ {n} is a clean non-terminal node satisfying t.sqerror < t.sqerror2 and

remains optimal by the semi-optimality of T and Observation 5.2.10. For node n, we

need only consider the case where it is clean in T . If n is a non-terminal node, then

n.dirty must now be set to true . Otherwise, n is a terminal node. It can remain clean iff

y = average(n.tset \{(x, y)}), in which case it remains optimal by the semi-optimality

of T and Observation 5.2.11.

We now show that the nodes in Naff satisfy the second condition. Note that for

all nodes t ∈ Naff \ {n}, t.sqerror2 remains unchanged, giving t.sqerror2 6 Q2t.tset 6

Q2t.tset∪{(x,y)}, the second part following from Proposition 5.2.7. Node n need not

concern us here because it is either a terminal node or a non-terminal node with

n.dirty = true .
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function RemoveExample(T, (x, y)) returns an updated tree T ′;

inputs: T , a tree;
(x, y), an example;

t := T.root ;

while true do

t.tset := t.tset \ {(x, y)};

if t.dirty = true then break;

if isTerminal(p) then

〈〈RemoveExample::Test for Terminal Nodes〉〉

break

val := (t.pred x);

〈〈RemoveExample::Test for Non-Terminal Nodes〉〉

if val = true then t := t.ltree ; else t := t.rtree ;

return T

Figure 5.4: Algorithm for deleting a new example from a tree

Removing An Example Figure 5.4 gives the algorithm for removing an example

from a tree. It is similar in form to AddExample . Given a tree and an example to

remove, it goes down the branch of the tree containing the chosen example, updates

the set of examples at each node traversed, and mark the first node encountered that

has the potential to become sub-optimal.

We now give the optimality tests, beginning with that for non-terminal nodes. The

main statement is Observation 5.2.15.

Definition 5.2.13. Let E be a (non-empty) set of examples, (x, y) an example in E , and

E ′ = E \{(x, y)}. Let p be a predicate, and let Pp(E) = (Ep1, Ep2) and Pp(E
′) = (E ′p1, E

′
p2)

be the partitions of E and E ′ induced by p. Define the gain of p with the removal of

(x, y) from E as

δp(E , (x, y)) = QPp(E) −QPp(E ′).

By straightforward algebraic manipulation, one can show that

δp(E , (x, y)) = max {EEp1
− EE ′

p1
, EEp2

− EE ′
p2
}.

One of the two terms must be zero because either Ep1 = E ′p1 or Ep2 = E ′p2. For

convenience, we denote the non-equal pair by Ep3 and E ′p3 and write δp(E , (x, y)) =

EEp3
− EE ′

p3
.

Proposition 5.2.14. Let E be a (non-empty) set of examples, (x, y) and example in E and E ′ =

E \{(x, y)}. Let S be a set of predicates. The maximum gain with the removal of (x, y) from E
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of any predicate in S, denoted ∆, is bounded from above by max{2(y−ymax)2, 2(y−ymin)2},

where ymax is the largest regression value in E , and ymin the smallest.

Proof.

∆ = max
p∈S
{δp(E , (x, y))}

= max
p∈S
{EEp3

− EE ′
p3
}

= max
p∈S
{(ȳ3 − y)

2(1 + |Ep3|
−1)}

6 max
p∈S
{max{2(ymin − y)

2, 2(ymax − y)
2}}

= max{2(ymin − y)
2, 2(ymax − y)

2}

The third step is a straightforward algebraic rewriting where ȳ3 = 1
|Ep3|

∑

(x,y)∈Ep3
y.

The following is a straightforward consequence of Proposition 5.2.14 that provides the

optimality test for non-terminal nodes.

Observation 5.2.15. Let E be a (non-empty) set of examples, (x, y) an example in E and

E ′ = E \ {(x, y)}. Let  be a predicate rewrite system and suppose p ∈ S is the optimal

predicate on E . Let e be such that e 6 Q2E , and let ∆ = max{2(ymax − y)
2, 2(ymin − y)

2}.

If e−∆ > QPp(E ′), then p remains optimal on E ′.

Translating this into pseudo-code, we obtain the following. The first two lines com-

pute the value of QPp(E ′).

〈〈RemoveExample::Test for Non-Terminal Nodes〉〉 ≡

if val = true then subtree := t.ltree ; else subtree := t.rtree ;

t.sqerror := t.sqerror − (Esubtree .tset − Esubtree.tset\{(x,y)});

t.sqerror2 := t.sqerror2 −∆;

if (t.sqerror2 6 t.sqerror) then

t.dirty := true ;

break;

The approximation to ∆ given in Proposition 5.2.14 is rather crude. Improvements

can be made if we are willing to store more information, including the ymin and ymax

for each node, and the size of the smallest subsets of E obtained from the partitionings.

Other completely different approaches may be needed to fix this weak spot in the

algorithm.

We next state the optimality test for terminal nodes.

Definition 5.2.16. A set of examples E is pure if ∀(x1, y1), (x2, y2) ∈ E , y1 = y2.
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Observation 5.2.17. Let E be a (non-empty) set of examples, (x, y) an example in E , and

E ′ = E \ {(x, y)}. Let S be a set of predicates. If E is pure and there is no predicate in S that

can partition E with error less than EE , then there is no predicate in S that can partition E ′

with error less than EE ′ .

To see this, observe that E ′ must be pure, and from that we have ∀p ∈ S, QPp(E ′) =

0 = EE ′ . This gives us the next code fragment.

〈〈RemoveExample::Test for Terminal Nodes〉〉 ≡

if isPure(t.tset ∪ {(x, y)}) = false then t.dirty := true ;

The condition given here appears quite weak. One might conjecture that the stronger

condition y 6= average(t.tset ) can be used. It is easy to construct counter-examples to

show that this is not true.

The function RemoveExample can be shown to preserve semi-optimality of trees.

Proposition 5.2.18. Given a semi-optimal tree T and an example in T.root .tset as input,

RemoveExample returns as output a semi-optimal tree T ′.

Proof. This can be shown with an analogous argument as that used in Proposition

5.2.12, this time using Observations 5.2.15 and 5.2.17. To show that all the nodes in

Naff satisfy the second condition of Definition 5.2.8, use Proposition 5.2.14.

It is now easy to show that the IncUpdate algorithm is lossless with respect to the

batch algorithm Learn in the regression setting.

Proposition 5.2.19. Let RegLearn2 be the algorithm which is the same as RegLearn (Figure

4.4, page 98) but without the final tree postpruning step. IncUpdate is lossless with respect

to RegLearn2 .

Proof. Denote by Tk the tree generated by IncUpdate after seeing E1,k. We prove the

stronger statement that ∀k > 1, Tk = RegLearn2 (Ek−W+1,k) and Tk is semi-optimal. To

show Tk = RegLearn2 (Ek−W+1,k), we need to show that Tk.tset = Ek−W+1,k and Tk is

locally optimal.

The proof proceeds by induction on k. In the base case when k = 1, clearly both

algorithms produce identical trees that are semi-optimal. Next consider the inductive

case. Depending on whether the window buffer is full, we have either

Tk+1 = Retrain(AddExample(Tk, (xk+1, yk+1)))

or

Tk+1 = Retrain(AddExample(RemoveExample(Tk, (xk−W+1, yk−W+1)),

(xk+1, yk+1))).

By the inductive hypothesis, Tk = RegLearn2 (Ek−W+1,k) and Tk is semi-optimal. In

the first case, we have Tk+1.tset = Tk.tset ∪ {(xk+1, yk+1)} = E1,k+1 = Ek+1−W+1,k+1.
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Further, by Proposition 5.2.12, AddExample(Tk, (xk+1, yk+1)) is semi-optimal. Then by

Proposition 5.2.9, Tk+1 is semi-optimal and every node in it is clean, which in turn

implies that Tk+1 is locally optimal.

In the second case, we have

Tk+1.tset = Tk.tset \ {(xk−W+1, yk−W+1)} ∪ {(xk+1, yk+1)}

= Ek−W+2,k+1 = Ek+1−W+1,k+1.

By Proposition 5.2.18, RemoveExample(Tk, (xk−W+1, yk−W+1)) is semi-optimal. Fur-

ther, by Proposition 5.2.12,

AddExample(RemoveExample(Tk, (xk−W+1, yk−W+1)), (xk+1, yk+1))

is semi-optimal. Finally, by Proposition 5.2.9, Tk+1 is semi-optimal and every node in

it is clean, which in turn implies that Tk+1 is locally optimal.

Remark. In practice, we usually have no need to retrain the tree after every example.

Suppose retraining is only done at certain time points, one can reason as in Proposition

5.2.19 to show that the trees produced straight after retraining at those time points are

identical to the trees produced by the batch algorithm on the same sets of examples.

The optimality tests we identified in AddExample and RemoveExample are all de-

pendent on the gap between the best and second best predicates in the search space.

For any particular tree node, the lack of a clear winning predicate will cause the dirty

attribute of the node to be set to true very often, and hence rebuilt very often. If this

happens at the root node, which is not unusual given the instability of the greedy top-

down induction algorithm, then the incremental cost is equal to the cost of building

the tree from scratch. This is the worst case scenario, and there is not much one can

do given that the instability is in the batch algorithm, and our aim is to follow it. The

unfortunate fact is that even when there is a clear winner, one will observe (unneces-

sary) periodic rebuilding of tree nodes whose cycle is dependent on the gap between

the best and second best predicates.

The tests are clearly quite weak, but there is little one can do. We can strengthen the

tests by remembering all the second best predicates and calculating the gaps precisely,

but this is too much work for too little benefit. The first issue is memory consump-

tion. Nodes low down in the tree have a small number of examples, and most of the

predicates in the search space can be equally good on them. This also happens in the

early stages of learning, when the number of examples is still small. The second, more

problematic, issue is that the list of second best predicates becomes stale after only one

iteration. Storing a list of the n best predicates can only alleviate the problem.

5.3 Classification

The incremental algorithm for classification has the same overall structure as the re-

gression algorithm. We now give the optimality tests for classification, filling the gaps
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abstracted away in Figures 5.3 and 5.4. We simply list the observations leading to the

code fragments. Correctness can be established easily.

5.3.1 Properties of the Batch Algorithm

Definition 5.3.1. Let E be a set of examples and S a set of predicates. A predicate p is

a best predicate in S on E if for all q ∈ S, APp(E) > APq(E) and EN Pp(E) 6 ENPq(E).

Definition 5.3.2. Let E be a set of examples and  a predicate rewrite system. A

predicate p ∈ S is optimal on E if it is a best predicate in S on E , and it is the first

one encountered in search by the Predicate algorithm (Figure 3.1, page 32) using the

default prune parameter.

Definition 5.3.3. Let E be a set of examples,  a predicate rewrite system, and T a

classification tree built by some algorithm using E and S. We define the optimality of

nodes in T as follows.

1. A non-terminal node t in T is optimal if t.pred is optimal on t.tset .

2. A terminal node t in T is optimal if for all p ∈ S, we have Ap = At.tset and

EN p = EN t.tset .

We say T is locally optimal if every node in it is optimal.

The batch algorithm Learn (Figure 3.2, page 34) without the final tree post-pruning

step generates classification trees that are locally optimal.

5.3.2 The Incremental Algorithm

Definition 5.3.4. Let E be a set of examples and S a set of predicates. A p ∈ S is safe if

for all q other than p in S, APp(E) > APq(E).

Observation 5.3.5. Let E be a set of examples, (x, y) an example and E ′ = E ∪ {(x, y)}.

Let  be a predicate rewrite system. Suppose p ∈ S is optimal on E . If p is safe and

APp(E ′) > APp(E), then p remains optimal on E ′.

Safety of predicates is needed here because there could be multiple best predicates in

the search space, and the batch algorithm picks the first one found during search.

〈〈AddExample::Test for Non-Terminal Nodes〉〉 ≡

if t.pred is not safe then

t.dirty := true ;

break;

if (val ∧ y 6= maj (t.ltree .tset)) ∨ (¬val ∧ y 6= maj (t.rtree .tset)) then

t.dirty := true ;

break;
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The function maj takes a set E of examples and returns the majority class of E .

If there are two or more majority classes, the function returns the one that was the

majority class before the addition of the last example.

Observation 5.3.6. Let E be a set of examples and S a set of predicates. If E is pure, then for

all p ∈ S, APp(E) = AE and EN Pp(E) = EN E .

〈〈AddExample::Test for Terminal Nodes〉〉 ≡

if isPure(t.tset) = false then t.dirty := true ;

Observation 5.3.7. Let E be a set of examples, (x, y) an example in E and E ′ = E \ {(x, y)}.

Let  be a predicate rewrite system. Suppose p ∈ S is the optimal predicate on E . If p is

safe and APp(E ′) > APp(E), then p remains optimal on E ′.

The condition in the observation is realized if the example to be removed is incorrectly

classified by the tree node in question. The negation of this condition is used in the

following.

〈〈RemoveExample::Test for Non-Terminal Nodes〉〉 ≡

if t.pred is not safe then

t.dirty := true ;

break;

if (val ∧ y = maj (t.ltree .tset)) ∨ (¬val ∧ y = maj (t.rtree .tset))) then

t.dirty := true ;

break;

We again use Observation 5.3.6 to formulate the optimality test for terminal nodes.

〈〈RemoveExample::Test for Terminal Nodes〉〉 ≡

if isPure(t.tset) = false then t.dirty := true ;

Using a similar argument, one can show that the incremental algorithm for classi-

fication is lossless with respect to the batch algorithm.

Proposition 5.3.8. Let Learn2 be the algorithm which is the same as Learn (Figure 3.2, page

34) but without the final tree postpruning step. IncUpdate is lossless with respect to Learn2 .

5.4 Discussion

We now evaluate the incremental algorithms against the desiderata given earlier.

The incremental cost of updating the tree should be lower than the cost of building the tree

from scratch using all the examples in the window.

At any particular time point, the cost of updating the current tree can be, in the worst

case, equal to the cost of building the tree from scratch. In general, however, some
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Dataset Window Size Batch On-line Saving

Mutagenesis 188 2889.68 2439.97 15.56%
Musk-1 92 88.87 30.81 65.33%

Mutagenesis 125 2414.44 2242.36 7.13%
Musk-1 60 79.42 59.53 25.04%

Table 5.1: The efficiency of the incremental regression algorithm

Dataset Window Size Batch On-line Saving

Mutagenesis 188 7577.71 3472.52 54.17%
Musk-1 92 85.64 54.62 36.22%

Mutagenesis 125 6596.28 6016.26 8.79%
Musk-1 60 64.06 52.45 18.12%

Table 5.2: The efficiency of the incremental classification algorithm

kind of saving can be expected. To get an indication of their performance, we tested

the algorithms on two benchmark problems: Mutagenesis [186] and Musk-1 [63]. Both

are binary classification problems.

The datasets were used ‘as is’ to test the classification algorithm. To test the regres-

sion algorithm, we converted the two datasets into regression problems by relabelling

individuals from the same class with random numbers chosen from the same subin-

terval of the real line. This setup allows us to gain some understanding of the relative

performance of the two incremental algorithms.

We use essentially the same hypothesis languages given in [130, §6.2] for the two

problems. To reduce the computational effort involved, we simplify the hypothesis

language for Musk-1 to use only one condition inside setExists 1. To learn a suitable

multiple-instance hypothesis, the stump algorithm is used for Musk-1. This mandates

a small change to the Retrain algorithm to rebuild, when necessary, only the root node

of the tree under revision.

We compared the incremental algorithms against the naı̈ve approach of batch

learning the current set of training examples in each iteration. Two different win-

dow sizes, 100% and 60% of the size of the training set, for each problem were used.

(When the window size is equal to the size of the training set, windowing does not

come into play and RemoveExample is never called.) The results are given in Tables

5.1 and 5.2. The running times are in seconds.

As shown, significant reductions in computation can be achieved when there is

no windowing. When windowing is in effect, each iteration involves two changes

to the set of examples, a deletion and an addition. It takes a predicate with a clear

winning margin to survive two optimality tests at each tree node. This, together with

the (infamous) instability of the top-down induction algorithm, means that non-trivial

savings in computation time are often hard to achieve in windowing mode.
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If the underlying concept is static, the induced tree should stabilize after reaching optimality.

In the special case when the target function is a stump and the examples are noise-

free, the incremental classification algorithm does satisfy this requirement: no revi-

sion is necessary after the target function is first acquired. In general, however, the

algorithms in their current forms do not address this point. One simple modification

is to stop retraining after a tree with acceptably high accuracy is learned. (Reliable

estimation of accuracy should be easy since there is a continuous supply of data.)

