
Learning Compression from Limited Unlabeled

Data

Xiangyu He1,2[0000−0003−2554−9289] and Jian Cheng1,2,3�[0000−0003−1289−2758]

1 National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

{xiangyu.he, jcheng}@nlpr.ia.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Center for Excellence in Brain Science and Intelligence Technology, Beijing, China

Abstract. Convolutional neural networks (CNNs) have dramatically
advanced the state-of-art in a number of domains. However, most models
are both computation and memory intensive, which arouse the interest
of network compression. While existing compression methods achieve
good performance, they suffer from three limitations: 1) the inevitable
retraining with enormous labeled data; 2) the massive GPU hours for
retraining; 3) the training tricks for model compression. Especially the
requirement of retraining on original datasets makes it difficult to apply
in many real-world scenarios, where training data is not publicly avail-
able. In this paper, we reveal that re-normalization is the practical and
effective way to alleviate the above limitations. Through quantization
or pruning, most methods may compress a large number of parameters
but ignore the core role in performance degradation, which is the Gaus-
sian conjugate prior induced by batch normalization. By employing the
re-estimated statistics in batch normalization, we significantly improve
the accuracy of compressed CNNs. Extensive experiments on ImageNet
show it outperforms baselines by a large margin and is comparable to
label-based methods. Besides, the fine-tuning process takes less than 5
minutes on CPU, using 1000 unlabeled images.

Keywords: Deep Neural Networks · Label-free Network Compression

1 Introduction

Convolutional neural networks (CNNs) have achieved impressive performances
in many challenging problems [15,24], and even surpass human-level for certain
tasks such as ImageNet classification [16]. As CNN-based recognition systems [3]
continue to grow, it is critical to improve inference efficiency while maintaining
accuracy [5].

Since network compression introduces efficient approximations to CNNs and
compressed models require less memory and fewer operations, parameter quan-
tization [8, 18, 30], pruning [11, 13] and low-rank [33, 38] representations have
become a topic of interest in the deep learning community. Especially quantiza-
tion, with the boom of AI chips, will be the workhorse in industry. While these
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techniques have driven advances in power efficiency, they still face a considerable
accuracy loss under low-bit or highly sparse compression. Retraining on the orig-
inal dataset is usually inevitable. Unfortunately, the retraining process needs a
sufficiently large open training dataset which is inaccessible for many real-world
applications, such as medical diagnosis [9], drug discovery and toxicology [1].
Therefore, it is imperative to avoid retraining or require no training data.

In this work, we alleviate the accuracy degradation in direct network com-
pression through label-free fine-tuning. For network quantization, which compris-
es two primary components: weight quantization and feature map quantization.
Intuitively, the quantization error determines the performance loss. Therefore,
we propose the Quasi-Lloyd-Max algorithm to minimize the weight quantiza-
tion error. To further improve the accuracy of compressed networks, we explore
the reason of feature map distortion. In light of Bayesian networks, we reveal
that statistic-shift of batch normalization results in the accuracy degradation
of direct compression. When network parameters misfit approximate Gaussian
distribution, the prior assumption of mean and variance should mismatch the
corrupted features. By employing the re-estimated statistics in batch normaliza-
tion, the performance of compressed CNNs can be rapidly recovered. Extensive
experiments on 4-bit quantization and pruning demonstrate the robustness of
this viewpoint.

Compared with conventional label-based compression methods, the main con-
tributions of this paper are as follows:

– We reveal the hidden factor why direct network compression results in per-
formance degradation, and prove that 4-bit or sparse representation remains
capable of original tasks without retraining.

– A Quasi-Lloyd-Max algorithm is proposed to minimize the weight quantiza-
tion error on 4-bit networks.

– The fine-tuning time decreases from days (GPU) to minutes (CPU), by using
limited unlabeled data.

