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Abstract

State-of-the-art stereo vision algorithms utilize color

changes as important cues for object boundaries. Most

methods impose heuristic restrictions or priors on dispari-

ties, for example by modulating local smoothness costs with

intensity gradients. In this paper we seek to replace such

heuristics with explicit probabilistic models of disparities

and intensities learned from real images. We have con-

structed a large number of stereo datasets with ground-truth

disparities, and we use a subset of these datasets to learn

the parameters of Conditional Random Fields (CRFs). We

present experimental results illustrating the potential of

our approach for automatically learning the parameters

of models with richer structure than standard hand-tuned

MRF models.

1. Introduction and related work

In recent years, machine learning methods have been

successfully applied to a large number of computer vision

problems, including recognition, super-resolution, inpaint-

ing, texture segmentation, denoising, and context labeling.

Stereo has remained an exception because of the lack of suf-

ficient training data with ground-truth disparities. While a

few datasets with known disparities are available, they have

mainly been used for benchmarking of stereo methods [1].

The goal of this paper is to replace the heuristic cues used

in previous approaches with probabilistic models derived

from real images. To obtain a sufficient amount of train-

ing data, we used the structured-lighting approach of [2]

to construct a database of 30 stereo pairs with ground-truth

disparities, which we provide for use by other researchers

at http://vision.middlebury.edu/stereo/data/.

In this paper we present a Conditional Random Field

(CRF) model for stereo vision and derive a gradient-based

learning approach that leverages efficient graph-cut mini-

mization methods and our ground-truth database. We then

explore the characteristics and properties of a number of

different models when learning model parameters.

Among the few existing learning approaches for stereo,

the most prominent is the work by Zhang and Seitz [3],

who iteratively estimate the global parameters of a Markov

Random Field (MRF) stereo method from the previous dis-

parity estimates, and thus do not rely on ground-truth data.

Kong and Tao [4] learn to categorize matching errors of lo-

cal methods using the Middlebury images. Kolmogorov et

al. [5] construct MRF models for binary segmentation us-

ing locally learned Gaussian Mixture Models (GMMs) for

foreground and background colors.

While learning approaches have been sparse, there has

nevertheless been much recent progress in stereo vision.

Breakthroughs have been achieved along two avenues.

First, global optimization methods have become prac-

tical with the emergence of powerful optimization tech-

niques. Considered too slow when first proposed, global

methods currently dominate the top of the Middlebury

stereo rankings. In particular, MRF models for stereo have

become popular since high-quality approximate solutions

can be obtained efficiently using graph cuts (GC) [6–8] and

belief propagation (BP) [9–11]. Tappen and Freeman [12]

compare GC and BP for stereo; Szeliski et al. [13] compare

a larger set of MRF minimization techniques and provide

software that we use in our implementation.

The second breakthrough has been the realization of the

importance of intensity changes as a cue for object bound-

aries, i.e., disparity discontinuities. Taken to an extreme,

this translates into the assumption that disparity jumps al-

ways coincide with color edges, which is the basis of a

large number of recent segmentation-based stereo methods

[10, 14–19]. Such methods start with a color segmentation

and then assume that within each segment disparities are

constant, planar, or vary smoothly. This assumption works

surprisingly well if the segments are small enough.

Segmentation is not the only way to utilize this monoc-

ular cue; many pixel-based global methods also change the

smoothness cost (i.e., penalty for a disparity change) if the

local intensity gradient is high [1, 6, 9, 20]. This is the ap-

proach taken here, where we learn the relationship between

intensity gradient and smoothness cost from real images.



The probabilistic models we develop in Section 2 below

are Conditional Random Fields (CRFs). CRFs are obtained

from the conditional distribution defined for a subset of ran-

dom variables in a Markov Random Field. The parameters

of a CRF can then be optimized for a given dataset based on

the corresponding conditional likelihood.

The CRF approach was first articulated for sequence pro-

cessing problems [21]. In the linear models commonly used

in language processing, the feature expectations required

for gradient-based CRF optimization can be computed effi-

ciently [22]. For many graphical models with more complex

structure, however, approximate inference methods must be

used. Dynamic conditional random fields [23] use a factor-

ized set of variables at each segment of a linear-chain CRF,

yielding a shallow lattice-structured model. Approximate

inference and learning methods include loopy belief propa-

gation and tree-based reparameterization [24]. Kumar and

Hebert [25] optimize the parameters of lattice-structured bi-

nary CRFs using a pseudolikelihood approach. Other work

[26] has investigated the discriminative optimization of a

lattice-structured joint random field models using autore-

gression over the pseudolikelihood. These learning meth-

ods use spatially localized approximations to the true global

distributions needed for learning. In contrast, our approach

described in Section 3 uses fast graph-cuts based methods to

compute good approximate global minimizations that corre-

spond to most-probable-explanation (MPE) [27] estimates.