The algorithm should be able to track drifting/changing concepts.

The windowing approach should work well for tracking time-varying concepts. One

unanswered question is how big should the window size be? Or should the window

size change at run time? The answer is probably dependent on the application, but a

development of some general guidelines would be desirable. Some ideas from [199]

can clearly be useful in our context.

The memory requirement of the algorithm should be modest.

The windowing approach uses a fixed amount of memory.

The tree induced should be independent of the order in which the examples are presented.

By design, the trees induced are independent of the order the examples are presented.

The tree should avoid overfitting noise.

Overfitting can be countered by tree postpruning. We use the error and cost com-

plexity pruning algorithms of CART [32] here. Both methods require an independent

validation set. Towards that end, we modify the IncUpdate algorithm to maintain two

sets of examples. This can be done by, for example, allocating the odd-numbered ex-

amples in the data stream to the training set, and the even-numbered examples to the

validation set. After retraining, the postpruning algorithm is called to compute the

‘right-sized’ tree.

A problem with this scheme is that we may lose the lossless property (suitably

redefined to take into consideration the assignment of examples to the validation set)

of IncUpdate with respect to the batch algorithms. This is because we cannot guaran-

tee that the pruned subtrees of Tk will be regrown and repruned in the same fashion

in Tk+1. To resolve this issue, we adopt the virtual pruning mechanism of Utgoff.

We introduce into each tree node a field called pruned that has value true if the sub-

tree rooted at that node has been pruned. The postpruning algorithm is modified as

follows. Given a tree, the pruned fields of all the nodes are set to false initially. The al-

gorithm then proceeds in the usual fashion, except that instead of actually cutting off

an unwanted subtree, it simply sets the pruned field of the root node of the unwanted

subtree to true . When using the tree to make a prediction, the evaluation algorithm

uses the nodes with pruned = true as if they are terminal nodes. In both the classi-

fication and regression settings, one can show that the modified algorithm is lossless

with respect to the batch algorithms.
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Other alternatives to error/cost complexity pruning exist. For example, the ap-

proach taken in [192], which is based on the minimum description length principle,

can be adopted by ALKEMY.

5.5 Related Work

Incremental tree-induction algorithms The best known approach to incremental

tree induction is probably the family of algorithms due to Utgoff et al; see [189],

[190], [191] and [192]. Unfortunately, these algorithms cannot be adapted for use with

ALKEMY because they all make fairly strong assumptions about the size of the pred-

icate search space. Specifically, they all assume that the search space is small and

that it is feasible to compute the best predicate cheaply every time a new example is

received. This is generally impossible to do in our setting. Indeed, if the predicate

search space is so small, one can (and probably should) tap into the rich body of work

on Winnow-like algorithms [124], [28] in the on-line learning literature. A paper along

that line of investigation that holds particular interest here is [152].

The G-algorithm introduced in [40] is an incremental tree-learning algorithm de-

signed for Q-learning. It was incorporated into TILDE and used for relational rein-

forcement learning in [66] and [64]. There are experimental results showing that the

algorithm works reasonably well in practice, but not a lot is known about it, especially

the properties of the trees induced at intermediate stages. It is also not clear whether

the algorithm is useful outside the context of reinforcement learning.

The work closest in spirit to the one reported here is [52]; the algorithm proposed

there was claimed to be in some sense lossless with respect to the CART system, but

no actual proof of correctness was given in the paper.

Incremental learning in ILP Incremental learning has been studied for a long time

in ILP. In fact, two of the earliest ILP systems MARVIN ([173], [175]) and MIS [180]

are both incremental learners. Other noteworthy incremental ILP systems include

CIGOL [149], CLINT [56], MOBAL [106], FORTE [167], and MINERVA [188]. A typical

system of this kind works as follows. A current hypothesis in the form of a logic

program is maintained at every time point. As each new example is received, the

system checks whether the new example is ‘explained’ by the current hypothesis. If

not, a process is triggered to revise the current hypothesis. Revision typically involves

specializations and/or generalizations of (parts of) the current hypothesis, sometimes

aided by declarative diagnosis techniques like contradiction backtracing and missing

answer diagnosis ([126], [188, §3.7]). Systems like MARVIN and MINERVA can also

formulate conjectures and questions and actively seek answers to them.

The primary difference between on-line ALKEMY and the incremental ILP systems

(and some of the on-line tree-induction algorithms stated earlier) is the overall design

goal. In the case of ALKEMY, the current hypothesis is solely a function of the current

set of examples, whereas in the case of the incremental ILP systems, the current hy-

pothesis is a function of the current set of examples and the previous hypothesis. In
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other words, the algorithms of this chapter are essentially optimized batch-learning-

at-every-time-step algorithms. In contrast, the incremental ILP systems perform true

knowledge revision.

It is probable that some of the sophisticated diagnosis and search techniques em-

ployed in incremental ILP systems can be, with appropriate modifications, incorpo-

rated into ALKEMY to speed up learning. We may need to weaken the notion of loss-

lessness, however. Extending ALKEMY to do active learning is a particularly exciting

prospect.
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Chapter 6

Applications

Few things are impracticable in themselves;

and it is for want of application, rather than of means,

that men fail to succeed.

Francois De La Rochefoucauld

6.1 Introduction

In this chapter, we describe in some detail four different applications of the system,

each chosen to illustrate principles and techniques that the author finds particularly

useful in applying ALKEMY.

The first is a standard binary classification task: the Musk problem introduced

in [63]. It is of interest to us here because its solution (using ALKEMY) involves the

use of different techniques for handling massive predicate search spaces, and these

have obvious applications elsewhere. Indeed, it’s worth pointing out that many of the

search algorithms and optimization procedures presented in Chapters 2 and 3 were

originally conceived in the process of tackling this problem.

The second is a knowledge discovery task in predictive toxicology. We treat a

dataset of molecules, each classified as carcinogenic or not, as a database and use

ALKEMY as a kind of query language to mine interesting patterns in the underlying

molecules. The emphasis here is on the expressiveness of the representation language

and how it can be used to precisely form very specific conditions on molecules as

conjectured by the data analyst.

The third and fourth applications are presented here to demonstrate the useful-

ness of ALKEMY as a learning component embedded inside a bigger system. Each

of these is an exercise in the design and construction of intelligent agents using sym-

bolic learning. In Section 6.4, we use ALKEMY to do function approximation within

the framework of reinforcement learning. This is done in the familiar blocks world

domain, a problem simple in appearance but (surprisingly) challenging in nature. In

Section 6.5, we use ALKEMY to personalize an infotainment system to the preferences

and habits of users, concentrating on a TV program recommender. In both cases, the

main difficulty is in coping with the different constraints introduced by other compo-

nents in the system. These include the need

119
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1. to learn incrementally to achieve acceptable efficiency in a real-time environ-

ment;

2. to track concepts that change over time at different frequencies;

3. to handle (an abundance of) low-quality training examples in the case of rein-

forcement learning; and

4. to cope with a scarcity of (high-quality but mostly negative) training examples

in the case of the TV agent.

Some of these problems can be solved (or at least alleviated) using carefully-crafted

hypothesis languages that exploit important background knowledge about the appli-

cation domains. As we shall see, the symbolic nature of ALKEMY can be a useful asset

in the formulation of these solutions.

6.2 Multiple-Instance Learning — Musk

The first application is the Musk problem introduced in [63]. The task is to determine

whether or not a molecule has a musk odour. It is a standard binary classification

problem, with the slightly unusual twist that each molecule is represented as a set of

its conformations. In a sense, the training examples are ambiguous. A molecule can

be classified as positive (or otherwise) when only one of its many possible instances

satisfy a certain property. There have been many attempts made on this benchmark

multiple-instance learning problem; see, for example, [9], [137], [164], [82], and [203].

The section is organized as follows. The setup of the problem is described in §6.2.1.

We review in §6.2.2 an early solution to the problem presented in [31]. We then point

out some undesirable properties of that early effort and give a better solution in §6.2.3.

We finish in §6.2.4 with a lesson we learned about the proper use of statistical tests for

systems like ALKEMY.

6.2.1 Representation of Individuals

The representation issues for this problem has been described in brief in §3.4.4.2. Here

we give a few more specific details. Every molecule in the dataset is represented as

a set of feature tuples, each denoting one of the many possible low-energy confor-

mations the molecule can take. Each conformation is a tuple of 166 floating-point

numbers, where the first 162 of these represent the distance in angstroms from some

origin in the conformation out along a radial line to the surface of the conformation

and the remaining 4 numbers represent the position of a specific oxygen atom in the

molecule. The attributes are discretized as follows. For each attribute, we calculated

the mean µ and the standard deviation σ of the values occurring in the data. We

then built up intervals centred on the mean, taking the width of each interval to be

one standard deviation, and assigned integral labels to the intervals, so that interval 0

centred on the mean is [µ−σ/2, µ+σ/2], interval 1 is [µ+σ/2, µ+3σ/2], interval -1 is

[µ−3σ/2, µ−σ/2], and so on. We chose to use 13 intervals in total, labelled -6 through
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6. The outermost intervals, -6 and 6, were extended below and above respectively to

cover any outlying points. These lead to the following type declarations:

−6,−5, . . . , 5, 6 : Distance

Conformation = Distance × · · · ×Distance

Molecule = {Conformation}.

Molecules with a musk odour are labelled true, and those without are labelled false.

The function musk we want to learn thus has signature musk : Molecule → Ω.

Admittedly, the representation just proposed is not the best possible one. There are

alternatives and potential improvements one can make to it, but we will not pursue

these in this section.

There are two datasets: Musk-1 and Musk-2. Here, we focus on the Musk-2

dataset, which contains 102 molecules (6598 conformations in total), 39 of which are

positive examples. The Musk-2 dataset is the larger of the two datasets. But from the

point of learning, it is also the harder of the two. This is because it is larger not in

the sense that it contains significantly more molecules (Musk-1 has 92 molecules), but

larger in the sense that every molecule has many more conformations.

6.2.2 An Early Effort

We will start by recapping the result reported in [31]. This early result was jointly ob-

tained by Xiaobing Wu, John W. Lloyd and the author. Xiaobing Wu implemented the

parallel algorithm using MPI (Message Passing Interface) on Bunyip, a 192-processor

Beowulf cluster and carried out the experiments; John W. Lloyd and the author con-

tributed to the high-level design of the parallel search algorithm.

The following is the hypothesis language used.

top  setExist1 (∧3 top top top)

top  proj i ◦ top where i ∈ {1, 2, . . . , 166}

top  (= j) where j ∈ {−6,−5, . . . , 6}

top  (6= k) where k ∈ {−6,−5, . . . , 6}

Three seemed to be the right number of conjuncts to use; we observed underfitting us-

ing only ∧2, but had to struggle with overfitting when using ∧4. The use of predicates

of the form proj i ◦ (6= j) captures disjunctions of intervals conveniently and cheaply.

This concept is actually needed here to push accuracy above 80%.

We used the parallelization technique described in §3.5.1.3 to partition the search

space into
(166

2

)

= 13,695 subspaces, each rooted by a predicate of the form

setExists1 (∧3 (proj i ◦ top) (proj j ◦ top) top) where i, j ∈ {1, 2, . . . , 166} and i < j.

Search was conducted using the SeenSet algorithm. (The LR search algorithm had not

been invented then.) The cutout parameter was set at 25,000. This means that within
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each subspace, the algorithm would terminate the search after examining successively

25,000 predicates without finding one that strictly improves the (current best) accu-

racy. The computation is an almost “embarrassingly parallel” task, but there are over-

laps between the subspaces.

Using 160 processors on the cluster, each an Intel processor running at 500MHz,

the learner took about 30 hours to do three 10-fold cross validations and recorded an

average accuracy of 82.2%. The following hypothesis was produced for the whole

dataset:

musk m =

if setExists1 (∧3 (proj 29 ◦ (6= −4)) (proj 119 ◦ (= 1)) (proj 132 ◦ (= −2))) m

then 1

else 0. (6.1)

There is some regularity to the hypotheses produced in the cross validations. In fact,

the exact same hypothesis as (6.1) was produced in 25 out of the 30 folds computed.

In the remaining 5 folds, the hypotheses induced retained the two constraints on the

119th and 132nd features.

6.2.3 Doing it without Bunyip

We now take up where we left off in [31]. The most negative aspect of the result

presented in the previous section is the prohibitive computational cost incurred. It

would be interesting to try and replicate the result on a standard desktop computer.

The main difficulty with doing this is achieving consistent performance. In 10 fold

cross validations, ALKEMY will often obtain good accuracy in the region of 80-100%

on the validation set in 7-8 out of the 10 folds, and performs poorly (40-60% accuracy)

in the remaining ones, ruining the overall result. This problem can be traced back

to the large discrepancy between the (small) number of training examples and the

(incredibly rich) hypothesis language used. There is little one can do about the size

of the training set. One can try to reduce the ‘capacity’ of the hypothesis language,

however.

Predicate Rewrite Pruning The size of the search space is a useful piece of infor-

mation to have. There are a total of 4317 predicates (including top) defined on type

Conformation . In the case of k = 3 conjuncts, the size of the search space is the rather

discouraging figure of 13,418,273,519.

The number of predicates defined on Conformation can be substantially cut down

using the predicate rewrite pruning technique described in §3.5.1.3. Setting the tar-

get accuracy at an optimistic 99%, 2330 of the 4317 Conformation predicates can be

pruned. For k = 3, the size of the new search space is 1,309,476,714, a quite spectacu-

lar factor of 10 reduction. Alas, that is still too large for ALKEMY to handle. Is there a

way to make it smaller?
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Predicate Rewrite Junking A run down of the surviving 1987 Conformation predi-

cates reveals that they are of two kinds, exemplified by the following two predicates.

setExists1 (∧2 (proj 1 ◦ (6= −6)) top)

l : (39, 63) r : (0, 0) Ap = 63 Bp = 102

setExists1 (∧2 (proj 143 ◦ (= 1)) top)

l : (39, 39) r : (0, 24) Ap = 63 Bp = 102

Here l and r give the class distributions of examples in the left and right subtrees. The

value Ap is the accuracy of the predicate and Bp its refinement bound. Notice that

the accuracy and the refinement bound values failed to distinguish between the two

predicates in any way. To the human eye, however, the second predicate is a lot more

interesting than the first. It actually did something, moving 24 molecules to the right.

Building on this observation, we remove from the remaining predicate rewrites all

those whose body failed to move at least l = 3 (obtained by trial-and-error) molecules

to the right. (This is unsafe, but it turns out that no vital information relevant to the

classification function is lost in the process.) Only 318 predicate rewrites survived this

selection process, resulting in a new search space with only 5,461,280 predicates in it.

An exhaustive search of the predicate space is now within reach, but this is still

expensive and, in fact, unnecessary. It is actually now possible to reproduce the result

reported in [31] using the SeenSet search algorithm in conjunction with the cutout

search strategy. Setting cutout to 10,000, we performed three separate 10-fold cross

validations and recorded an average accuracy of 81.94%. Each cross validation took

slightly less than half an hour on a computer with an Intel 700 MHz processor. The

same final hypothesis as (6.1) was induced on the whole dataset.

It turns out that the result can be improved using the LR search algorithm. Setting

cutout to 5000, three 10-fold cross validations yielded an average accuracy of 83.6%.

Each cross validation took about 5 minutes on the same 700 Mhz computer. Interest-

ingly, the following slightly different hypothesis was induced on the whole dataset.

musk m =

if setExists1 (∧3 (proj 119 ◦ (= 1)) (proj 122 ◦ (6= −4)) (proj 132 ◦ (= −2))) m

then 1

else 0. (6.2)

A quick check confirms that it behaves identically to (6.1) on the dataset. The higher

average accuracy obtained here is due to better consistency across validation folds. In

fact, the hypothesis (6.2) was induced in 29 out of the 30 folds. This better consistency

can be attributed to the relative stability of the LR search algorithm.

The moral of the story, in my view, is summed up succinctly in this quote taken

from the 1975 Turing lecture by Allen Newell and Herbert Simon [153].

search is a fundamental aspect of a symbol system’s exercise of intelli-
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gence in problem solving but that amount of search is not a measure of

the amount of intelligence being exhibited. What makes a problem a prob-

lem is not that a large amount of search is required for its solution, but that

a large amount would be required if a requisite level of intelligence were

not applied.