2 Related Work

The redundant parameters of deep neural networks induce inefficient computa-
tion and large memory footprint. Most compression approaches can be viewed as
the regularization techniques to solve these problems. Recently, along with the
existence of TPU [22] and low precision BLAS [10], parameter fixed-point rep-
resentation has frequently been discussed. Traditional hash-based vector quanti-
zation, such as HashNet [2], may not directly benefit from customized hardware.
In contrast, 8-8-bit structures get TensorRT [27] or TPU [22] support easily.
Bit-oriented methods with potential 64× acceleration, such as BC [7], FFN [34],
BNN [6] and XNOR-Net [30], compress DNNs to extreme 1 bit (∼32× compres-
sion), while suffering an irreversible accuracy loss. INQ [39] shows the reasonable
performance of 2n framework; nevertheless, plenty of labeled data is required for
retraining.
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For low-rank representation, early studies share the same starting point: us-
ing matrix low-rank approximation to reduce the computation. Conventional
network structures with regular filters and large feature maps are friendly to
matrix decomposition. Generalized Singular Vector Decomposition [38], Tucker
Decomposition [23] and Tensor Block Term Decomposition [33, 35] are widely
used on AlexNet [24], VGG-16 [31] and GoogleNet [32]. At the cost of negligible
loss in accuracy, they gain several times acceleration with a certain amoun-
t of compression. Very recently, MobileNet [17] with channel-wise convolution
shows the potential capability to extract distinguishing features within limited
parameters. Most notably, this network structure is identical to the decomposed
matrix, which invalidates the current decomposition methods. Similar problems
still arise in ResNet [16] with 1× 1 filters.

Weight pruning benefits from Sparse GEneral Matrix Multiplication (Sparse
GEMM) and highly optimized hardware design [14]. Combining with clustering
and Huffman coding [13], promising compression results without accuracy loss
were reported. The problem is hundreds [11] or even thousands [14] of retraining
epochs are time-consuming, and is still heavily reliant on labeled datasets.

By using feature map fitting, [4,36] implicitly learn from the well-trained net-
works through the Euclidean distance between feature maps of full-precision and
compressed networks. Nevertheless, deeper network structures and imbalanced
class samples would be the nightmare to hand-tuned layer by layer analysis.

3 Weight Quantization

Since quantization has been the mainstream compression technique in industry,
we first review the cause of quantization, then discuss three hardware-friendly
quantizers under different metrics. The scheme with least accuracy loss is adopt-
ed in further feature map recovery.

3.1 Cause

In early research, [12, 19] show that it is possible to train deep neural networks
using 16-bit fixed-point numbers. Fixed-point computation with high speed and
low power consumption is much more friendly to embedded devices. The small
circuits would allow for the configuration of more arithmetic units. Besides, the
low-bit data representation minimizes the memory footprint, which reduces the
data transmission time for the customized device like FPGA [12,13,25].

3.2 ℓ2 Norm Metric

Since customized hardware units have fully supported fixed-point multiplication
and addition, quantizing float numbers to their nearest fixed-point representa-
tions by shift and carry operations can easily accelerate inference time. Suppose
the fixed-point number is represented as [Ibit : Fbit], and the Integer part plus
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the Fraction part yields the real number. Mathematically this problem, dubbed
round-to-nearest, can be stated as follows,

Q∗ = argmin
Q

J(Q) = ||W −Q||22

s.t. Qi ∈ {−2I/2,−2I/2 + 2−F , ...0, ..., 2I/2− 2−F }

where Q is forced to fit the large number in W. This metric minimizes the
loss function at the cost of small numbers and becomes much more sensitive
to outliers. That is, large numbers determine the bit-width selection of Ibit and
Fbit. To partly solve this problem, a scaling factor α ∈ R is introduced,

α∗,Q∗ = arg min
α>0,Q

J(α,Q) = ||W − αQ||22

It has been proved that scaling factor could dramatically enlarge the domain of
values [30]. Although the function is convex in each variable only, they are not
convex in each variable together. It is infeasible to solve J(α,Q) in the sense
of finding global minima, especially under the discrete constraint. However, it is
possible to find local minima using iterative numerical optimization. Consider
the following problem,