These estimates are then used to create approximate model

expectations required for gradient based learning of model

parameters.

Finally, related work on analyzing motion parallax has

used priors on the probability that an object at a given depth

is visible [28]. As we use a conditional model with un-

normalized factors, there is no explicit prior on the distribu-

tions for disparities in our framework. It is possible within a

discriminative framework to introduce local potential func-

tions that depend only upon local disparity values and play

a similar role to a prior. The influence of such knowledge,

however, can often also be achieved through the parameters

of the local cost and pairwise potentials.

2. CRFs for Stereo

We define the disparity of pixel p ∈ P , the set of all

pixels in the reference (left) image, as a random variable

dp with N discrete but ordered states. Assuming rectified

images, dp represents the horizontal shift in pixels with

respect to the other image. We define cp as a vector of

N continuous random variables representing the matching

cost for each discrete disparity level. In this paper we use

the sampling-insensitive cost of [29], which is the min-

imum distance between the linearly interpolated left and

right scanlines over x± 1/2 at each pixel. For color images

we use the sum of this measure over all color bands. We de-
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Figure 1. The repeating unit used in our graphical model.

fine gpq as an M -state random variable for discretized color

gradients between neighboring pixels (p, q) ∈ N , where N
is the standard 4-neighborhood. We compute the gradients

as the RMS difference between color bands.

We then construct conditional random fields for dispar-

ities D = {d}, matching costs C = {c}, and gradients

G = {g} with the following form

P (D|C,G) =
1

Z(C,G)

∏

p∈P

Φ(dp, cp)
∏

(p,q)∈N

Ψ(dp, dq, gpq),

(1)

where the (conditional) partition function Z(C,G) is ob-

tained by summing over all possible disparity values

Z(C,G) =
∑

d∈D

∏

p∈P

Φ(dp, cp)
∏

(p,q)∈N

Ψ(dp, dq, gpq). (2)

The potential function Φ models the agreement of disparites

and intensities, while Ψ jointly models the smoothness

of neighboring disparities and the color gradient between

them. Figure 1 illustrates the factorization we use for our

models using a factor graph [30].

The CRF described by (1) represents a general formula-

tion. We now present the specific model used in our explo-

ration here in more detail. First, we take the negative log

probability of our model and obtain U and V terms analo-

gous to the data and smoothness terms commonly used in

other energy-based stereo techniques,

U(dp, cp) = − log Φ(dp, cp), (3)

V (dp, dq, gpq) = − log Ψ(dp, dq, gpq). (4)

Our goal is to minimize the sum of the negative log condi-

tional probabilities

− log P (D|C,G) = log Z(C,G) +
∑

p∈P

U(dp, cp)

+
∑

(p,q)∈N

V (dp, dq, gpq). (5)

Note that our formulation, unlike other energy-based stereo

approaches, explicitly accounts for the partition function.



We express cost terms U and pairwise smoothness terms V
using a linear combination of feature functions fu, fv ,

U(dp, cp) =
∑

u

θufu(dp, cp), (6)

V (dp, dq, gpq) =
∑

v

θvfv(dp, dq, gpq), (7)

where θu, θv are the parameters of our model. The nota-

tion follows the usual format for specifying the potential

functions of CRFs [21,22], and the linear form allows us to

derive an intuitive gradient-based minimization procedure

for parameter estimation. Here, we define fu(dp, cp) to re-

turn cp[dp] (i.e., the matching cost at pixel p given disparity

dp) if u = dp and 0 otherwise. For our experiments in Sec-

tion 5 we fix all θu to one, yielding U(dp, cp) = cp[dp],
since the focus of this paper is on exploring the impact of

learning parameters that modulate disparity smoothness by

image intensity gradients. However, we shall derive learn-

ing equations in the next section using the more general for-

mulation including the θu parameters.

For the V terms we use a gradient-modulated Potts

model [1, 6] to express the relationship between color

changes and depth changes. Unlike existing approaches

that use a single gradient threshold, we use parameters

θv=1, . . . , θv=k as modulation costs associated with each

of K different gradient bins. We define our binary feature

functions such that

V (dp, dq, gpq) =















0 if dp = dq

θv=1 if dp 6= dq and gpq = 1
. . . . . .
θv=k if dp 6= dq and gpq = k,

(8)

where the discrete gradient variable gpq represents the inter-

val containing the real-valued gradient. In Section 5 below

we explore a spectrum of gradient discretization schemes

ranging from one to six intervals, with interval breakpoints

from the set {0, 2, 4, 8, 12, 16,∞}.