6.2.4 A Pitfall in Learning with ALKEMY

We end the section with an (interesting) lesson learned from an honest mistake the

author made in tackling the Musk problem.

In pursuit of a better result, we can build on the hypothesis (6.1) obtained earlier,

repeated here with information on the distribution of examples.

setExists1 (∧3 (proj 29 ◦ (6= −4)) (proj 119 ◦ (= 1)) (proj 132 ◦ (= −2)))

l : (32, 9) r : (7, 54) Ap = 86 Bp = 95 (6.3)

There are two weaknesses in the hypothesis language used to obtain (6.3). The first

is in the representation, where we fixed a priori the intervals on the attributes. The

second is in the predicate rewrite system, where we only look at one interval at a time.

We can offset these negatives after the event by perturbing the chosen conditions on

the three attributes appearing in (6.3). It turns out that the condition on the 119th

attribute can’t be changed, but the range on the 29th attribute can be narrowed down

to [−3, 2] (without any effect on the class distributions), and the range on the 132nd

attribute can be weakened to [−2,−1] (with helpful changes in the class distributions).

From this small experiment, we obtain the following new hypothesis.

setExists1 (∧3 (proj 29 ◦ ∧2 (> −4) (< 3))

(proj 132 ◦ ∧2 (> −3) (< 0)) (proj 119 ◦ (= 1)))

l : (38, 15) r : (1, 48) Ap = 86 Bp = 101 (6.4)

The distributions of examples and the refinement bounds both suggest rather

strongly that (6.4) is to be preferred over (6.3). Further, it seems a good idea to try

and strengthen (6.4) in order to move some of the remaining negative examples in the

left subtree to the right. Using (6.4) as a basis, we constructed the following predicate

rewrite system and experimented with it.

top  setExists1 (∧4 (proj 29 ◦ ∧2 (> −4) (< 3)) (proj 132 ◦ ∧2 (> −3) (< 0))

(proj 119 ◦ (= 1)) top)

top  proj i ◦ (= j) where i ∈ {1, 2, . . . , 166} and j ∈ {−6,−5, . . . , 6}

top  proj i ◦ (6= j) where i ∈ {1, 2, . . . , 166} and j ∈ {−6,−5, . . . , 6}

A comparable 10-fold cross-validation result was obtained (see Table 6.1 under entry

4 conjuncts). The hypotheses induced in the individual validation folds all have the

same characteristic as predicate (6.4), with good accuracy and high refinement bound.
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This prompted us to collect together all the predicates that turned up as the hypothesis

in any of the folds and use them to construct a new predicate rewrite system by adding

one conjunct to each of them in the same fashion as was done to (6.4). We repeated

the process until we reached ten conjuncts, at which point no further improvements

in training accuracy can be achieved using the extra top. Table 6.1 shows the 10-fold

cross-validation results obtained for the successive iterations.

Conjuncts 4 5 6 7 8 9 10
Train Acc. 87.26 89.33 91.29 92.48 93.57 94.66 94.44
Test Acc. 82.45 84.45 86.36 87.36 87.36 86.36 90.09

Table 6.1: The training and test set accuracies for different numbers of conjuncts.

We have obtained a very impressive cross-validation result (comparable to some

of the best efforts on the Musk-2 dataset) with minimal search. But is the result valid?

This is debatable. The technique is alright, but surely the accuracy estimation so-

computed cannot be trusted. Why?

Consider this next scenario. ALKEMY is used to find a hypothesis with high accu-

racy, say 98%, on the whole training set. We then proceed to use a predicate rewrite

system that consists of only this predicate and do an n-fold cross validation. Voila, we

have a world record! This is clearly unacceptable, but it is really not that different from

the experiment we have just described. In fact, the first six iterations can be thought of

as a systematic search for high-accuracy predicates, and the last iteration the cheating

step, where instead of one, we put several hundred high-accuracy predicates in the

search space, thinly disguised by many other low-accuracy predicates that we know

won’t play a big distracting role in search.

The problem is that in ALKEMY, the hypothesis language is an important param-

eter that can be tuned. Further, by design, we have great control over its exact form.

This flexibility opens up many possibilities for one to commit errors in the use of

statistical tests to estimate true accuracy. To perform an n-fold cross validation, the

correct procedure in this case is to first partition the data into n subsets, and then re-

peat in each fold the crafting of the predicate rewrite system, all the time using only

the current set of training examples available. The test set must not be used in any

(indirect) way in the fine-tuning of the hypothesis language.

In fact, our observation here invalidates the numbers reported in the previous sec-

tion. The results given in [31], however, stand untainted.

It’s worth noting that similar (and independent) observations of such malpractices

have been reported in other areas of machine learning. See, for example, [1].

6.2.5 An Observation

We end the section with a more positive observation.

Learning with ALKEMY is an iterative process. Given a problem, we first decide

on a representation and a hypothesis language based on some initial understanding
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of the domain. As more and more experiments are done, and lessons learned, the

hypothesis language or even the representation can change. At any one particular

iteration, the representation and predicate rewrite system reflects one’s understanding

of the problem being solved.

6.3 Knowledge Discovery — Predictive Toxicology

In this section, we present a case study in predictive toxicology to bring out the kind of

support provided by ALKEMY for knowledge discovery. The main learning problem

is introduced in §6.3.1. After a brief discussion on the representation of molecules in

§6.3.2, we describe two simple experiments conducted and what we found in each

case. An evaluation of the approach is given at the end of the section in §6.3.6.

6.3.1 The 2000-1 Predictive Toxicology Challenge (PTC)

The Challenge is to obtain models that predict the outcome of biological tests for the

toxicity of chemicals using information related to chemical structures alone.

There are 417 molecules in the dataset, each labelled with a classification for four

different chemical bioassays conducted on male rats (MR), female rats (FR), male mice

(MM) and female mice (FM). The dataset was built up over many years from exper-

iments conducted at the US National Toxicology Program. For that reason, there are

some inconsistencies in the labellings used. For each of the four types of experiments,

a molecule can have any one of the following labels: P (Positive), N (Negative), E

(Equivocal), CE (Clear Evidence), SE (Some Evidence), EE (Equivocal Evidence), NE

(No Evidence) and IS (Inadequate Study). Early experiments use the P, N and E labels;

later experiments refined the classification scheme to CE, SE, EE, and NE.

Structural descriptions of the molecules are available in various standard encod-

ings. In addition, seven sets of feature vectors containing chemical descriptors of vari-

ous kinds are available from the initial data engineering phase of the challenge. Figure

6.1 shows three typical molecules in the dataset together with their classifications.

For the purpose of evaluation, an independent test set of 185 molecules was se-

lected from data collected by the US Food and Drug Administration. Participants

were required to make predictions for these molecules based on what they learned

from the training data.

The challenge is a largely unsolved problem. The best efforts so far are docu-

mented in [21] and [157]. More information about PTC, including the very humbling

results produced, can be found in [94], [93] and at

http://www.predictive-toxicology.org/ptc.

In fact, the author was a participant in that challenge. The material presented in this

section builds on lessons learned from that early attempt [155].
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Figure 6.1: Three typical molecules in the PTC dataset

6.3.2 Representation of Individuals

We used the Female Rat dataset for our experiments here as it is the only one that

looks remotely learnable from previous attempts by various research groups. The

molecules are relabelled as follows: molecules with P, CE and SE labels are classified

as positive; molecules with N and NE labels are classified as negative; the remaining

molecules with E, EE and IS labels are discarded. The resulting dataset contains 351

molecules, with 121 positive examples and 230 negative examples.

To focus on the structure of the chemicals, we choose not to use the feature vectors

in this set of experiments. (This is primarily for convenience; there are many hundreds

of features available – most of them uninformative – and knowing which ones to use

is a challenging learning task in itself.) We note the limitation of this choice, as pointed

out by many authors (see, for example, [166]), and understand that, to generate good

models, it is essential that all the available information be used somehow.

As is the usual convention for such problems, we represent each molecule as an

undirected graph (see Section 2.5 for the type declaration of graphs).

Molecule = Graph Element Bond

We have the following constants for the elements and the bonds.

As,Au,B ,Ba,Br ,C ,Ca, . . . ,O ,P ,Pb,S ,Sn ,Te,Zn : Element

S ,D ,T ,R : Bond

The four constants for Bond represent, respectively, single bond, double bond, triple

bond and resonant bond.
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The following is the representation of molecule TR032 (see Figure 6.1).

TR032 = ({(1 ,C ), (2 ,C ), (3 ,Cl), (4 ,N ), (5 ,C ), (6 ,C ), (7 ,C ), (8 ,O), (9 ,P),

(10 ,O), (11 ,N ), (12 ,C ), (13 ,C ), (14 ,Cl), (15 ,H ), (16 ,H ), (17 ,H ),

(18 ,H ), (19 ,H ), (20 ,H ), (21 ,H ), (22 ,H ), (23 ,H ), (24 ,H ), (25 ,H ),

(26 ,H ), (27 ,H ), (28 ,H ), (29 ,H )},

{(〈11 , 12 〉,S ), (〈12 , 13 〉,S ), (〈13 , 14 〉,S ), (〈9 , 11 〉,S ), (〈9 , 10 〉,D),

(〈1 , 15 〉,S ), (〈1 , 16 〉,S ), (〈2 , 17 〉,S ), (〈2 , 18 〉,S ), (〈5 , 19 〉,S ),

(〈1 , 2 〉,S ), (〈11 , 25 〉,S ), (〈12 , 26 〉,S ), (〈12 , 27 〉,S ), (〈13 , 28 〉,S ),

(〈13 , 29 〉,S ), (〈5 , 20 〉,S ), (〈6 , 21 〉,S ), (〈6 , 22 〉,S ), (〈7 , 23 〉,S ),

(〈7 , 24 〉,S ), (〈2 , 3 〉,S ), (〈1 , 4 〉,S ), (〈4 , 5 〉,S ), (〈5 , 6 〉,S ),

(〈6 , 7 〉,S ), (〈7 , 8 〉,S ), (〈4 , 9 〉,S ), (〈8 , 9 〉,S )})

The notation 〈s, t〉 is used as a shorthand for the multiset that takes the value 1 on each

of s and t, and is 0 elsewhere, i.e., 〈s, t〉 is essentially an unordered pair.

The task is to learn a function with the signature carcinogenic : Molecule → Ω.

We have cast the basic problem as a binary classification task. But the solution to it

requires intelligent feature engineering from structural descriptions of molecules, and

that is a knowledge discovery problem.

In the following, we will liberally use the usual transformations associated with

graphs, sets and multisets. The reader is referred to Section 2.5 for their definitions.

6.3.3 A First Experiment

A fairly natural question to ask is whether there exists a correlation between the size

of a molecule and its carcinogenicity. Here, we measure the size of a molecule by the

number of edges in it. (In an earlier experiment, the number of vertices in a molecule

was used; nothing of interest was found in that experiment.) Using the following

predicate rewrite system

top  edges ◦ domCard (top) ◦ (= i) where i ∈ {1, 2, . . . , 50},

we plotted the distribution of positive and negative examples with respect to the num-

ber of edges, shown here in Figure 6.2.

From the graph, one is inclined to conclude that, in general, the number of edges

in a molecule does not have a strong correlation with its carcinogenicity. There are,

however, several interesting observations that can be made from the plot. For exam-

ple, there is a cluster of positive examples around 9 and 10, and two different groups

of negative examples around 13 and 36. It turns out that many interesting patterns

and potential structural alerts can be found from a close inspection of these clusters.

For an illustration of the process of discovery, we zoom in onto the group of

molecules with exactly ten edges, shown here in Figure 6.3. Notice that the chemi-

cals TR028, TR206 and TR384 all share a bat-shaped structure with group seven atoms
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attached to the ends. For ease of reference, we will call this structure the G7-propane

structure. It seems plausible to speculate that other similar-looking molecules in the

dataset are also carcinogens. To test this conjecture, we formulated the following:

top  ∧2 (vertices ◦ domCard (top) ◦ (= 11))

((subgraphs 6) ◦ domCard (edges ◦∧2

(domCard (∧2 (connects ◦ msetExists2 (vertex ◦ (= C)) (vertex ◦ (= C)))

(edge ◦ (= S))) ◦ (= 2))

(domCard (∧2 (connects ◦ msetExists2 (vertex ◦ (= C))

(vertex ◦ ∨2 (= Br) (= Cl)))

(edge ◦ (= S))) ◦ (= 3))) ◦ (= 1)). (6.5)

The predicate in the body of (6.5) checks for the existence of two properties that ap-

proximate the G7-propane structure:

1. the number of atoms (vertices) in a molecule is exactly eleven; and

2. there exists exactly one connected subgraph of size six in the molecule with two

edges connecting two carbons in a single bond, and three edges connecting a

carbon to either a bromine or a chlorine in a single bond.

Running ALKEMY with (6.5) shows that only the same three molecules, shown earlier

in Figure 6.3 and also in the top row of Figure 6.4, satisfy the predicate. The condition

is too strong. Weakening parts of it we obtained the following two predicate rewrites.

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 0))

((subgraphs 6) ◦ setExists1 (edges ◦∧2

(domCard (∧2 (connects ◦ msetExists2 (vertex ◦ (= C)) (vertex ◦ (= C)))

(edge ◦ (= S))) ◦ (= 2))

(domCard (∧2 (connects ◦ msetExists2 (vertex ◦ (= C))

(vertex ◦ ∨2 (= Br) (= Cl)))

(edge ◦ (= S))) ◦ (= 2)))) (6.6)

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 0))

((subgraphs 6) ◦ setExists1 (edges ◦∧2

(domCard (connects ◦ msetExists2 (vertex ◦ (= C))

(vertex ◦ (= C))) ◦ (= 2))

(domCard (∧2 (connects ◦ msetExists2 (vertex ◦ (= C))

(vertex ◦ ∨2 (= Br) (= Cl)))

(edge ◦ (= S))) ◦ (= 2)))) (6.7)

The predicate in the body of (6.6) aims to capture the existence of the G7-propane
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Figure 6.4: From left to right, top to bottom: TR028, TR206, TR384, TR400, TR076, TR452,

TR383, TR309, TR398. All these molecules are positive.

structure as a subgraph in larger molecules. We restricted ourselves to molecules with

at least one bromine because TR384 appears as a subgraph in many molecules in the

dataset, both negative and positive, which is probably evidence that it is not an active

substructure. We also relaxed the requirement on the number of edges connecting a

carbon to either a bromine or a chlorine to two because demanding the existence of

three such edges produces no increased coverage compared to (6.5). Five molecules

satisfy this second predicate, including the first two molecules in the top row and the

three molecules in the second row in Figure 6.4.

The predicate in the body of (6.7) is similar, but now we relax the type of bond

on the edges connecting two carbon atoms. All the molecules in Figure 6.4, except of

course TR384, satisfy this predicate. In particular, compared to the second predicate,

we gain coverage of the three molecules in the bottom row.

The molecules at the bottom row of Figure 6.4 looks rather different from those

in the first row. In a sense, as we proceed from top to bottom, we lose some con-

fidence in our conjecture that the G7-propane structure is the active cancer-causing

(sub)structure. The molecules in the bottom row may well be carcinogenic for a dif-

ferent reason; for instance, it is known that molecules that contain bromine(s) have a
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high chance of being carcinogenic. Without expert chemical knowledge, a judgement

cannot be made on this point. But from a knowledge discovery point of view, we can

be quite happy with our progress.

A note on the process of discovery. Notice how we start from a predicate describ-

ing specific properties of a few chemicals we observed in the initial experiment and

are able to gradually relax the conditions to find other molecules with similar struc-

tures, all of which turned out to be carcinogens. This kind of predicate perturbation,

whether the aim is to generalize or to specialize an existing condition, is a common

and useful operation in knowledge discovery, and is well-supported in ALKEMY.

6.3.4 A Second Experiment

The aim of this experiment is to uncover chemical structures characterized by the co-

existence of N different atoms. We show what we found in the case of N = 3. The

following predicate rewrite system was used.

top  vertices ◦ ∧3 (setExists1 top) (setExists1 top) (setExists1 top)

top  vertex ◦ (= As)

top  vertex ◦ (= Au)

. . .

top  vertex ◦ (= Te)

top  vertex ◦ (= Zn)

A lot of information can be gleaned from the outcome of the experiment. We give

here two eye-catching combinations. The first is characterized by the co-existence of

an oxygen, a phosphorus and a sulfur in a molecule. Figure 6.5 shows the molecules

satisfying this property. All of them are negative examples.