α∗, Q∗ = argmin
α>0

(
α2QTQ− 2αQTW + c

)
, (1)

where Q corresponds to a set of fixed-point numbers and c =
∑

i W
2
i is an α

and Q independent constant. Thus, for any given Q, the optimal α is

α∗ =
QTW

QTQ
. (2)

By substituting α∗ into (1), the optimization problem leads to the partial deriva-

tives ∂J(α,Q)
∂Q

. Setting it to zero, then project the solution to given discrete space

Q∗ ≈ Fix(W/α∗). (3)

Algorithm 1 iteratively updates α∗ and Q∗ through quantizer Fix(·), such as
round-to-nearest, 2n (i.e., quantized to nearest power of 2) or uniform quanti-
zation (i.e., quantized to nearest quantization interval endpoints). Following the
iterative update rule, the Euclidean distance between W and αQ is optimized
in each iteration.

3.3 Discrete Entropy Metric

Similar to the squared Euclidean distance (ℓ2) which is the canonical example of
a Bregman distance, another useful measure is the generalized Kullback-Leibler
divergence (KL) generated by the convex function

∑
i pi ln pi. In this case,

α∗,Q∗ = arg min
α>0,Q

D(αQ||W) =
∑

i

(|Wi| ln
Wi

αQi

− |Wi|+ α|Qi|)

s.t. α > 0, Qi ∈ {±20∆,±21∆, ...,±2k−1∆}
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Algorithm 1 Quasi-Lloyd-Max Algorithm.

Require: Full precision weights W, metric J (·) (ℓ2, KL, etc.) and quantizer Fix(·).

Ensure: Updated W̃ ≈ α∗Q∗ and fixed-point Q∗.

1: for kth filter in lth layer do
2: αl,k ← Initialize parameters
3: repeat
4: α∗

l,k,Q
∗
l,k ← argmin

α,Q
J (αl,k, Ql,k); {Fix α, solve Q; Fix Q, solve α}

5: swap(αl,k, α
∗
l,k);

6: until convergence of parameters αl,k

7: Yl ← W̃l ∗ X̃l ≈ α
∗
l (Q

∗
l ⊛ X̃l); {low-bit convolution + cblas sscal}

8: X̃l+1 ← ψ(Yl); {ReLU + INT 8-bit quantization}
9: end for
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Fig. 1. (a) Quasi-Lloyd-Max convergence comparsion of different metrics. The Eu-
clidean distance between W and αQ is reported. (b) The distributions of quantized
4-bit (2n quantization) and full-precision weights of the third convolution layer (some
bars get merged for clearness)

where ∆ corresponds to the minimum value of 2n in k-bit quantization. Like ℓ2
norm metric, this loss function is also lower bounded by zero.

Consider the function ofD(αQ||W) to be differentiated partially with respect
to the elements of Q, which is

∂D(αQ||W)

∂Qi

= −
|Wi|

Qi

+ α · sgn(Qi). (4)

With fixed α, simiarly we have

∂D(αQ||W)

∂α
= −

1

α

∑

i

|Wi|+
∑

i

|Qi|. (5)

By setting both equations to zero, we obtain a pair of local minima of KL

Divergence. Hence, the solutions to D(αQ||W) are α∗ =
∑

i
|Wi|∑

i
|Q∗

i
| and Q∗ =

Fix(W
α∗ ) through Quasi-Lloyd-Max iterations.
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Table 1. Quantizer Comparsion of 4-bit Weights and 8-bit Activations (ℓ2 Norm)