A gradient-modulated Potts model is one of the simplest

ways of relating smoothness and color changes. In this

paper we learn CRFs using models with simple structure.

While we expect and indeed find that the benefits of models

in this class are limited, our approach is easily generalized

to more sophisticated models. In future work we plan to

learn more general smoothness terms, e.g., dependent upon

disparity changes |dp − dq|.

3. Learning

To simplify our exposition, we define feature vectors for

each each pixel location p and edge pq as Fp(dp, cp) =
{fu(dp, cp)} and Fpq(dp, dq, gpq) = {fv(dp, dq, gpq)}.

Similar to [31], we define global feature functions as

Fu(D, C) =
∑

p∈P

Fq(dp, cq),

Fv(D,G) =
∑

(p,q)∈N

Fpq(dp, dq, gpq).
(9)

We wish to optimize the parameters Θ = [Θv; Θu] of our

CRF for the log conditional probability of the data, which

can now be expressed as

L(Θ) =
∑

i

log p(Di|Ci, Gi; Θ)

=
∑

i

(

ΘT
F(Di,Gi, Ci) − log Z(Ci,Gi)

)

(10)

for i = 1 . . . N training images and with F(D,G, C) =
[Fv(D,G);Fu(D, C)]. Under this construction, the analytic

gradient with respect to parameters Θ can be expressed as

∇L ∝
〈

F(D,G, C)
〉

p̃(D,G,C)

−
〈〈

F(D,G, C)
〉

p(D|C,G)

〉

p̃(C,G)
,

(11)

where 〈·〉p denotes the expectation under the probability

distribution p(·), and p̃(·) denotes the empirical distribution

of variables in the argument. The first term in (11) is com-

puted by evaluating our feature functions across our ground

truth disparities, image gradients and costs. The second

term in (11) arises from the gradient of the partition func-

tion. Its outer expectation is computed by observing the

costs C and gradients G for each image and computing the

inner expectation from the corresponding p(D|C,G; Θ). In

linear CRFs this can be done efficiently with a forward-

backward pass analogous to the well-known algorithm used

for HMMs. Sha and Pereira [31] provide a review of meth-

ods for optimizing CRFs when this expectation can be com-

puted exactly. However, here the expectation involving

p(D|C,G) is intractable due to the lattice structure of our

model, and therefore must be approximated.

To achieve this approximation we use the fact that for an

observed C and G in (5) the log partition function is con-

stant. We can thus use the fast alpha-expansion graph-cuts

algorithm [6, 13] to minimize our function for the first two

terms involving V s and Us. This allows us to obtain a good

approximation to the most probable explanation (MPE) un-

der the conditional probability distribution defined by our

model with the current settings of parameters.

Other work [23] has found that loopy belief propagation

can be used effectively to compute approximate marginals

and from them, approximate expectations. However, here

we use graph cuts for approximate MPE inference since it

is faster, and also because the results of [13] suggest that

graph cuts finds lower energy solutions than BP. Once we



Art Books Dolls Laundry Moebius Reindeer

Figure 2. The six datasets used in this paper. Shown is the left image of each pair and the corresponding ground-truth disparities.

have an MPE estimate from running graph cuts we use it

to compute our expectation in a manner similar to the em-

pirical distribution. Training a lattice-structured model us-

ing the approach described here is thus a generalization of

Viterbi path-based methods described in [32]. For our learn-

ing experiments we use straightforward gradient-based up-

dates with a variable learning rate.

4. Datasets

In order to obtain a significant amount of training data

for stereo learning approaches, we have created 30 new

stereo datasets with ground-truth disparities using an auto-

mated version of the structured-lighting technique of [2].

Our datasets are available for use by other researchers

at http://vision.middlebury.edu/stereo/data/.

Each dataset consists of 7 rectified views taken from

equidistant points along a line, as well as ground-truth dis-

parity maps for viewpoints 2 and 6. The images are about

1300 × 1100 pixels (cropped to the overlapping field of

view), with about 150 different integer disparities present.

Each set of 7 views was taken with three different exposures

and under three different lighting conditions, for a total of 9

different images from each viewpoint.

For the work reported in this paper we only use the six

datasets shown in Figure 2: Art, Books, Dolls, Laundry,

Moebius and Reindeer. As input images we use a single im-

age pair (views 2 and 6) taken with the same exposure and

lighting. In future work we plan to ultilize the other views

and the additional datasets for learning from much larger

training sets. To make the images tractable by the graph-cut

stereo matcher, we downsample the original images to one

third of their size, resulting in images of roughly 460× 370
pixels with a disparity range of 80 pixels. The resulting im-

ages are still more challenging than standard stereo bench-

marks such as the Middlebury Teddy and Cones images,

due to their larger disparity range and higher percentage of

untextured surfaces.