By inspection of Figure 6.5, a natural conjecture is that the existence of a substruc-

ture with a phosphorus in the middle and four atoms, at least one of which is a sulfur,

connected to it, renders a molecule non-carcinogenic.

The second combination is characterized by the co-existence of a chlorine, an oxy-

gen and a sulfur. Figure 6.6 shows the molecules satisfying this property. All of them

are negative examples.

There are several interesting patterns in this collection of molecules. Molecules in

the first row share the property that each has an O=S=O component. A simple rewrite

system can be used to find all the molecules having that substructure in the dataset;

they are shown in Figure 6.7. All the molecules except the four in the bottom row are

negative.

Another interesting pattern we found in Figure 6.6 is associated with molecule

TR015. It is natural to guess that the substructure responsible in this case is the small

T-structure with three chlorine atoms hanging off it. Generalizing chlorine to common
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Figure 6.7: From left to right, top to bottom: TR020, TR102, TR501, TR031, TR045, TR050,

TR395, TR101, TR138, TR356, TR051, TR357, TR208, TR211, TR220, TR412, TR430, TR464,

TR457, TR335, TR397, TR405.
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Figure 6.8: From left to right, top to bottom: TR015, TR034, TR035, TR090, TR131a, TR195,

TR110, TR232, TR000, TR237, TR361, TR068

group seven atoms, we get the following predicate rewrite system:

top  (subgraphs 4) ◦ setExists1 (edges ◦ domCard

(∧2 (connects ◦ msetExists2 (vertex ◦ (= C))

(vertex ◦ ∨3 (= Cl) (= F ) (= I)))

(edge ◦ (= S))) ◦ (= 3))). (6.8)

The molecules satisfying the body of (6.8) are shown in Figure 6.8. Interestingly, but

perhaps unsurprisingly, they are all negative examples.

6.3.5 Other Features

The two experiments described above serve as good illustrations of the process of

knowledge discovery. Figure 6.9 shows seven groups of positive molecules that share

a particular structure. These patterns were discovered over a period of three to four

weeks, and are the result of very many experiments with different ideas using the

same process. The suspected structure in each case should be obvious.

6.3.6 Evaluation

To evaluate our approach to PTC, we collected all the features identified in one pred-

icate rewrite system, given in full in §6.3.7, and learned a decision list that obtains

70.9% accuracy on the training set. The decision list is used to make predictions on

the independent test set as follows: if a molecule falls through the list and ended up in

the default node, no prediction is made; otherwise, a prediction is made in the usual

fashion. Out of the 185 molecules in the test set, ALKEMY was confident enough to

make a prediction only on 28 molecules; but out of the 28 predictions made, 24 were
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Figure 6.9: From left to right, top to bottom: TR331, TR467, TR486, TR311, TR450, TR055,

TR086, TR210, TR001, TR313, TR029, TR111, TR299, TR494, TR181, TR186, TR205, TR248,

TR257, TR267, TR374, TR362



§6.3 Knowledge Discovery — Predictive Toxicology 137

correct. In terms of accuracy, that is 85%, a respectable result by any measure on this

very difficult problem. The poor coverage can be put down to the fact that the test set

is (totally) unrepresentative of the training set, as pointed out in [15].

To properly assess the value of this knowledge discovery exercise, the meaning-

fulness of the structural features and the carcinogenicity theory we found, from a

bio-chemistry perspective, has to be established. Having little knowledge in chem-

istry, we consulted an expert from the US Environmental Protection Agency. Given

the known difficulty in explaining non-carcinogenicity, our discussion focused on the

carcinogens found. It turns out that almost all the substructures we have identified in

positive examples are indeed long-recognized structural features of potent carcino-

gens, and most of them can be explained mechanistically. We quote some of the

explanations given by the domain expert here. More complete descriptions of the

mechanisms can be found in the book series [5].

Row 1 in Figure 6.4 and row 3 in Figure 6.9 Chlorine and bromine are good leaving

groups, particularly if they are terminal and mono. Disubstitution on adjacent

carbons (vicinal substitution) further enhances carcinogenic potential because of

the crosslinking potential and additional metabolic activation by gluthathione

conjugation pathway.

Row 1 in Figure 6.9 The first chemical is alpha, beta-unsaturated aldehyde, which is

reactive. The double bond helps to modulate its reactivity. The other two have

terminal double bonds that can be metabolically activated to epoxides as alky-

lating agent.

Row 2 in Figure 6.9 These are halogenated ethylene that can be epxodized as a meta-

bolic activation pathway.

Row 4 in Figure 6.9 These are polyhalogenated hydrocarbons, known to be moder-

ately active carcinogens.

Row 5 in Figure 6.9 The first three molecules are amino or nitro anthraquinones. The

amino/nitro group can be metabolically activated to nitrenium ion to bind to

DNA. The anthraquinone moiety may intercalate into DNA. The last chemical

is expected to be much weaker; it can only intercalate.

Row 6 in Figure 6.9 These are typical aromatic amines, the best-known class of car-

cinogens, with favourable position and substitution.

Row 7 in Figure 6.9 They are epoxides, a well-known class of carcinogens.

This is clearly a very positive result, but one that requires qualification. At best,

this set of experiments can be interpreted as a proof of concept that trying to learn

carcinogenicity theories from examples is not a completely meaningless exercise, and

as we have shown here, in fact, some simple theories can be found. But simple theo-

ries they are, nothing more than that. Compared to expert systems like DEREK [176]

and OncoLogic [201], inductive learning systems still have some way to go in terms

of level of sophistication, especially when it comes to explanatory power and the in-

corporation of the vast available chemical knowledge in making predictions.

The discovery process we have just described is admittedly ad hoc. One can of
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course be more systematic about it. For example, it is easy to generalize association

rule mining algorithms from data mining (see, for example, [90]) to our knowledge

representation setting for use in feature construction. In fact, this idea has been ex-

plored in ILP, see for example [108]. Other feature selection methods can be used as

well. The expectation, however, is that automated approaches can only reveal statis-

tical information. Educated guesses of structural alerts and their precise formulations

still require human input. This is not an undesirable feature of the system. After

all, the expressiveness of the knowledge representation formalism is designed with

human usage and consumption in mind in the first place.

6.3.7 A Predicate Rewrite System for PTC

top  vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 0)

top  vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 1)

top  vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 2)

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 1))

((subgraphs 6) ◦ setExists1 (vertices ◦∧2

(domCard (vertex ◦ (= C )) ◦ (= 3))

(domCard (vertex ◦ ∨2 (= Br) (= Cl)) ◦ (= 2))))

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Br)) ◦ (> 1))

((subgraphs 4) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= S ))) ◦ (= 1))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ ∨2 (= Cl) (= Br)))

(edge ◦ (= S ))) ◦ (= 2))))

top  ∧2 (vertices ◦ ∧2 (domCard (vertex ◦ (= Br)) ◦ (> 0))

(domCard (vertex ◦ (= C )) ◦ (= 1)))

(edges ◦ domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ ∨2 (= Cl) (= Br)))

(edge ◦ (= S ))) ◦ (= 3))
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top  ∧2 (vertices ◦ domCard (top) ◦ (= 8))

(subgraphs 8) ◦ setExists1 (edges ◦∧3

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= S ))) ◦ (= 1))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= H )))

(edge ◦ (= S ))) ◦ (= 4))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ ∨2 (= Cl) (= Br)))

(edge ◦ (= S ))) ◦ (= 2))))

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Cl)) ◦ (= 6))

((subgraphs 3) ◦ setExists1 (edges ◦∧2

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= C ))) ◦ (= 1))

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= O))) ◦ (= 2))))

top  ∧2 (vertices ◦ domCard (vertex ◦ (= Cl)) ◦ (= 0))

((subgraphs 3) ◦ setExists1 (edges ◦∧2

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= C ))) ◦ (= 1))

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= O))) ◦ (= 2))))

top  (subgraphs 3) ◦ setExists1 (edges ◦∧2

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= C ))) ◦ (= 1))

(domCard (connects ◦ msetExists2 (vertex ◦ (= C ))

(vertex ◦ (= O))) ◦ (= 2)))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ ∨3 (= F ) (= Cl) (= I )))

((subgraphs 4) ◦ setExists1 (edges ◦ domCard (∧2

(connects ◦ msetExists2

(vertex ◦ (= C )) (vertex ◦ ∨3 (= Cl) (= F ) (= I )))

(edge ◦ (= S ))) ◦ (= 3)))
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top  ∧2 (vertices ◦ domCard (vertex ◦ (= C )) ◦ ∧2 (> 14) (6 17))

(edges ◦∧3

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= S ))) ◦ ∨2 (= 4) (= 5))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= R))) ◦ (= 12))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= O)))

(edge ◦ (= D))) ◦ (= 2)))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= P)))

((subgraphs 5) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= S ))) ◦ (= 3))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= S )))

(edge ◦ (= D))) ◦ (= 1))))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= P)))

((subgraphs 5) ◦ setExists1 (edges ◦∧3

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= S ))) ◦ (= 2))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= S )))

(edge ◦ (= S ))) ◦ (= 1))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P))

(vertex ◦ ∨2 (= O) (= S )))

(edge ◦ (= D))) ◦ (= 1))))
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top  ∧3 (vertices ◦ setExists1 (vertex ◦ (= P)))

((subgraphs 5) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= S ))) ◦ (= 3))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= D))) ◦ (= 1))))

(edges ◦ setExists2

(∧2 (connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= S )))

(∧2 (connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= Cl)))

(edge ◦ (= S ))))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= P)))

((subgraphs 5) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= S ))) ◦ (= 3))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= P)) (vertex ◦ (= O)))

(edge ◦ (= D))) ◦ (= 1))))

top  ∧3 (vertices ◦ domCard (top) ◦ (6 10))

(edges ◦ domCard (edge ◦ (= D)) ◦ (= 2))

((subgraphs 4) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (top))

(edge ◦ (= D))) ◦ (= 2))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= C )))

(edge ◦ (= S ))) ◦ (= 1))))
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top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= S )))

((subgraphs 5) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= O)) (vertex ◦ (= S )))

(edge ◦ (= D))) ◦ (= 2))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= C )) (vertex ◦ (= S )))

(edge ◦ (= S ))) ◦ (= 2))))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= S )))

((subgraphs 4) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= O)) (vertex ◦ (= S )))

(edge ◦ (= D))) ◦ (= 2))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= N )) (vertex ◦ (= S )))

(edge ◦ (= S ))) ◦ (= 1))))

top  ∧2 (vertices ◦ setExists1 (vertex ◦ (= S )))

((subgraphs 4) ◦ setExists1 (edges ◦∧2

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= O)) (vertex ◦ (= S )))

(edge ◦ (= D))) ◦ (= 2))

(domCard (∧2

(connects ◦ msetExists2 (vertex ◦ (= O)) (vertex ◦ (= S )))

(edge ◦ (= S ))) ◦ (= 1))))

6.4 Relational Reinforcement Learning — Blocks World

In this section, we explore the suitability of reinforcement learning [187] as a basis

for an adaptive agent architecture. Specifically, we take up the approach of relational

reinforcement learning proposed in [68] and [69]. The key idea of this approach is

to use a symbolic learning system (instead of a non-symbolic system like a neural

network) for function approximation. There are several advantages in doing this.

To begin with, a symbolic learning system provides a convenient way to incorporate

domain knowledge that can be used to greatly reduce the size of the search problems

associated with reinforcement learning. Furthermore, the approximated functions,

being in symbolic form, are comprehensible and amenable to explicit manipulation.

An outline of the section is as follows. We present the basic framework and the
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agent algorithm in §6.4.1. The blocks world domain in which we study the agent

architecture is described in §6.4.2. A few interesting experiments are presented in

§6.4.3. We end with some discussions in §6.4.4.

The material presented here, first reported in [49], is joint-work with Joshua Cole

and John W. Lloyd. Joshua Cole implemented the agent and carried out the exper-

iments. Extensions and modifications to ALKEMY needed in support of this appli-

cation, including regression-tree learning and on-line learning, were supplied by the

author. We built on ideas presented in [183] in the design of the hypothesis language

for blocks world. The hypothesis language used is significantly more expressive and

relevant than the one adopted in [69].

6.4.1 The Basic Framework

The agent architecture is based on Markov decision processes. We assume discrete

time, so there is a set T of time steps of the form {0, 1, 2, . . .}.

Definition 6.4.1. A Markov decision process consists of the following:

1. a finite set St of states, for each t ∈ T .

2. a finite set At of actions, for each t ∈ T .

3. for each state st ∈ St and each action at ∈ At, a transition probability distribution

pt(· | st, at), for each t ∈ T .

4. a reward function rt : St ×At → R, for each t ∈ T .

Note that the states, actions, transition probability distribution, and the reward

function are all indexed by the time t. At time t, the agent perceives the current state

st ∈ St and then chooses from amongst the legal actions an action at ∈ At. The next

percept from the environment gives the reward rt(st, at) to the agent and the next

state is st+1 ∈ St+1 with probability pt(st+1 | st, at). It is assumed that the agent does

not know the transition probability distribution nor the reward function.

A solution to a Markov decision process is a policy sequence of the form

π = [π0, π1, π2, . . .]

where each πt is a function called a policy from St toAt. Given the current state st ∈ St

at time t, the action prescribed by the policy sequence is at = πt(st). To find a good

policy sequence, we need a way to evaluate their quality. We define the discounted total

reward V π(s) by following a policy sequence π from an arbitrary initial state s as

V π(s) = E

[

∞
∑

t=0

γtrt(st, at) | π, s0 = s

]

,

where γ is a discount factor satisfying 0 ≤ γ < 1. Given an initial state s, an optimal

policy sequence π∗s can then be defined as

π∗s = arg maxπ V
π(s).
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Figure 6.10: The agent architecture

Thus the agent attempts to find a policy that maximizes its discounted total reward

given some initial state.

We next present a preliminary design of an adaptive agent architecture to solve

the problem. The underlying adaptation algorithm is a form of Q-learning [197] with

function approximation [18]. The approach taken is motivated by the work on rela-

tional reinforcement learning in [68], [69] and [64]. We represent states, actions, and

value functions symbolically. For function approximation, we use (the on-line algo-

rithms of) ALKEMY.

An important innovation introduced in [69], which we adopt in our architecture,

is P -learning. The basic idea is that one can associate with a Q function a boolean-

valued policy function P defined as follows:

P (s, a) =

{

1 if a = arg maxa′ Q(s, a′);

0 otherwise.

The main observation is that the Q function explicitly encodes the path length to a

goal from a given state, and this is complex and specific to particular worlds. By

computing P from Q, one obtains a more compact representation of the policy, and

this has obvious implications for the stability and predictive power of the policy. Fur-

thermore, by carefully crafting the hypothesis languages for P and Q, it is possible to

achieve generalization across problem instances. In other words, given a class of tasks

of similar nature, one can pick an instance from the class, train the agent on that in-

stance to obtain a P function via Q-learning, and then (re)use P as a generic policy to

solve other problems in the same class. This phenomenon will be elaborated further

in §6.4.3.

Figure 6.10 shows an overview of the proposed agent architecture. The agent is

equipped with a policy library. There is a policy for each kind of task the agent

can perform. Each policy is encoded using an Alkemic decision tree, coupled with

an hypothesis search space and constraints on how the tree can be modified. The

agent interacts with the world in the usual manner, by perceiving the environment



§6.4 Relational Reinforcement Learning — Blocks World 145

and performing actions. From these interactions, training examples are generated

which ALKEMY uses to update the policies in the library to improve its performance.

The revision of policies is guided by the learning of Q functions, which provide vital

information about the quality of policies otherwise unavailable to the agent.

Figure 6.11 gives the agent algorithm. Given a task T , the agent selects from the

library a policy that matches the problem and uses it to initialize P and Q. It then

goes into a loop, performing actions by a trade-off between exploitation of P and ex-

ploration of the state space, collecting rewards and observing the effects of its actions.

Training examples are generated to update the P and Q functions in each iteration.

Note that action selection and the two update functions are parameters in the algo-

rithm. Depending on the situation, one may prefer to do more or less exploration.

Further, one may choose different ways and frequencies of updating the P and Q

functions. In §6.4.3, we explore different instantiations of these functions for different

scenarios.

6.4.2 Blocks World

We use blocks world, a simple yet sufficiently rich domain, as a test bed for the pro-

posed agent architecture. Here are some declarations suitable for this domain.

B0, B1, B2, B3, B4, B5, B6, B7, B8, B9,Floor : Object

Stack = List Object

World = {Stack}

OnState = Object ×Object

Intention = {OnState}

Action = Object × Stack

State = World × Intention

Individual = State ×Action.