Models round-to-nearest uniform 2n full-precision

AlexNet
Top-1 48.32 43.12 58.66 60.43
Top-5 72.93 67.73 81.17 82.47

ResNet-18
Top-1 45.92 50.18 55.76 69.08
Top-5 71.33 75.63 79.75 89.03

ResNet-50
Top-1 54.61 55.99 68.14 75.30
Top-5 77.98 79.00 87.98 92.11

In mathematics, generalized Kullback-Leibler Divergence is similar to a met-
ric, but satisfies neither the triangle inequality nor symmetry. We further test
D(W||αQ) as a weight quantization loss on AlexNet, shown in Figure 1(b).
Following the same procedure, we obtain

∂D(W||αQ)

∂α
=

∑

i

|Qi| lnα+
∑

i

|Qi|(ln
|Qi|

|Wi|
) (6)

∂D(W||αQ)

∂Qi

= α · sgn(Qi) · ln
αQi

Wi

. (7)

In this case, α∗ = exp(

∑
i
|Q∗

i | ln
|Wi|

|Q∗
i
|

∑
i
|Q∗

i
| ) and Q∗ remains the same as Eq.(4).

Taking the third convolution layer and the second fully connected layer of
AlexNet as examples, Figure 1(a) shows the convergence under different metrics.
In our evaluations, all metrics converge in the first few iterations and obtain
nearly the same quantization error. Since ℓ2 yields more steady convergence
speed, we evaluate the accuracy of different quantizer under ℓ2 norm metric.
As listed in Table 1 (whole network quantization except the first layer), 2n

outperforms other quantizers by a large margin; thus we follow this setting in
the next experiments.

3.4 Feature-based Metric

In general, feature map extracted from input data is more crucial than weights in
computer vision tasks. To fit the output features rather than pre-trained weights
would further improve the performance [36]. Taking full-precision features Y

and quantized input activations X̃ into account, we obtain the multi-objective
optimization problem:

α∗,Q∗ = arg min
α>0,Q

||W − αQ||22 + λ||Y − αX̃QT ||22. (8)

With λ = 0, Eq.(8) degrades to ℓ2 metric. For large λ, feature map fitting
becomes more crucial. This problem could be solved by Quasi-Lloyd-Max in a
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Table 2. Metric Comparsion of Direct 4-bit 2n Weight Quantization

Models ℓ2 Norm D(W||αQ) D(αQ)||W Fmap-based

AlexNet
Top-1 58.90 56.30 57.59 –
Top-5 81.43 79.40 80.26 –

similar way. The closed-form solutions of each step are

α∗ =
λ
∑m

i=1 Q
T X̃T

i Yi +QTW

λ
∑m

i=1 Q
T X̃T

i X̃iQ+QTQ
(9)

(α∗λ
m∑

i=1

X̃T
i X̃i + α∗I)Q = λ

m∑

i=1

X̃T
i Yi +W, (10)

where I corresponding to n×n unit matrix and m referes to m smaples. If X̃T
i X̃i

is symmetric positive definite, then by using modified Cholesky decomposition,
one may simplify Eq.(10) as α∗(λ

∑
i X̃

T
i X̃i + I) = LDLT , where L is a lower

triangular matrix with unit diagonal elements and D is a diagonal matrix with
positive elements on the diagonal. To solve LDLTx = y, we only need to address
Lx′ = y and DLTx = x′, which is faster and with better numerical stability.

However, given limited unlabeled data, there is no global measurement to
facilitate the selection of λ. In our experiments, the iterative numerical approx-
imation to solve Q can be hugely affected by the different settings. Hence, the
explicit feature-map based method is deprecated in our further evaluations. Com-
pared with various metrics, Table 2 shows that the ℓ2 norm could better reflect
the weight fitting error.

4 Feature Recovery

To further improve the performance of compressed networks, we focus on the
“Gaussian-like”feature distribution. From a Bayesian perspective, the conjugate
prior induced by batch normalization results in the performance gap between
full-precision network and post hoc compression. Therefore, we can use batch
normalization to refine a well-trained network with low-bit or sparse represen-
tation.