The number of blocks in the world varies from time to time, but we never use more

than ten blocks. A blocks world is modelled as a set of stacks of blocks. The agent’s

intention is modelled as a set of on-states, where an on-state is a pair of objects, the

first of which is intended to be immediately on top of the second. An action specifies

that some block that is clear should be put on top of some stack. The empty stack

is allowed and is another representation of the floor, so that moving a block to the

empty stack is actually moving the block to the floor. A state is a pair consisting of a

blocks world and an intention. The interpretation is that the agent lives in the world

and intends to achieve the state specified by the intention. In our experiments, the

intentions are provided externally by percepts that the agent immediately accepts as

intentions. Finally, an individual is a pair consisting of a state and an action. Several

functions below whose domain is the set of individuals are the subject of learning.

A block in the world component of an individual is misplaced if its position in

the world is inconsistent with the on-states specified in the intention component of
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Algorithm Agent(T )

input: T , a task;

t := current time;

st := current state;

Pt := policyLibrary [T ].P ;

Qt := policyLibrary [T ].Q;

while T not done

at := selectAction(st, Pt);

perform at;

observe r = rt(st, at) and st+1;

x := ((st, at), r + γmaxa∈At+1
Qt(st+1, a));

Qt+1 := updateQ(Qt, {x});

X := ∅;

for each a ∈ At do

if a = arg maxa′∈At
Qt+1(st, a

′)

then x := ((st, a), 1);

else x := ((st, a), 0);

X := X ∪ {x};

Pt+1 := updateP (Pt,X);

t := t+ 1;

policyLibrary [T ].P := Pt;

policyLibrary [T ].Q := Qt;

Figure 6.11: The agent algorithm



§6.4 Relational Reinforcement Learning — Blocks World 147

the individual. An action is constructive if after the move of the block specified by

the action, neither the block nor any block underneath it is misplaced and the move

achieves an on-state in the intention. Once a block has been moved constructively,

it need not be moved again in the course of achieving the (rest of the) intention. An

individual is deadlocked if no constructive move is possible with respect to the world

and intention components of that individual.

Each Qt function has signature

Qt : Individual → R.

The hypothesis language for each Qt function has a single domain-specific transfor-

mation that has signature

estimatedPathLength : Individual → Int

and is defined as follows. Suppose, in the individual, the action is to move block A on

top of some stack that has block B at the top. Then the value of estimatedPathLength

for that individual is given by

2× number of misplaced blocks in the world

+























−1 if A is intended to be on B

+1 if A is intended to be on C (6= B) or

C (6= A) is intended to be on B

0 otherwise

+

{

−1 if A is misplaced

0 otherwise

+

{

+1 if B is misplaced

0 otherwise.

The function estimatedPathLength is intended to provide an estimate of the short-

est path to a goal (that is, a state satisfying the intention) from the state that results by

applying the action to the current state. Such an estimate is needed to approximate

each Qt function. Note that using a transformation such as estimatedPathLength im-

plies that the agent has some limited knowledge of the effects of its actions. Here is

the predicate rewrite system for the Qt hypothesis language:

top  estimatedPathLength ◦ (= i) where i ∈ {0, 1, . . . , 21}.

Each Qt function for a world in which there are N blocks, represented as a regres-
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sion tree, typically has the following general structure.

Q x = if estimatedPathLength ◦ (= 0) x

then q0

else if estimatedPathLength ◦ (= 1) x

then q1

. . .

else if estimatedPathLength ◦ (= 2N + 1) x

then q2N+1

else qotherwise ,

where q0, q1, and so on, are the various regression values.

Now we turn attention to the policy function. Instead of directly learning a policy

function

πt : State → Action,

a policy relation having signature

policyt : Individual → Ω

is learned. To determine the policy function πt from policyt , we proceed as follows.

Let s be a state. For each action a, determine the value of policyt (s, a). If there is at

least one a for which policyt (s, a) = 1, choose an a arbitrarily amongst all such actions.

Otherwise, choose a arbitrarily amongst all possible actions. Depending on the nature

of policyt , the function πt may thus be non-deterministic.

The hypothesis language for the policy relation requires a number of domain-

specific transformations.

The transformation

extractAction : Individual → Object × Stack × Individual

takes an individual as input and returns the triple consisting of the block in the action,

the stack in the action, and the individual.

The transformation

projA : Object × Stack × Individual → Object × Individual

takes as input a triple consisting of a block, a stack, and an individual, and returns the

pair consisting of the block and the individual.

The transformation

projB : Object × Stack × Individual → Stack × Individual

takes as input a triple consisting of a block, a stack, and an individual, and returns the
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pair consisting of the stack and the individual.

The transformation

noMisplacedNotOnFloorBlock : Individual → Ω

takes as input an individual and returns true, if there is no block in the world com-

ponent of the individual that is misplaced and not on the floor; and returns false,

otherwise.

The transformation

isDeadlocked : Individual → Ω

takes as input an individual and returns true, if there is no constructive move possible

in the world component of the individual; and returns false, otherwise.

The transformation

isMisplaced : Object × Individual → Ω

takes as input a pair consisting of a block and an individual and returns true, if the

block is misplaced in the world component of the individual; and returns false, other-

wise.

The transformation

isFloor : Stack × Individual → Ω

takes as input a pair consisting of a stack and an individual and returns true, if the

stack is empty; and returns false, otherwise.

The transformation

isConstructive : Object × Stack × Individual → Ω

takes as input a triple consisting of a block, a stack, and an individual, and returns

true if moving the block to the stack in the world component of the individual is

constructive; and returns false, otherwise.

The transformations we have introduced thus far will be used to form predicate

rewrite systems for P learning in §6.4.3. Here we see how they can be used to code up

some simple but effective policies for blocks world. We consider two policies, US and

GN1 , that were studied in [183], and a more restricted one, simple .

The simple policy either makes a constructive move or else moves a block to the
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floor. Here is the simple policy as an Alkemic decision tree.

policysimple x = if extractAction ◦ isConstructive x

then 1

else if extractAction ◦ projB ◦ isFloor x

then 1

else 0.

The US (Unstack-Stack) policy puts all misplaced blocks on the floor first and then

builds the goal state by constructive moves. Here is the US policy as a decision tree.

policyUS x =

if ∧2 (noMisplacedNotOnFloorBlock ) (extractAction ◦ isConstructive) x

then 1

else if ∧2 (extractAction ◦ projA ◦ isMisplaced) (extractAction ◦ projB ◦ isFloor ) x

then 1

else 0.

The GN1 policy is as follows: if there is a constructive move, then do it; else arbi-

trarily choose a misplaced block and move it to the floor. Here is the GN1 policy as a

decision tree.

policyGN1 x = if extractAction ◦ isConstructive x

then 1

else if ∧3 (isDeadlocked) (extractAction ◦ projA ◦ isMisplaced)

(extractAction ◦ projB ◦ isFloor ) x

then 1

else 0.

6.4.3 Experiments and Results

This subsection contains discussions of a few experiments carried out and the results

obtained. We start with a description of the basic experimental setup.

In the description of the agent algorithm, the three functions selectAction , updateQ

and updateP referred to in Figure 6.11 are left unspecified. We now state how they are

instantiated in the experiments below.

The function selectAction is used to control the trade-off between adequate explo-

ration of the state space and sufficient exploitation of the (current) policy. An explo-

ration factor N can be specified such that the agent selects a random action N% of the

time, and follows the current policy the rest of the time.

The function updateQ uses the on-line algorithm of ALKEMY (see §4.2.3.2) to retrain

the current Q regression tree at the end of each episode or after 100 moves since the
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last retrain, whichever occurs first.

The function updateP behaves in a similar manner. It also has a few other mech-

anisms in place. In particular, it can choose to ignore training examples collected in

the early phase of learning when the predictive power of the Q regression tree is still

poor. Further, it can delay the retraining of the policy in two different ways: an initial

delay and an accuracy-moderated delay. The first is used to delay retraining until suf-

ficient data is available. The second is used to avoid unnecessary retraining when the

current policy is still good. This works as follows. The empirical error of the current

P decision tree on the current set of training examples is computed every time a re-

training request is issued, and retraining is not performed unless a pre-specified error

threshold is breached.

For Q-learning, the window size for the on-line learning algorithm was set at 200;

for P -learning, the window size was set at 1000. These are reasonable numbers since

there are about five times as many P training examples as Q training examples.

The predicate rewrite system for the Q hypothesis language used in the experi-

ments is as given in §6.4.2. The predicate rewrite system for theP hypothesis language

is as follows.

top  ∧3 top top top

top  extractAction ◦ projA ◦ isMisplaced

top  extractAction ◦ projB ◦ isFloor

top  extractAction ◦ isConstructive

top  isDeadlocked

Graphs showing the results obtained from the three experiments described next

are shown at the end of the section in Figures 6.12–6.14. For each experiment two

graphs are plotted, the first depicting cumulative moves versus episodes, and the

second depicting extra moves versus episodes. Extra moves are moves additional to

what the policy US predicts for a given episode. We have chosen US as a benchmark

because it is near optimal for a small number of blocks [183] and simple to compute.

Note that a consequence of this is that sometimes the number of extra moves plotted

in the second type of graph is a small negative number, when the agent solves an

episode in fewer moves than US .

6.4.3.1 Experiments 1 and 2 — Initialization

These two experiments consider the initialization problem for the agent. In blocks

world, the number of states rises rapidly as the number M of blocks increases. Even

for small values of M , finding a goal state by randomly exploring the state space is

impossible. Some sort of guidance for the agent is thus required. The symbolic nature

of ALKEMY allows us to specify an initial policy for the agent.

Experiment 1 is conducted in a blocks world containing 5 blocks. At each episode

the agent is supplied with a new task of achieving a set of 5 on-states. It receives a

reward at the end of each episode after achieving the specified task.
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In the first instance, the agent is supplied with no initial policy and the selectAction

function specifies a zero exploration factor. The effect of this is that the agent initially

randomly explores the 5-block state space, fully exploiting its (initially empty) current

policy that becomes refined through retraining over time.

In the second instance, the agent is supplied with the initial policy policysimple . The

selectAction function again specifies a zero exploration factor. The updateP function

ignores the training data collected in the first 20 episodes, and delays the retraining of

the initial policy decision tree until after episode 40. The retraining error threshold is

set at 15%.

In both instances the agent eventually converges to a good policy policyGN1 . This

occurs after 52 episodes without guidance and after 71 episodes with guidance. Fewer

overall moves were made, however, with guidance.

Experiment 2 is conducted in a blocks world containing 8 blocks where the task is

to achieve a set of 8 on-states. The number of states in an 8 blocks world is 394,353

compared to 501 for a 5 blocks world (see [183]). In both cases, there is only a sin-

gle goal state. Unguided random exploration does not reach the goal state within a

reasonable time for such a big state space, so guided exploration is mandatory. This

experiment shows the agent converging to policyGN1 after 57 episodes, starting from

policysimple .

The selectAction function for this experiment specifies an exploration factor of 50%

until after episode 20 when it drops (immediately) to zero. The updateP function

ignores the training data collected in the first 10 episodes, and delays the retraining of

the initial policy until after episode 20. The retraining error threshold is set at 15%.

6.4.3.2 Experiment 3 — Adapting to a changing environment

This experiment shows the agent moving between different blocks worlds with min-

imal changes in policy. The experiment is conducted in a blocks world initially con-

taining 5 blocks. At some episode, a new block is added to the environment and, at

a subsequent episode, yet another block is added. The task of the agent is also incre-

mented in the richer environments from sets of 5 on-states to sets of 6 on-states, and

finally to sets of 7 on-states.

The agent is initialized with policysimple and converges to the better policy policyGN1

after episode 21. At episode 30, a 6th block is added and the task incremented to 6 on-

states. The agent continues to achieve its harder tasks by applying the policy it learned

in the simpler world. At episode 37, an inconsistency between the incoming training

examples and the current policy is detected to be higher than the error threshold and

a retraining of the current working policy is triggered. This results in a series of sub-

optimal, but not disastrous, policies until episode 46 at which point they reconverge

to policyGN1 .

At episode 60, a 7th block is added and the task complexity incremented to 7 on-

states. The policy policyGN1 is maintained until episode 128 when the incoming train-

ing data again exceeds the retraining error threshold, triggering a further retraining

of the policy. This results in a suboptimal policy, which is refined over the course of
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Figure 6.12: Experiment 1
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the next few episodes, converging to policyGN1 after episode 136.

The selectAction function for this experiment specifies an exploration factor of 50%

until after episode 20 when it drops to zero. The updateP function ignores the training

data collected in the first 10 episodes, and delays the retraining of the initial policy

until after episode 20. The retraining error threshold is set at 15%.

6.4.4 Discussions

We now draw together some general remarks that can be made on the basis of the

experiments.

The hypothesis language for the Q function is quite different to the hypothesis

language for the policy function. The reason is that the Q function encodes the path

length to the goal, while the policy distinguishes between good and bad actions – they

are different functions that therefore require different hypothesis languages.

The Q function does not have to be perfect in order to get a good policy. This is

partly because the policy is general, that is, is independent of the size of the state, so

small errors in Q can be absorbed by the policy.

Domain knowledge needs to be incorporated to ease the usual search problems

associated with reinforcement learning in large state spaces. The predicate rewrite

system provides a convenient way for encoding this knowledge.

For large search spaces, a good initial policy is highly advantageous in that it can

help the agent find rewards more easily (or, even, at all). The symbolic nature of

ALKEMY helps here as it makes it possible for the agent designer to easily code up

initial policies for this purpose. The idea of integrating guidance into relational rein-

forcement learning is not new, of course; see [65].

Discovering a good policy requires not only a good hypothesis language but also

good training data. In other words, much attention has to be paid to issues such as

adequate exploration of the state space and the size of training windows for the on-

line learning algorithms. Too small a window can lose valuable data, while too large

a window can restrict the agent’s ability to react to a changing environment.

Finally, we remark that methods other than Q learning can be used to learn poli-

cies. For example, a model of the environment could be learned and then planning

techniques employed. This idea is explored in [33] and [88].

6.5 Personalization — An Infotainment Agent

In this section, we study the applicability of ALKEMY to the task of building user

agents that facilitate interaction between a user and the Internet. Specifically, we

concentrate on the topic of personalization in which the agent adapts its behaviour

according to the interests and preferences of the user.

The research is set in the context of an infotainment agent, which is a multi-agent

system that contains a number of agents with functionalities for recommending TV

programs, movies, music and the like, as well as information agents with functional-

ities for searching for information on the Internet. We concentrate on the TV recom-
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mender as a typical such agent and show how a high degree of personalization can

be achieved. The techniques can be ported comparatively easily to other agents of the

system, thus providing a fully personalized infotainment system.

An outline of the section is as follows. In §6.5.1, we describe the infotainment

agent and the TV recommender in more detail. §6.5.2 contains a short discussion of

the learning algorithm used. We state the main function subject to learning and give a

hypothesis language for it in §6.5.3. Some experimental results are presented in §6.5.4.

We conclude with lessons learned and possible future work in §6.5.5.

The material presented here, first reported in [48], is joint-work with Joshua Cole,

Matthew Gray and John W. Lloyd. Joshua Cole and Matthew Gray implemented the

different user agents in the system.

6.5.1 An Infotainment Agent

The infotainment agent is a multi-agent system that combines a number of related

functionalities concerning information search and entertainment. The agents that

comprise the system include a TV recommender, a movie recommender, a music rec-

ommender, a news agent, a search agent, and a diary agent. In addition, there is

a coordinator agent that has the responsibility of handling interactions between the

user and the various agents in the system.

A detailed description of the architecture of the TV recommender is now given.

The architecture of the other agents in the infotainment agent is similar. What func-

tionality do we want the TV recommender to have? When the user first begins to use

the TV recommender it clearly has no knowledge of the interests or preferences of the

user. The aim is to design an adaptive architecture for the TV recommender so that

within a comparatively short time, perhaps several weeks, it is able to make helpful

recommendations to the user. Furthermore, it should improve its performance over

longer periods and accurately track changing user interests and preferences. To get

started, the agent presents a short questionnaire to the user the first time it is used.

The purpose of the questionnaire is to acquire, with as little effort as possible on the

part of the user, some initial idea of the user’s interests and preferences. After that,

the agent collects training examples by observing the user’s activities. Over time, the

agent is expected to be able to make recommendations for programs in specified time

periods (say, ‘next week’ or ‘tonight’) that the user finds helpful.