4.1 Bayesian Networks

The methodology of CNNs is to find the maximum a posteriori (MAP) weights
given a training dataset (D) and a prior distribution p(W) over model pa-
rameters W . Suppose that D consists of N batch samples {(xi, yi)i=1:N}, then

p(W |D) = p(D|W)p(W)
p(D) . Due to the difficulty in calculating p(D), it is common

to approximate p(W |D) using a variational distribution qτ (W). By optimizing
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the variational parameters τ so that the Kullblack-Leiber (KL) divergence is
minimized:

L(τ) = −Eqτ (W)[log p(D|W)] +KL(qτ (W)||p(W)) (11)

= −

∫

W

qτ (W) log p(D|W)dW +KL(qτ (W)||p(W)). (12)

Eq.(13) is known as the evidence-lower-bound (ELBO), assuming i.i.d. observa-
tion noise.

In practice, a Monte Carlo integration is usually employed to estimate the
expectation term Eqτ (W)[log p(D|W)]. Using weight samples Ŵi ∼ qτ (W) for
each batch i, leads to the following approximation:

L(τ) := −
1

N

N∑

i=1

log p(D|Ŵi) +KL(qτ (W)||p(W)) (13)

:= −
1

N

N∑

i=1

log p(yi|xi, Ŵ
i)

︸ ︷︷ ︸
negative log−likelihood

+KL(qτ (W)||p(W)).︸ ︷︷ ︸
KL divergence

(14)

Especially, for batch normalization parameters {µB , σB} ∈ W , we regard the
inference at training time as a stochastic process, estimated mean and vari-
ance based on samples in a mini-batch are two stochastic variables. Assume
i.i.d. M samples where zi = Wx ∼ N (µ, σ2) and µi = 1

M

∑M
k=1 zk. By us-

ing central limit theorem (CLT) for sufficient random sampling through S-

GD, we have µB ∼ N (µ, σ2

M
). Due to E[(zi − µ)2] = σ2, similarly we obtain

σ2
B ∼ N (σ2, E[(zi−µ)4]−σ4

M
).

4.2 KL Divergence and Weight Regularization

Probabilistically, p(D|W) =
∏N

i=1 p(yi|xi,W), the posterior p(yi|xi,W) ex-
presses a predictive distribution generated by a parameteric model W , e.g., the
cross-entropy criterion for multi-classification. The negative loglikelihood defines
L as follows:

L(y) = −
1

N

N∑

i=1

log p(yi|xi,W) +
λ

2
||ω||22. (15)

where ω is learnable parameters such as weights, and W also includes random
parameters such as µB , σB .

Since both L(τ) and L(y) are solved by gradient descent, the second terms
of Eq.(15) and Eq.(17) illustrate the connection between KL divergence (i.e.,
p(W) w.r.t the estimated distribution qτ (W)) and weight regularization:

∂KL(qτ (W)||p(W))

∂ω
=

∂ λ
2ω

T
ω

∂ω
. (16)
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Fig. 2. Feature Distribution Comparsion for AlexNet 5th Batch-Normalization layer

The regularization term can be viewed as a log-prior distribution over weights,
such as Gaussian derived from ℓ2 norm. Under the constraint of low-bit or spar-
sity, the penalty term introduces different priors (e.g., spike-and-slab in pruning)
which hugely affect the approximation to p(W). We now describe how weight
compression corrupts batch normalization parameters.

For random variables in batch normalization, the KL divergence between ap-
proximation N (µq, σ

2
q ) and true distribution N (µp, σ

2
p) can be calculated using:

KL(q(W)||p(W)) =
(µq − µp)

2

2σ2
p

+ log
σp

σq

+
σ2
q

2σ2
p

−
1

2
.

Since µp, σp won’t change during training, which is indepedent to ω, thus µ′
p =

σ′
p = 0, and then ∂KL

∂ω
=

(µq−µp)µ
′
q

σ2
p

+
(σ2

q−σ2

p)σ
′
q

σqσ2
p

. The optimal approximation µq →

µp, σ
2
q → σ2

p reaches its limit when regularization term solved by SGD (partial
derivative is zero). When we compress the well-trained networks, the weight
regularization has changed implicitly, in another word, former estimations should
introduce a great bias. Fortunately, as proved in section 4.2, the expectations
of µq and σ2

q converge to the real distribution parameters, then it is possible to
renew the distorted features through re-estimation.