A detailed description of the most pertinent aspects of the design of the TV recom-

mender is now given. Three domain-specific types, Channel , Genre , and Classification ,

will be needed. Here are the data constructors for these types.

ABC ,Adventure 1 ,Animal Planet ,Arena,

Biography ,BBC World ,Cartoon Network ,

. . .

Sky News,TCM ,Tech TV ,Travel ,

TV1 ,UK TV ,W ,World Movies : Channel
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Action ,ActionAdventureGroup ,Adult ,Animals ,

Animated ,Art ,ArtsMusicLiving,Auto,

. . .

Volleyball ,War ,Watersports ,Weather ,

Western ,WesternGroup,Wrestling : Genre

Y7 ,Y ,G,MA,M14 ,M ,NA : Classification .

There are 49 channels, 115 genres and 7 classifications.

We introduce the following type synonyms.

Date = Day ×Month ×Year

Time = Hour ×Minute

Title = String

Subtitle = String

Duration = Minute

Synopsis = String

Program = Title × Subtitle ×Duration ×

(List Genre)× Classification × Synopsis

Year = Nat

Month = Nat

Day = Nat

Hour = Nat

Minute = Nat

Text = List String .

The agent has access via the Internet to a TV guide (for the next week or so) for all

channels. This database is represented by a function tv guide having signature

tv guide : Date × Time × Channel → Program .

Here the date, time and channel information uniquely identifies the program and the

value of the function is (information about) the program itself. The TV guide consists

of (thousands of) facts like the following one.

((tv guide ((20, 7, 2004), (20, 30),ABC )) =

(“The Bill”, “”, 50, [Drama ],M ,

“Sun Hill continues to work at breaking the people smuggling operation”)).

This fact states that the program on 20 July 2004 at 8.30pm on channel ABC has ti-

tle “The Bill”, no subtitle, a duration of 50 minutes, genre drama, a classification for

mature audiences, and synopsis “Sun Hill continues to work at breaking the people
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smuggling operation”.

6.5.2 Adaptation

For adaptation, we use the decision-list learning algorithm presented in §3.2.3, with

the parameterK set to∞. As shown in §3.5.3, this algorithm behaves well when there

is little noise in the training data, which is what we have in this application.

We keep a current set of training examples for the function we wish to learn. Since

a user’s interests and preferences may change over time, there are times when the

current set of training examples becomes inconsistent, in the sense that the same in-

dividual have two or more distinct class labels. A common (indirect) solution to this

problem is to keep a moving window, removing the oldest training examples as new

ones are received to keep to a limit on the window size. In this application, we prefer

the approach of returning the training set to consistency, even to the point of asking

the user to resolve conflicts, if necessary. This way, a training example could stay in

the training set for a very long time and would only drop out if it contradicted another

training example that was somehow confidently known to be correct. The current im-

plementation uses a simple algorithm to check for consistency.

In the experiments reported in §6.5.4, the decision lists induced are used to make

predictions on new individuals in the usual manner, but we abstain from making a

prediction if the individual reaches the default node, lacking confidence. This means

that the coverage of the learner is usually not 100%.

6.5.3 Personalization of the TV Recommender

As for all learning tasks, the main issue is deciding on a suitable hypothesis language.

This is discussed for the TV recommender now.

The key function that needs to be learned is the function user likes tv program

which takes a TV program as input and returns true if the agent considers the program

to be worth recommending to the user; otherwise, it returns false. Thus the belief base

of the TV agent contains the function user likes tv program that has signature

user likes tv program : Program → Ω

and a definition that is a decision list of the form

user likes tv program x =

if (p1 x) then 1

else if (p2 x) then 0

...

else if (pn x) then 1

else 0,

where p1, . . . , pn are predicates on programs.
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We now discuss the hypothesis language used by ALKEMY that contains these

predicates p1, . . . , pn and is used to learn the definition of user likes tv program . First,

a collection of transformations suitable for use in this application is presented.

We begin with two transformations whose definitions come from user interests

and preferences, and so provide a way of personalizing the hypothesis language for

user likes tv program . One of these is the function genre . To define this, we introduce

the type synonym

Preference = Int ,

where it is understood that only numbers in {−2,−1, 0, 1, 2} are to be used as con-

stants of type Preference . Then

genre : Genre → Preference

is the function that maps each genre into an integer in the range −2 to 2, depending

on how strong a preference the user has for that particular genre. Here is a typical

definition of genre .

genre x =

if ((= Animals) x) then 1

else if ((= Animated) x) then − 2

...

else if ((= Wrestling) x) then − 2

else 0.

This definition states that the user has a modest liking for animal programs, a strong

dislike of animation programs, and so on. The information in this definition is ob-

tained by an initial questionnaire completed by the user and by belief update, if the

user later changes his/her preferences. Our experiments showed that the learner was

able to make good use of the information given by the function genre .

Another transformation obtained from the user is

classification : Classification → Preference

that gives information about the user’s liking for programs having a certain classifi-

cation. A typical definition of classification could be as follows.

classification x =

if ((= Y7 ) x) then − 2

else if ((= Y ) x) then − 2

else 0.

The information in this definition is also obtained by an initial questionnaire.



§6.5 Personalization — An Infotainment Agent 159

The transformation

StringToText : String → Text

takes a string as input and returns the list of words in the order that they occur in

the string (discarding white space between words). Furthermore, words in the output

text are stemmed. Thus

(StringToText “High Technology”) = [“high”, “technolog”].

The transformation

listExists1 : (String → Ω)→ Text → Ω

is defined by

listExists1 p t = ∃x.((p x) ∧ (member x t)).

The predicate (listExists1 p) checks whether some text (that is, a list of strings) con-

tains a string that satisfies p.

The predicate rewrite system for the function user likes tv program is given in Fig-

ure 6.15. The actual strings S used in rewrites of the form

top  (= S)

are the titles and subtitles of all the programs in the (current) set of training examples.

In rewrites of the form

top  (listExists1 (= S )),

the strings S appearing are computed as follows. First, the set of all stemmed words

appearing in titles, subtitles or synopses of programs in the (current) set of training ex-

amples that are not stop-words is formed. Then for each word in this set we compute

the ratio of the number of positive training examples (plus one) in which it appears

divided by the number of negative training examples (plus one) in which it appears.

The set of words is decreasingly ordered by this ratio and the top 100 are used in the

rewrites. The intuition is that these 100 words are good for discriminating between

positive and negative examples. Note that the predicate rewrite system is constantly

changing as new training examples arrive.

Here are typical predicates that appear in induced decision lists for the function

user likes tv program .

projTitle ◦ (= “English Premier League”)

projSynopsis ◦ StringToText ◦ (listExists1 (= “wide”))

projClassification ◦ (= M)
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top  projTitle ◦ top

top  projTitle ◦ StringToText ◦ top

top  projSubtitle ◦ top

top  projSubtitle ◦ StringToText ◦ top

top  projGenre ◦ (listExists1 top)

top  projGenre ◦ (listExists1 genre ◦ top)

top  projClassification ◦ top

top  projClassification ◦ classification ◦ top

top  projSynopsis ◦ StringToText ◦ top

top  (= “The Bill”)

top  (= “South Park”)

. . .

top  (= “Seinfeld”)

top  (= “The Cosby Show”)

top  (listExists1 (= “adventur”))

top  (listExists1 (= “coverag”))

. . .

top  (listExists1 (= “technolog”))

top  (listExists1 (= “war”))

top  (= −2)

. . .

top  (= 2)

top  (= Action)

. . .

top  (= Wrestling)

top  (= Y7 )

. . .

top  (= NA)

Figure 6.15: The predicate rewrite system for the TV recommender
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projGenre ◦ (listExists1 (= Children))

projGenre ◦ (listExists1 genre ◦ (= −1))

projTitle ◦ (= “Edge of the Universe”)

projSynopsis ◦ StringToText ◦ (listExists1 (= “scientist”))

projGenre ◦ (listExists1 (= Business))

Such decision lists usually contain over a hundred decision nodes.

Users also have some level of direct control over the function user likes tv program

since it is possible to add user-defined rules to the learned definition of the function.

For example, a user can add a rule such as:

If the title is “Rugby Union” and the word “Australia” is in the synopsis,

then true.

(This rule assumes the predicate rewrite system is enriched by also allowing conjunc-

tions of conditions.) In general, the predicate in a rule can be any one that is obtainable

from the predicate rewrite system. Since the user-defined rules are checked before the

learned part of the definition, TV programs that satisfy these conditions are guaran-

teed to be classified in the way the user desires.

6.5.4 Experiments and Results

Here we present the results of a number of experiments measuring the performance

of the TV recommender. The four authors of [48] used the system over a two-week

period, training it to personalize to their individual viewing preferences. One person

trained the system twice, in different ways. All experiments were carried out on a

10-channel subset of the full TV guide, chosen by each user.

6.5.4.1 Experiment 1 — Learning under favourable conditions

The first set of experiments was designed to test whether the TV recommender could

personalize to different users when good training data was made available. Two users

used the system in a rigid way, collecting training examples for two hours from the

TV guide each day for two weeks. They provided feedback on every program in those

two hours.

Charts (a) and (b) in Figure 6.16 are learning curves showing the performance of

the system as more training examples were supplied. 10-fold cross-validation experi-

ments were performed after every 10 examples up to 50, and every 25 examples there-

after. Cover, recall, precision and accuracy were calculated in the usual way. The last

three values were calculated on the covered examples only. A Bezier curve of best fit

was plotted on the resulting data points. The charts show a rapid rise in performance

up to approximately 100 examples and a gradual improvement as further examples

were added. The performance on all measures is near 90% after 500 examples, for

both users.



162 Applications

6.5.4.2 Experiment 2 — Learning under real conditions

The second set of experiments tested personalization to different users under more

realistic conditions. Three users used the system on two weeks of TV programming.

They requested recommendations from any time slot and provided training examples

to improve the correspondence between these recommendations and their viewing

preferences. Users generally supplied corrective training examples for incorrect rec-

ommendations or programs for which the TV recommender indicated it was unsure.

Reinforcing training examples could also be supplied.

Charts (d)–(f) in Figure 6.16 are learning curves plotted for each user as in the

previous set of experiments. They show a steep rise in performance after early training

and a more gradual improvement towards the end of the training period. The number

of examples is generally smaller for each user than in the previous experiment. The

final performance is generally lower than in the previous experiment, although still

broadly improving at this point.

6.5.4.3 Experiment 3 — Comparison of learning algorithms

This set of experiments evaluates the decision-list algorithm against more sophisti-

cated learning algorithms.

The table in Figure 6.16 records the final number of examples (Ex) collected for

each user as well as their positive (Ex+) and negative (Ex−) breakdowns. Also shown

are decision-list 10-fold cross-validation results for cover (DL Cov), recall (DL Rec),

precision (DL Prec) and accuracy (DL Acc) on the final datasets.

For the purpose of comparison, the boosting algorithm AdaBoost [78] was used.

AdaBoost is arguably the best off-the-shelf algorithm available, and its performance

gives a good indication of the kind of accuracy attainable by other state-of-the-art

learners.

We used single predicates defined by the predicate rewrite system given in Figure

6.15 as base classifiers. The number of iterations was set at 400 after some experimen-

tation.

10-fold cross validation results on the final datasets generated by each user are

reported in the table in Figure 6.16 alongside the corresponding results achieved by

the decision-list algorithm. In general terms, the numbers suggest that AdaBoost per-

forms slightly better, but the decision-list algorithm is not far behind. (However this

comparison is unfair to AdaBoost which makes a prediction on every example.)

This confirms that in this particular application, the use of a symbolic learning

algorithm does not incur a significant cost in terms of accuracy.

6.5.4.4 Discussion

In all the experiments the performance of the system was evaluated using 10-fold

cross validations. One could also use an independent test set to collect performance

statistics. This was in fact done for each user and the results closely correspond. As

an example we have included the test-set results for user 2 in Chart (c).
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User Ex Ex+ Ex− DL Cov DL Rec Boost Rec DL Prec Boost Prec DL Acc Boost Acc

1 540 283 257 88.67 90.57 80.24 89.69 91.16 89.13 90.12

2 520 232 288 98.46 97.15 92.67 97.02 94.64 97.27 94.23

3 377 146 231 77.43 71.37 54.98 71.44 79.09 77.40 74.79

4 220 68 152 81.75 71.21 63.48 77.05 81.97 80.79 84.55

5 248 126 122 92.60 75.63 82.50 83.52 84.63 78.85 83.03

Figure 6.16: Charts and table of results
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The first set of experiments suggest that it is possible for the TV recommender to

personalize well to different users, given sufficient training data. This is due in part

to the nature of the problem. Television programming tends to be rather repetitive.

Programs with the same title are scheduled cyclically at daily, weekly and sometimes

hourly periods. In these circumstances instance-based learning is expected to perform

well. This form of learning is captured implicitly by the use of predicates that test for

equality of program titles in the decision lists. This works well in combination with

more conventional rule-based learning that exploits more general conditions in the

hypothesis language.

The second set of experiments suggest that real-world learning is more problem-

atic. Collecting sufficient training data is difficult. Users in general prefer to give

minimal feedback, mostly correcting mistakes as they occur. They also expect the TV

recommender to make useful predictions on times of the day not previously trained

on.

The results for user 3 show that even after a moderately large period of training,

the TV recommender can fail to perform to expectation. This user chose two special-

ist movie channels from the TV guide and noted that the system performed poorly

on movies compared with the more day-to-day TV programming of other channels.

One reason for this is that there is in general an insufficient overlap between a per-

son’s preference for movies and TV programs for it to be possible to learn a theory

that models both simultaneously. This suggests the need for a separate movie recom-

mender with a more appropriate representation of movie individuals. We also note

that the meta-data for movies in the TV guide was not very rich. For example, the

genre for many movies was often simply designated as ‘movie’.

Users 4 and 5 reported that subjectively the system performed well enough, and

that further training to improve performance seemed unnecessary.

6.5.5 Conclusions and Future Work

In this section, we have described the application of ALKEMY to personalization of

an infotainment agent, concentrating particularly on a TV recommender. The results

suggest that a high level of personalization can be achieved.

One promising technique for improving the performance of the agent is that of

active learning. The idea of this is that the agent should proactively seek training

examples for the predictions it is most unsure about as measured by some confidence

factor. In practice, this would mean that the TV recommender would occasionally

directly ask the user about some particular program. This approach would relieve the

user of some of the responsibility of giving good training examples to the agent.

6.6 Other Applications

ALKEMY has been used in various other applications. In [31], we applied the sys-

tem to the benchmark problem of mutagenicity prediction [186] and obtained good
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results. (The basic findings of that exercise are summarized in §7.2.2.1.) We have also

incorporated ALKEMY into an intelligent email sorter [51] with some success.

Other researchers have also found ALKEMY useful. The system was used to learn

classification rules for XML documents in [202]. It has also been used in the context of

relational reinforcement learning in [33] and [88]. In [160], Alkemy was applied to the

problem of constructing adaptive BDI agents.

One pound of learning requires ten pounds

of common sense to apply it.

Persian Proverb
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Chapter 7

Comparison and Evaluation

Your true value depends entirely on

what you are compared with.

Bob Wells

This chapter presents a comparative study of ALKEMY in relation to closely re-

lated work in the literature, mainly in the field of Inductive Logic Programming (ILP).

A qualitative analysis of the practical differences between learning in first-order logic

and learning in our higher-order setting is presented in Sect. 7.1. A quantitative anal-

ysis of the performance of ALKEMY compared to other learning systems is then given

in Sect. 7.2.

7.1 First-order vs Higher-order Learning: Practical Differences

The comparison is centred around the following three aspects of symbolic learning:

1. the underlying programming language used;

2. the way individuals are represented; and

3. the way hypothesis languages are constructed.

In each case, the approach taken in ALKEMY is compared with representative solu-

tions employed in standard ILP systems. To draw out the essential differences, we

will occasionally use as case studies applications discussed in Chapter 6.

7.1.1 Programming Language

From a user’s perspective, the most obvious and fundamental difference between

learning in first-order logic and learning in our higher-order setting is the need to

work with two rather distinct declarative styles of programming. Just about every

ILP system is built on Prolog. ALKEMY, in turn, is built on Escher [129].

The basic computational mechanisms lying at the heart of the two languages are

different. The computational mechanism underlying Prolog is first-order resolution

theorem proving [127], whereas that underlying Escher is equational reasoning [130,

Chap. 5]. The basic programming construct in Prolog is a Horn clause, which is a

167
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disjunction of literals that contains at most one positive literal. These are used to

define facts, rules, and queries. The basic construct in Escher is a statement, which is

a term of the form h = b where h has the form f t1 . . . tn, n ≥ 0, for some function

symbol f . Statements are used to define functions.

The logical foundations of the two languages are rather different, but from a prac-

tical programming perspective, Escher and Prolog have two important things in com-

mon. Like most other declarative languages, the concepts of pattern matching and

function definition through basic recursion feature prominently in the two languages.

The definition of many common functions encountered in programming problems

can be written down in largely similar form in the two languages. To give an exam-

ple, we show how quicksort is written in the two languages. Here is quicksort written

in Prolog.

qsort( [],[] ).
qsort( [X | Tail], Sorted) :-

split( X, Tail, Small, Big),
qsort( Small, SortedSmall),
qsort( Big, SortedBig),
concat( SortedSmall, [X | SortedBig], Sorted).

split( _, [], [], []).
split( X,[Y | Tail], [Y | Small], Big) :-

X > Y, !
split( X, Tail, Small, Big).

split( X, [Y | Tail], Small, [Y | Big] ) :-
split( X, Tail, Small, Big).

concat([],L,L).
concat( [X | L1], L2, [X | L3]) :- concat( L1, L2, L3).

Here is quicksort written in Escher.

qsort :: List a -> List a
qsort [] = []
qsort x:y = concat (qsort (filter (<= x) y),

x:(qsort (filter (> x) y)))

filter :: (a -> Bool) -> List a -> List a
filter p [] = []
filter p x:y = if (p x) then x:(filter p y) else (filter p y)

concat :: List a * List a -> List a
concat ([], x) = x
concat (u:x, y) = u:(concat (x, y))

As can be seen, the two definitions look very much alike.

In the context of learning, there are two important practical differences between

Prolog and Escher, however. First of all, the basic entities we define and manipu-

late in Prolog are relations; in Escher, they are functions. The methods available for
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combining basic entities to form complex concepts are therefore different in the two

languages. To compose separate relations in Prolog, we use common variables as ar-

guments to different predicates. This style of programming is available in Escher (see

[130, §5.3]), but the main methods for combining functions in Escher are functional

composition and the use of functions as arguments to (higher-order) functions. This

latter style of programming is not available in Prolog, since the two operations are

essentially higher-order concepts that cannot be defined in first-order logic. The two

different styles of programming described account for all the differences in the two

definitions of quicksort given above. As we shall see in §7.1.3, these differences have

implications in the context of learning.

The second important difference between the languages is that Escher is strongly

typed whereas Prolog is only (very) weakly typed. Strong typing is an essential part of

almost all modern programming languages, declarative or not. As we will see below,

the fact that Prolog is more-or-less untyped is an inconvenience that ILP systems have

to deal with all the time.

7.1.2 Representation of Individuals

Two distinct approaches to representation of individuals are taken in first-order and

higher-order learning. ALKEMY represents individuals by basic terms, adhering to

the general principle in logic that (closed) terms denote individuals. In contrast, most

ILP systems represent individuals using databases of facts. To illustrate the difference,

we show how a molecule in the PTC dataset (see §6.3.1) is represented under the two

schemes.
A typical ILP system will represent the molecule as follows.

atom(’118’,’118_1’). element(’118_1’,c).
atom(’118’,’118_2’). element(’118_2’,c).
atom(’118’,’118_3’). element(’118_3’,i).
...
atom(’118’,’118_19’). element(’118_19’,h).
atom(’118’,’118_20’). element(’118_20’,h).
atom(’118’,’118_21’). element(’118_21’,h).

bond(’118’,’118_1_2’). bond_type(’118_1_2’,S).
connected(’118_1’,’118_2’,’118_1_2’).
connected(’118_2’,’118_1’,’118_1_2’).
...
bond(’118’,’118_9_21’). bond_type(’118_9_21’,S).
connected(’118_9’,’118_21’,’118_9_21’).
connected(’118_21’,’118_9’,’118_9_21’).

The individual is named ’118’ and we have a database of facts about it. Each of its

constituent atoms needs to be explicitly named so that information about the atom

can be stored and a link to the constant ’118’ can be made. The same is true for each

of its bonds. Notice how the predicates are used to mimic a type system, which is not

available in Prolog.
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The same molecule can be represented in ALKEMY in the following way.

Mol118 :: Graph Element Bond
Mol118 = ({ (1,c), (2,c), (3,i), (4,c), (5,c), (6,o), (7,c),

(8,c), (9,o), (10,o), (11,h), (12,h), (13,h),
(14,h), (15,h), (16,h), (17,h), (18,h), (19,h),
(20,h), (21,h) },

{ ({ (4,1), (10,1) }, S), ({ (7,1), (10,1) }, S),
({ (1,1), (11,1) }, S), ({ (1,1), (12,1) }, S),
({ (1,1), (13,1) }, S), ({ (2,1), (14,1) }, S),
({ (4,1), (15,1) }, S), ({ (5,1), (16,1) }, S),
({ (5,1), (17,1) }, S), ({ (7,1), (18,1) }, S),
({ (8,1), (19,1) }, S), ({ (1,1), (2,1) }, S),
({ (8,1), (20,1) }, S), ({ (9,1), (21,1) }, S),
({ (2,1), (3,1) }, S), ({ (2,1), (4,1) }, S),
({ (4,1), (5,1) }, S), ({ (5,1), (6,1) }, S),
({ (6,1), (7,1) }, S), ({ (7,1), (8,1) }, S),
({ (8,1), (9,1) }, S) })

This representation is compact and all information about the individual is contained

in one place. There is also no need to name every constituent part of the molecule. In

the author’s view, this is a more direct way of capturing the same information.

Aesthetically, the higher-order approach to representation of individuals is ar-

guably more satisfactory. From a practical perspective, however, there is little to

choose between the two. Whatever can be done with one can be done with the other.

In fact, each one can always be recovered from the other, if necessary.

7.1.3 Construction of Hypothesis Languages

The predicate construction mechanism employed in ALKEMY is closely related to the

body of work on refinement operators in ILP. Starting from the most general pred-

icate top, ALKEMY conducts a general-to-specific search in a space of predicates de-

fined by a predicate rewrite system. This is similar to top-down ILP systems that start

from some initial theory and repeatedly apply (downward) refinement operators to

specialize the current theory in its search for a good hypothesis. Applying a predicate

rewrite in our setting thus corresponds to applying a refinement operator in top-down

ILP systems.

We now compare the specifics of the two mechanisms, starting from the concept

of generality employed in the two approaches. The downward refinement operators

used in top-down ILP systems are built around a syntactic notion of generality called

θ-subsumption. Given a clause c, such operators can perform the following two basic

operations to construct (logically stronger) new clauses from c:

1. apply a substitution to the clause; or

2. add a literal to the body of the clause.

While this syntactic θ-subsumption-based notion of generality is convenient from a

computational perspective, it is also narrow in scope and captures only a small part

of semantic generality.
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In contrast, the concept of generality employed in predicate rewrite systems is

much more general and less well-defined. (This is a conscious design decision.) Given

a predicate rewrite system , one can enrich it in arbitrary ways by adding another

predicate rewrite p  q as long as one can show that

1. the type of p is more general than the type of q;

2. ∀x.((p x)← (q x)); and

3. the predicate q is monotone with respect to .

The latter two conditions are not always easy to check, but this mechanism does allow

one the flexibility of being able to use generality concepts that are much more power-

ful than simple syntactic notions like θ-subsumption.

Complex hypotheses are formed by composing simpler constructs. This is done

differently in the two logical settings. We now compare them.

As mentioned earlier, the basic entities in ILP systems are relations and these are

linked together by the use of common variables. Unfortunately, these variables are

actually quite hard to control. There are three basic problems. First of all, they are

untyped and the designers of many ILP systems saw the need to introduce ad hoc type

systems to limit their scope. For example, TILDE has an (extra-logical) mechanism for

specifying types; see [22, §6.4]. Many other systems also have similar facilities.

The second problem with the use of variables is that if one is not careful about their

placements and contexts when adding new literals, lots of meaningless hypotheses

can get generated. A few mechanisms like mode declarations, used in both TILDE

and S-CART, have been invented in ILP to control the use of variables, but they are

not very satisfactory solutions.

The third problem with variables is that their careless use can result in semantic

difficulties. We give an example here. Variables are shared across decision nodes in

TILDE. For that reason, a first-order tree induced by TILDE cannot actually be inter-

preted in the same way as a propositional decision tree; to understand what it means,

a correspondence with a Prolog program need to be made; see [23, §5.3]. In practical

terms, this means that the class of hypotheses considered by TILDE for a particular

application may not actually correspond to what the user expects. Take for instance

the Musk problem considered earlier in §6.2.4. TILDE trees of depth higher than one

cannot precisely capture the strict multiple-instance concept intended for the prob-

lem. The concept can only be captured if the learning algorithm is restricted to learn

stumps or lists. (See, for more details, [25].) This is the kind of subtlety that will surely

be lost on a naı̈ve user.

In the case of ALKEMY, predicates are formed by composing simpler functions

called transformations. This method banishes the use of variables altogether from

predicate rewrites and the predicates constructed – variables are only needed to define

the transformations, after that they do not appear. One should note that this approach

is not available to first-order ILP systems because higher-order functions are needed

to make these work.
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We now move on to consider the merits of predicate rewrite systems as a language

bias compared to related approaches in ILP. Predicate rewrite systems can be thought

of as a grammar for generating predicates. Similar grammatical constructs have been

used in ILP for a long time. Examples of these include S-CART’s schemata [115, Chap.

6], ICL’s DLab templates [58] and Cohen’s antecedent description grammars [42]. The

last of these in fact bears close resemblance to predicate rewrite systems; see [31, §9]

for a comparison. There is nothing to choose between these different ways of specify-

ing grammars. They are all useful for the purpose they are intended to serve.

We end the discussion with some references. Refinement operator theories are

covered extensively in [144, §5], [122, Chap. 3] and [156, Chap. 17]. Good discussions

on declarative language bias can be found in [144, §7] and [115, Chap. 6].

Honest differences are often a healthy sign of progress.

Mahatma Gandhi

7.2 Quantitative Performance Comparisons

In this section, we give a quantitative analysis of ALKEMY’s performance compared

to related learning systems. §7.2.1 studies ALKEMY’s performance on attribute value

data; §7.2.2 examines its performance on structured data.

7.2.1 ALKEMY’s Performance on Attribute Value Data

The first experiment is aimed at establishing a baseline for ALKEMY. ALKEMY is de-

signed from the outset to deal with structured data, but one hopes that in the de-

generate case of attribute value data, its performance is no worse than conventional

propositional learners. In a sense, this experiment is just a sanity check.

We will concentrate on comparing the performance of C4.5 and ALKEMY here.

We can focus on C4.5 because there is already a great body of work comparing C4.5

to other propositional learners. Once we understand the relative performance of

ALKEMY and C4.5, we can tap into the literature to understand where ALKEMY sits

with respect to other propositional learning algorithms.

7.2.1.1 Experimental Setup

As is usual in the field of machine learning, we will compare the two systems on a

reasonable collection of datasets from the UCI repository. The datasets chosen for this

particular study are described in Table 7.1. The first six datasets listed were employed

in a similar study on FOIL reported in [39]. (The other datasets used in [39] are no

longer available in the UCI repository.) The remaining three datasets were picked at

random from the repository.
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Domain Instances Discrete Continuous
Attributes Attributes

Monk-1 124 6 0
Monk-2 169 6 0
Monk-3 122 6 0

Promoters 106 57 0
Iris 100 0 4

Credit 690 9 6
Votes 435 16 0

Mushroom 8124 22 0
Audiology 200 69 0

Table 7.1: Domain descriptions

We next discuss the setup of learning parameters. C4.5 defines its own set of de-

fault tests given the description of instances in a dataset. To learn with ALKEMY, we

need to first decide on a default hypothesis language for attribute value data. The

following is used. For each discrete attribute A with n possible values, we construct n

predicates of the form

proj A ◦ (= X)

where X takes on all possibles values of the attribute. Continuous attributes are han-

dled in the usual fashion as in CART. For each such attribute (call it B), we first sort

all the values that occur in the dataset for that attribute to obtain a list [v1, v2, . . . , vm],

removing duplicates as necessary. We then construct m− 1 predicates of the form

proj B ◦ (= ji)

where ji is defined to be (vi + vi+1)/2. One should note that the hypothesis language

for ALKEMY just described is a strict subset of the kind of predicates that would be

considered by CART; see [32, p. 29].

For learning, the default options for C4.5 are used. Both C4.5 trees and C4.5 rules

were induced for each dataset. ALKEMY is set up to learn decision trees only. Tree

post-pruning is switched on with an appropriate percentage of training examples set

aside for validation in each case.

For error estimation, leave-one-out cross validation is used whenever it is compu-

tationally feasible. Ten-fold cross validation is used otherwise.

7.2.1.2 Results

The results of the experiment are presented in Table 7.2. The error rate (in percentage)

is shown in each entry.

We first compare the performance of Alkemic trees with C4.5 trees. As can be
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Domain C4.5 ALKEMY

Trees Rules

Monk-1 24.3 0.0 8.8
Monk-2 35.0 34.7 11.57
Monk-3 2.8 3.7 2.8

Promoters 17.0 10.4 17.0
Iris 8.0 6.0 4.0

Credit 15.1 15.5 13.6
Votes 3.2 3.9 4.1

Mushroom 0.0 0.1 0.0
Audiology 22.1 22.5 26.5

Table 7.2: Results obtained by C4.5 and ALKEMY on some UCI datasets

seen, there is not a great deal of difference between the two in most cases, although

ALKEMY seems to have a significant edge on Monk-1 and Monk-2.

We next examine the relative performance between Alkemic trees and C4.5 rules.

In cases where the (heuristic) rules-generation algorithm of C4.5 actually works (this

clearly happens in the case of Monk-1 and Promoters), C4.5 rules enjoys better perfor-

mance compared to Alkemic trees. In all other cases, C4.5 rules performs at the same

level as C4.5 trees and Alkemic trees. This suggests that ALKEMY can probably benefit

from the incorporation of C4.5’s rules-generation algorithm.

7.2.1.3 Discussion

As far as such experiments can tell us, we can conclude that the predictive perfor-

mance of C4.5 and ALKEMY are mostly comparable. This shows that ALKEMY does

not perform worse than propositional decision-tree learners when the data degener-

ate to simple feature vectors. In a way, this conclusion is not surprising since one can,

with appropriate set up of learning parameters, make ALKEMY behave exactly like

CART.

A related question is whether there is an inherent computational cost associated

with the use of a rich language setting in ALKEMY. While C4.5 runs noticeably faster

than ALKEMY in all cases, one should note that all the experiments ran in seconds,

often less than a second. I don’t believe there is an inherent computational cost asso-

ciated with the use of a rich language setting in ALKEMY. The C4.5 system runs faster

simply because it is a much more optimized learner.

7.2.2 ALKEMY’s Performance on Structured Data

In this section, we compare ALKEMY against some standard ILP systems on structured

data. The comparative results are drawn from our experience with two benchmark

datasets: Mutagenesis and Musk.
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Material presented in this section first appeared in [31]. The Mutagenesis exper-

iments reported there were all performed by the author. The Musk experiments re-

ported were jointly performed by Xiaobing Wu and the author.

7.2.2.1 Mutagenesis

The Mutagenesis dataset has been studied extensively in the field of ILP. The basic

problem involves learning a theory to predict whether a chemical molecule is muta-

genic or not. The problem has been described many times in the literature; the reader

is referred to [186] and [107] for details on this important and interesting problem.

To solve the problem using ALKEMY, we first need to decide on a representation

scheme for molecules. Each molecule in the dataset is described by four attributes,

its physical structure and three chemical descriptors called I1, Ia and ǫLUMO . The

meaning of the latter three are explained in [107].

An (undirected) graph is used to model the structure of a molecule. The type

Element is the type of the (relevant) chemical elements.

Br , C,Cl , F,H, I,N,O, S : Element .

Here are the type declarations.

I1 = Ω

Ia = Ω

ǫLUMO = Float

AtomType = Nat

Charge = Float

Atom = Element ×AtomType × Charge

Bond = Nat

Structure = Graph Atom Bond

Molecule = I1 × Ia × ǫLUMO × Structure.