4.3 Renew Distorted Features

While it is impractical to update weights through inference on unlabeled data,
re-estimation on µB and σB is still feasible. From [21], the mean and variance
of activations holds that

E[x̃] := E[µ̃B] (17)

V ar[x̃] :=
m

m− 1
E[σ̃2

B], (18)

where E(µ̃) = 1
m

∑m
i=1 x̃i and E(σ̃2) = 1

m

∑m
i=1 (x̃i − µ̃)2.

In Bayesian theory, if the posterior distribution is in the same probability
distribution family as the prior, then the prior is called a conjugate prior for the
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Table 3. Results of 8-8-bit (whole network weights & features 8-bit) quantization on
ILSVRC2012 validation dataset. Round-to-nearest with ℓ2 metric was adopted in 8-bit
weights. For 8-bit feature maps, we just quantize float numbers to nearest fixed-points

Models Our Baseline Our Gap TensorRT Baseline TensorRT [27] Gap

AlexNet
Top-1 60.43 +0.50 57.08 -0.08
Top-5 82.47 +0.29 80.06 -0.08

ResNet-18
Top-1 69.08 -0.08 – –
Top-5 89.03 -0.06 – –

ResNet-50
Top-1 75.30 -0.27 73.23 -0.20
Top-5 92.11 -0.02 91.18 -0.03

likelihood function. Especially, Gaussian distribution is a conjugate prior for the
likelihood that is also Gaussian. In this case, we have shown that batch normal-
ization parameters obey normal distribution and combine the empirical obser-
vations that output feature of batch normalization is “more Gaussian” [20, 21],
one may derive that convolution, or inner-product layer tends to be a Gaus-
sian likelihood. Thus, after compression, by choosing a new Gaussian prior (i.e.,
re-normalization or re-estimation), it will be more likely that the posterior dis-
tribution is also Gaussian:

PGaussian ∝ Plikelihood × Pnormal.

Since batch normalization is commonly employed after convolution, the dis-
tribution of distorted features can be directly renewed. After the re-normalization,
Figure 2 shows that the distribution has been restored. Nevertheless, interpret-
ing compressed networks as a likelihood function is a weak approximation. The
performance of extremely quantized networks, such as binary or ternary, will not
be improved since the corruption of likelihood function. In those cases, retraining
on the original dataset is somehow inevitable.

5 Experiments

In this section, we verify the effectiveness of proposed methods on ImageNet
dataset (ILSVRC 2012). Generally speaking, training-free quantization or prun-
ing on deep neural networks is challenging, but we achieve much closer accuracy
to full precision networks. We implement weight pruning and low-bit quanti-
zation on three representative CNNs: AlexNet [30], ResNet-18 [16] and Mo-
bileNet [17]. Besides, we also evaluate on ResNet-50 [16] to examine the validity
of re-normalization on deeper network structures. All images are resized to have
256 pixel at short dimension and then a central crop of 224 × 224 is select-
ed for re-normalization and evaluation. No data augmentation was used for all
experiments.



Label-free Network Compression 11

Table 4. Final Performance of Network 2n Quantization. Accuracy loss corresponding
to full precision network is reported (4-bit Weights & 8-bit Activations)

Models Baseline w/o ReNorm w/ ReNorm

AlexNet
Top-1 60.43 -1.77 -0.39
Top-5 82.47 -1.30 -0.20

ResNet-18
Top-1 69.08 -13.21 -1.83
Top-5 89.03 -9.28 -1.01

ResNet-50
Top-1 75.30 -7.16 -2.14
Top-5 92.11 -4.13 -0.99

MobileNet
Top-1 70.81 -70.80 -9.75
Top-5 89.85 -89.82 -6.37

Table 5. Quantization comparison for AlexNet and ResNet-18. Top-1 and Top-5 gap
to the corresponding full-precision network is reported. Label-based retraining methods
are marked as “+Label”. The bit width before and after “+” is for weight and activa-
tion respectively. Not reported retraining epoch was shown as “*”. “∼ 0” requires no
backward propagation

AlexNet

Bit Precision Method Top-1 gap Top-5 gap Epochs

8 + 8
DoREFA [40] -2.90 – * + Label

Going Deeper [29] -0.88 -1.06 ∼ 0
Ours +0.50 +0.29 ∼ 0

5 + 32 INQ [39] +0.15 +0.23 ∼8 + Label
4 + 4 WQ [28] -1.2 -1.1 ∼6 + Label

4 + 8 Ours -0.39 -0.20 ∼ 0
5 + 4 LogQuant [26] – -3.20 *
4 + 4 Ours -3.24 -2.13 ∼ 0

ResNet-18

4 + 32 INQ [39] +0.62 +0.32 ∼8 + Label
4 + 8 Ours -1.83 -1.01 ∼ 0

5.1 Network Quantization

8-bit quantization with few samples or, ideally, without input data is becoming
the workhorse in industry. As shown in Table 3, our 8-8-bit has reached the com-
parable accuracy with the full precision network. To achieve higher efficiency on
embedded devices, we prove that even 4-bit weights could reach approximately
32-bit level. Using the same 4-bit weights in section 3.3, we re-normalize those
models on 1K images randomly selected from ILSVRC 2012 training dataset
without label information.

As shown in Table 4, the performance of 4-8-bit network (except the first
layer) was hugely improved from direct quantization. Compared with Nvidia
TenorRT, 1250 images were used to update the parameters of 8-bit networks; we
need 1000 images to learn 4-bit quantization. Results on AlexNet, ResNet-18,
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Fig. 3. (a) Normalized accuracy of the compressed networks under different compres-
sion rate. “1” indicates original network precision. The performance of direct prun-
ing and re-normalized network are shown as “P” and “RN”. We stop pruning when
the accuracy drops to 0.85 (normalized). (b) Normalized accuracy changes over re-
normalization iterations. 1K different images were used in each iteration

and ResNet-50 show the steady performance improvements, which have nearly
approached the 32-bit level. MobileNet, with channel-wise convolution layers, is
far more challenging to quantize. After straightforward 4-bit weight quantization,
the accuracy dropped to nearly zero. This delicate network structure is equivalent
to the low-rank representation of Tensor Block Term Decomposition [33]. For this
reason, channel-wise convolution with little redundancy is naturally difficult to
compress. Since the runtime speed of 8-bit MobileNet on CPU has already only
31ms (Tensorflow 1.1.0), 4-bit could be a trade-off between even higher speed
and lower accuracy.

Table 5 further shows the comparison between accuracy and learning cost.
Our 4-8-bit is still competitive with retraining methods. In some cases, 4-8-
bit even outperforms some label-based counterparts on AlexNet. For 4-4-bit,
slightly different from section 3.2, we quantize features to nearest 2n (without
scale) during the process of re-normalization.

Compared with the 8-8-bit framework, 4-8-bit achieves not only 2× model
compression but higher runtime speed. Low bit-width enables more fixed-point
multiplications at the same clock frequency of the chip. This could provide dra-
matic data-level parallelism to achieve higher speedup. Besides, retraining meth-
ods can still benefit from feature map recovery. 3-8-bit AlexNet with +25.43%
Top-1 and +26.86% Top-5 improvement yields 50.69%(Top-1) and 74.87%(Top-
5) accuracy. This result provides a better starting point for retraining 3-bit
networks.