The set of 188 regression-friendly molecules is used in our experiment. We want

to learn the definition of the function mutagenic having the following signature.

mutagenic : Molecule → Ω.

The hypothesis language contains the following transformations.

(= 1) : I1 → Ω

(= 0) : I1 → Ω

(= 1) : Ia → Ω

(= 0) : Ia → Ω

(≤ −3.718) : ǫLUMO → Ω
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(≤ −3.368) : ǫLUMO → Ω

(≤ −3.168) : ǫLUMO → Ω

(≤ −3.018) : ǫLUMO → Ω

(≤ −2.668) : ǫLUMO → Ω

(≤ −2.418) : ǫLUMO → Ω

(≤ −0.718) : ǫLUMO → Ω

(≥ −3.418) : ǫLUMO → Ω

(≥ −3.218) : ǫLUMO → Ω

(≥ −3.068) : ǫLUMO → Ω

(≥ −2.918) : ǫLUMO → Ω

(≥ −2.618) : ǫLUMO → Ω

(≥ −2.368) : ǫLUMO → Ω

(≥ −0.668) : ǫLUMO → Ω

(= Br) : Element → Ω

...

(= S) : Element → Ω

(= 1) : AtomType → Ω

(= 3) : AtomType → Ω

...

(= 232) : AtomType → Ω

(≥ −0.781) : Charge → Ω

(≥ −0.424) : Charge → Ω

(≥ −0.067) : Charge → Ω

(≥ 0.290) : Charge → Ω

(≥ 0.647) : Charge → Ω

(≥ −0.424) : Charge → Ω

(≥ −0.067) : Charge → Ω

(≥ 0.290) : Charge → Ω

(≥ 0.647) : Charge → Ω

(≥ 1.004) : Charge → Ω

(= 1) : Bond → Ω

(= 2) : Bond → Ω

(= 3) : Bond → Ω

(= 4) : Bond → Ω

(= 5) : Bond → Ω

(= 7) : Bond → Ω



§7.2 Quantitative Performance Comparisons 177

(> 0) : Nat → Ω

(> 1) : Nat → Ω

(> 2) : Nat → Ω

(> 3) : Nat → Ω

(> 4) : Nat → Ω

projI 1 : Molecule → I1

projI a : Molecule → Ia

proj ǫLUMO : Molecule → ǫLUMO

projStructure : Molecule → Structure

projElement : Atom → Element

projAtomType : Atom → AtomType

projCharge : Atom → Charge

vertices : Structure → {Vertex Atom Bond}

edges : Structure → {Edge Atom Bond}

vertex : Vertex Atom Bond → Atom

edge : Edge Atom Bond → Bond

connects : Edge Atom Bond → (Vertex Atom Bond → Nat)

domCard : (Vertex Atom Bond → Ω)→ {Vertex Atom Bond} → Nat

domCard : (Edge Atom Bond → Ω)→ {Edge Atom Bond} → Nat

msetExists2 : (Vertex Atom Bond → Ω)→ (Vertex Atom Bond → Ω)→

(Vertex Atom Bond → Nat) → Ω

∧2 : (Charge → Ω)→ (Charge → Ω)→ Charge → Ω

∧2 : (Atom → Ω)→ (Atom → Ω)→ Atom → Ω

∧3 : (Atom → Ω)→ (Atom → Ω)→ (Atom → Ω)→ Atom → Ω

∧2 : (Molecule → Ω)→ (Molecule → Ω)→ Molecule → Ω

∧3 : (Molecule → Ω)→ (Molecule → Ω)→ (Molecule → Ω)→ Molecule → Ω

∧4 : (Molecule → Ω)→ (Molecule → Ω)→ (Molecule → Ω)

→ (Molecule → Ω) → Molecule → Ω.

For the hypothesis language, we experimented with a few ideas and eventually

settled on the following predicate rewrite system, which examines, in addition to the

three chemical descriptors, the number of occurrences of certain kinds of atoms in the

molecule. One can look at more complicated hypothesis languages, but this is the

simplest one that achieves good result on the problem.

top  ∧4 (projI 1 ◦ top) (projI a ◦ top) (proj ǫLUMO
◦ top) (projStructure ◦ top)

top  vertices ◦ (domCard (vertex ◦ top)) ◦ (> 0)
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top  projElement ◦ top

top  projAtomType ◦ top

top  projCharge ◦ top

top  ∧2 (projAtomType ◦ top) (projCharge ◦ top)

top  (= 1)

top  (= 0)

top  (≤ −0.718)

(≤ −0.718)  (≤ −2.418)

...

(≤ −3.368)  (≤ −3.718)

top  (≥ −3.418)

(≥ −3.418)  (≥ −3.218)

...

(≥ −2.368)  (≥ −0.668)

top  (= Br)

...

top  (= S)

top  (= 1)

top  (= 3)

...

top  (= 232)

top  (≥ −0.781)

(≥ −0.781)  (≥ −0.424)

...

(≥ 0.647)  (≥ 1.004)

top  (= 1)

...

top  (= 7)

(> 0)  (> 1)

(> 1)  (> 2)

(> 2)  (> 3)

(> 3)  (> 4).

Using the predicate rewrite system given, the learner searched for a definition

for mutagenic with the prune parameter set to 100%. On a 10-fold cross-validation,
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ALKEMY achieved an average accuracy of 89.39%. The whole exercise took only a few

minutes on a 3 GHz Intel machine. The following simple definition for mutagenic was

found. (Note that to improve readability, we have taken the liberty to remove pred-

icates of the form projA ◦ top, where A is some attribute, from the definition actually

induced by ALKEMY.)

mutagenic m =

if ∧2 (projI 1 ◦ (= ⊥)) (proj ǫLUMO
◦ (≥ −2.368)) m

then if projStructure ◦ vertices ◦

(domCard (vertex ◦ projAtomType ◦ (= 38))) ◦ (> 1) m

then if projStructure ◦ vertices ◦ (domCard (vertex ◦ (∧2

projAtomType ◦ (= 22) projCharge ◦ (≥ −0 ◦ 067)))) ◦ (> 0) m

then 0

else 1

else 0

else 1.

“A molecule is mutagenic iff either

(i) I1 is true, or

(ii) ǫLUMO < −2.368, or

(iii) I1 is false, ǫLUMO ≥ −2.368, it has at least two atoms of type 38, and it does not

have an atom of type 22 and charge ≥ −0.067.”

Table 7.3 lists the best accuracies achieved by different ILP systems on the Mutage-

nesis dataset, obtained without constraining the hypothesis language in any way. The

accuracy reported for STILL was estimated by running the system on multiple random

90%-10% partitions of the data into training and test sets. All the other accuracies were

estimated using 10-fold cross validations.

System % correct

Progol 88.0
FOIL 86.7
STILL 93.6
TILDE 86.0

ALKEMY 89.4

Table 7.3: Accuracies obtained by different learners on the Mutagenesis dataset

As can be seen, in terms of predictive accuracy, ALKEMY compares well against

other ILP systems on this particular domain. The mutagenic theory induced is also

attractively simple.
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7.2.2.2 Musk

We next look at the Musk problem. This problem has earlier been introduced in Sect.

6.2. We use the same representation scheme described there, repeated here for conve-

nience.

−6,−5, . . . , 5, 6 : Distance

Conformation = Distance × · · · ×Distance

Molecule = {Conformation}.

Molecules with a musk odour are labelled true, and those without are labelled false.

The function musk we want to learn thus has signature musk : Molecule → Ω. The

hypothesis language contains the following transformations.

(= −6) : Distance → Ω

...

(= 6) : Distance → Ω

(6= −6) : Distance → Ω

...

(6= 6) : Distance → Ω

proj 1 : Conformation → Distance

...

proj 166 : Conformation → Distance

setExists1 : (Conformation → Ω)→ Molecule → Ω

∧2 : (Conformation → Ω)→ (Conformation → Ω)→ Conformation → Ω

...

∧9 : (Conformation → Ω)→ · · · → (Conformation → Ω)→ Conformation → Ω.

We worked with predicate rewrite systems having the following general form.

top  setExist1 (∧k top . . . top)

top  proj 1 ◦ (= −6)

top  proj 1 ◦ (= −5)

...

top  proj 166 ◦ (6= 5)

top  proj 166 ◦ (6= 6)

The main parameter of interest here is k, the number of conjuncts in the predicate in

the argument to setExists1. We experimented with different values of k in the range 2
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Algorithm % correct

EM-DD 96.0
Iterated-discrim APR 89.2

GFS elim-kde APR 80.4
C4.5 58.8

Backpropagation net 67.7
TILDE 79.4

RIPPER-MI 77.0
Relic 87.3

ALKEMY 83.5

Table 7.4: Accuracies obtained by different learners on the Musk2 dataset

to 9 and eventually settled on k = 3.

Using the predicate rewrite system stated, experiments were carried out on the

Musk2 dataset. This dataset contains 102 examples, of which 39 are musk and 63 are

not. The 102 molecules have a total of 6598 conformations. A suitably parallelized

version of ALKEMY (see [31]) was set up with the prune parameter set to 100% and

the cutout parameter set to 25000. To learn multiple-instance concepts, the decision-

stump algorithm was used.

Over three 10-fold cross validations, ALKEMY achieved an average accuracy of

83.5%. The following definition for the function musk was induced.

musk m =

if setExists1 (∧3 (proj 29 ◦ (6= −4)) (proj 132 ◦ (= −2)) (proj 119 ◦ (= 1))) m

then 1

else 0.

Table 7.4 lists the accuracies obtained by other systems on the Musk2 dataset.

Overall, the performance of ALKEMY is competitive. Naturally, it outperforms propo-

sitional learners like C4.5 and neural networks, which clearly cannot cope well with

multiple-instance data. While unable to match specially designed multiple-instance

learning algorithms like EM-DD and Iterated-discrim APR, ALKEMY compares well

with other general purpose ILP systems like TILDE, RIPPER-MI and Relic. This experi-

ment again confirms that ALKEMY is competitive with respect to existing ILP systems.

To compare is not to improve.

John French
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Chapter 8

Conclusion

We conclude with a discussion of the research contributions and some future work.

8.1 Thesis Contributions

The contribution of this thesis is, above all else, in providing some answers to the two

questions stated in Section 1.3.

On the nature of learning with expressive languages

The whole of Chapter 3 was devoted to a treatment of this subject.

On the question of approximation, Section 3.3 brings out the interesting interplay be-

tween boolean connectives introduced explicitly through the predicate rewrite system

and those introduced implicitly through the choice of the tree-learning algorithm, and

from that, clarifies the relationships between natural Alkemic function classes.

On the question of estimation, Section 3.4 discusses a few error bounds suitable for

use with ALKEMY and presents techniques for calculating the VC dimensions of pred-

icate classes defined on different data types. The analysis highlights the danger of

overfitting brought about by the use of rich expressive languages for representing

individuals and hypothesis spaces, and partly explains some of the phenomena ob-

served in practice. The VC dimension results may have wider applications beyond

ALKEMY.

On the question of computation, Section 3.5 spells out the inherent complexity of the

different optimization problems associated with learning and describes various tech-

niques – the tricks of the trade – for easing the computational burden associated with

the use of massive predicate search spaces.

Building upon the above, Section 3.6 presents results on the efficient learnability of

Alkemic function classes in the PAC and agnostic PAC models. Learnability issues in

practical applications are also discussed.

An understanding of these theoretical questions provides guidance in the crafting of

hypothesis spaces and selection of algorithms in practical applications of the system.
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On relevance and applicability

This issue was dealt with in Chapters 4, 5, and 6.

We need to develop different tools before we can demonstrate the relevance of the

general approach to learning propounded in this thesis. The extensions of ALKEMY

to regression and incremental learning are two contributions of this kind. They widen

the applicability of the learning system.

In terms of relevance, our work on

1. Musk led to interesting lessons on practical aspects of learning with a rich and

tunable hypothesis language.

2. Blocks World resulted in a better understanding of the nature of relational rein-

forcement learning.

3. the Predictive Toxicology Challenge led to the discovery of real (albeit mostly

known) biochemical knowledge about cancer-causing structures in molecules.

4. the TV recommender agent resulted in the design and construction of a deploy-

able and potentially commercializable system that makes strong use of the sym-

bolic facilities provided by the learner.

These applications demonstrate the potential advantages that can be offered by a sym-

bolic learning system. As case studies, they provide information about when symbolic

learning can profitably be applied, and how that can be done.

8.2 Future Work

We finish with some remarks on future research.

The connection between decision lists and linear models in classification is one

area that should be investigated in full because it has the potential to shed light on the

relationship between symbolic and non-symbolic learning. In particular, the connec-

tion may help explain why list-based symbolic learning systems tend not to perform

as well as algorithms like (kernelized) support vector machines [179].

Boosting algorithms have been shown to work well with decision trees [163]. It

would be interesting to try and understand how such learning techniques can be used

to improve the performance of ALKEMY. Generalization bounds for boosted Alkemic

decision trees can be obtained by putting together results from [138], [178] and §3.4.3.

Convergence properties of algorithms like AdaBoost is also better understood now;

see [171]. We can gain a lot quite quickly by building on these results.

Boosting is also interesting from another perspective. It is a class of algorithms

that uses as a parameter the base function class. The weak hypothesis assumption

has not been studied extensively. There is work on establishing the existence of weak
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learners in geometric classifiers (see §3.1 of [139]), but we are not aware of any similar

work in symbolic learning. This is a topic worth studying.

The on-line learning algorithms can do with more development, possibly with

input from work on incremental theory revision.

Research into tight error bounds that can actually be used for model selection

should be conducted. Most existing bounds are informative but quantitatively use-

less. They tell us what are important parameters that control generalization but can’t

actually be used to obtain non-trivial bounds. It is important to move beyond that.

Preliminary results in [45] suggest that learning with rich expressive languages,

especially one involving the use of sets, can be profitably analysed in Blum’s infinite

attribute space model [26]. This line of investigation is worth pursuing.

Finally, from an intelligent agent’s perspective, one of the chief advantages of sym-

bolic learning is the potential it offers to integrate learning and reasoning on a com-

mon platform. Some interesting ideas on how this can be done have been developed;

see [131] and [47]. Bringing these ideas to fruition is our most important future work.
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82. Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-

instance kernels. In C. Sammut and A. Hoffman, editors, Proceedings of the 19th

International Conference, pages 179–186. Morgan Kaufmann, 2002.
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139. Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In

Shahar Mendelson and Alex Smola, editors, Advanced Lectures in Machine Learn-

ing LNCS2600. Springer, 2003.



Bibliography 197

140. Donald Michie, Stephen Muggleton, David Page, and Ashwin Srinivasan. To

the international computing community: A new east-west challenge. Technical

report, Oxford University Computing Laboratory, 1994.

141. John Mingers. An empirical comparison of selection measures for decision-tree

induction. Machine Learning, 3:319–342, 1989.

142. Raymond J. Mooney and Mary Elaine Califf. Induction of first-order decision

lists: Results on learning the past tense of english verbs. Journal of Artificial Intel-

ligence Research, 3:1–24, 1995.

143. Shinichi Morishita and Jun Sese. Traversing itemset lattices with statistical met-

ric pruning. In Symposium on Principles of Database Systems, pages 226–236, 2000.

144. Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory

and methods. Journal of Logic Programming, 19,20:629–679, 1994.

145. Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In

S. Muggleton, editor, Inductive Logic Programming, pages 281–298. Academic

Press, 1992.

146. Stephen Muggleton and David Page. Beyond first-order learning: Inductive

learning with higher-order logic. Technical Report PRG-TR-13-94, Oxford Uni-

versity Computing Laboratory, 1994.

147. Stephen Muggleton and David Page. A learnability model for universal repre-

sentations. Technical Report PRG-TR3-94, Oxford University Computing Labo-

ratory, 1994.

148. Stephen Muggleton and David Page. A learnability model for universal repre-

sentations and its application to top-down induction of decision trees. In K. Fu-

rukawa, D. Michie, and S. Muggleton, editors, Machine Intelligence 15, pages 248–

267. Oxford University Press, 1998.

149. Stephen H. Muggleton and Wray Buntine. Machine invention of first-order pred-

icates by inverting resolution. In Proceedings of the 5th International Conference on

Machine Learning, pages 339–352, San Mateo, CA, 1988. Morgan Kaufmann.

150. Patrick M. Murphy and Michael J. Pazzani. Exploring the decision forest: an

empirical investigation of Occam’s razor in decision tree induction. Journal of

Artificial Intelligence Research, 1:257–275, 1994.
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