5.2 Weight Pruning

To further verify the conclusion in section 4.2, we apply network pruning (based
on absolute value) to well-trained parameters. Figure 3(a) shows the trade-off
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Table 6. Model Sparsity Comparsion on AlexNet

Layer |w 6=0|
|w|

% [14] Total.% |w 6=0|
|w|

%(Ours) Total.%

Conv1 ∼84%

∼37%

63.1%

48.6%
Conv2 ∼38% 42.1%
Conv3 ∼35% 49.8%
Conv4 ∼37% 50.0%
Conv5 ∼37% 49.0%

Fc1 ∼9%
∼10%

7.6%
12.6%Fc2 ∼9% 14.5%

Fc3 ∼25% 52.4%

10,000 iterations 1 iteration

120W labeled images 1K unlabeled images

between compression rate and accuracy. Within one iteration, i.e., using 1K im-
ages, we recover the performance to the practical level (solid line in Fig. 3(a)).
This steady performance improvement not only appeared in network quantiza-
tion but also in weight pruning.

Since AlexNet with over-parameterized inner-product layers is the typical
network structure to examine the effectiveness of pruning approach, we compare
the typical pruning approach [14] with ours on compression rate. As listed in
Table 6, our method even pruned more parameters on two layers, especially Fc1
with most parameters in AlexNet. The overall compression rate of FC was still
very close. Considering the training cost of both methods, ours has a significant
advantage of high-efficiency. Due to the accuracy loss under high compression
rate, we show the trade-off between training cost and performance in Table 7.

In our experiments, deeper networks, such as ResNet-50, and lightweight
structures, such as MobileNet, obtain the same results. For 3× pruning, Mo-
bileNet achieves +53.82% Top-5 improvement to 78.43%, with 43% convolution
layer and 7.3% fully connected layer parameters. ResNet-50 yields +6.92% Top-
5 improvement to 90.00%, with 35% convolution layer and 10% fully connect-
ed layer parameters. The performance improvements are consistent in all our
experiments, indicating that better performance becomes available by higher
performance network.

5.3 Time Consumption

As listed in Table 8, most networks take only a few minutes to refine the distorted
features, and as illustrated in Figure 3(b), using more images has almost no
contribution to the final accuracy. Setting batch size to 1K is just a trade-off
between memory size and the sampling error of E(x̂) and V ar(x̂). By using
large memory GPU, the whole process may take only a few seconds. This should
lead to reduced time consumption of several orders of magnitudes. We believed
that learning time speedup with limited unlabeled data is far more practical in
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Table 7. The comparsion for different compressed models with the number of training
epochs and the final compression rate. “*” indicates the not reported training epoch.
Label-based retraining methods are marked as “+Label”

Methods Top-1 Epochs Compression Parameters

Dynamic Surgery [11] 56.91 ∼140+Label 17.7× 3.48M
Fastfood-32-AD [37] 58.07 *+Label 2× 32.8M
Fastfood-16-AD [37] 57.10 *+Label 3.7× 16.4M

Han et al. [14] 57.23 ≥960+Label 9× 6.7M

Naive Cut [14] 42.82 0 4.4× 13.8M
Ours 55.28 ∼ 0 6.73× 9.26M

Table 8. Time consumption of feature recovery (1 batch=1K images), evaluated on
Intel Xeon CPU E5-2680 v4 @2.40GHz x2

AlexNet ResNet-18 ResNet-50 MobileNet

1 batch 64s 172s 295s 197s

real-world applications since slightly accuracy loss is unnoticeable to customers.

6 Conclusion

In this paper, we analyze the compression loss from Bayesian perspective and
prove that batch normalization statistics misfit is one of the crucial reason for the
performance loss. By using the proposed Quasi-Lloyd-Max and re-normalization,
we quantize 4-bit networks to nearly full-precision level without retraining. In
the experiments of network pruning, we further prove the robustness of this
theorem. Our learning process is much more efficient than existing methods
since considerably less data are required. In conclusion, we partly solve the real-
world challenge of learning from limited unlabeled data to compress deep neural
networks, which could be applied in a wide range of applications.
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