Figure 3. Disparity maps of the entire training set for K = 3 pa-

rameters after 0, 10, and 20 iterations. Occluded areas are masked.

5. Experiments

In this section we first examine the convergence of learn-

ing for models with different numbers of parameters θv , us-

ing all six datasets as training set. We then use a leave-one-

out approach to evaluate the performance of the learned pa-

rameters on a new dataset. Finally, we examine how the



Figure 4. Two zoomed views of the disparity maps for K =3 parameters and learning on all six data sets after 0, 5, 10, 15, and 20 iterations.

Occluded areas are masked.
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Figure 5. Learning on all six datasets using models with different numbers of parameters θ. See Table 1 for the learned parameter values.

learned parameters generalize to other datasets.

For our experiments we use a straightforward gradient-

based optimization procedure: we start with a small learn-

ing rate (10−4) and increase it by a small factor unless the

norm of the gradient increases dramatically, in which case

we backtrack and decrease the learning rate.

As mentioned in Section 2, in our experiments here we

focus on learning the θv parameters of the pairwise V poten-

tials, while holding the U potentials fixed with all θu = 1.

To simplify notation, we abbreviate θv=1, θv=2, . . . with

θ1, θ2, . . . below.

It is important to account for the fact that we do not

model occlusions in our CRF. It is well-known that spurious

minimal-cost matches in occluded areas can cause artifacts

in the inferred disparity maps. We therefore use our ground-

truth data to mask out the contributions of variables in oc-

cluded regions to our gradient computation during training.

Intervals 0-2 2-4 4-8 8-12 12-16 16-∞

{θk}, K =1 9.8

{θk}, K =2 15.3 3.7

{θk}, K =3 45.1 0.3 8.7

{θk}, K =4 42.2 0.5 5.6 10.4

{θk}, K =5 42.0 1.6 3.1 5.9 11.3

{θk}, K =6 104 3.9 11.2 3.8 3.0 13.7

Table 1. The gradient bins for K = 1 . . . 6 parameters and the

parameter values θk learned over all six datasets.

5.1. Convergence

We experiment with learning models possessing differ-

ent numbers of parameters {θk}, for K = 1 (i.e., a single

global smoothness weight) to K = 6 (i.e., a parameter for

each of 6 gradient bins). We first demonstrate the effective-
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Figure 6. Gradient norm (top) and disparity errors (bottom) during

learning on all 6 datasets.

ness of the learning by training on all six datasets. It is use-

ful to visualize the disparities predicted by the model over

each iteration of learning. Figures 3 and 4 show how the

disparity maps change during training. For clarity we have

masked the occluded regions in black in these plots, since

our model will assign arbitrary disparities in these areas.

Figure 5 shows convergence of the individual parameters

over 50 iterations. Table 1 shows the discretization strategy

we use for image gradients as well as the final values of the

learned parameters.

Figure 6 (top) shows how the gradient (i.e., difference

between empirical and model expectation) converges to

zero during learning, which indicates that the learning con-

verges to a global minimum. Note that convergence is faster

for fewer parameters. Figure 6 (bottom) shows the dispar-

ity errors during learning. Again, models with fewer pa-

rameters converge more quickly, thus yielding lower errors

faster. However, the models with more parameters even-

tually outperform the simpler models. In Figure 6 (top) we

observe that there appears to be an initial phase (e.g., during

the first 25 iterations) where the norm of the approximate

gradient monotonically decreases during the optimization.

After this point, models with larger numbers of parame-

ters appear to have less stability. This effect may be as a

result of noisy gradient approximations due to our use of

graph-cut-derived MPEs for the model expectation term of
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Figure 7. Results of leave-one-out learning on the Moebius dataset.

Top: Moebius disparity errors using the parameters obtained dur-

ing learning from the other 5 datasets. Bottom: Moebius disparity

errors using the parameters learned from the dataset itself.

our gradient.

5.2. Performance of learned parameters

We now use 5 of the 6 datasets for training, and eval-

uate the disparity error of the remaining dataset using the

parameters obtained during training. Figure 7 shows the re-

sults for the Moebius dataset. The top plot shows the errors

during leave-one-out training. One can observe a similar

trend as in figure Figure 6 (bottom), namely that the errors

decrease during learning, and that the more complex models

eventually outperform the simpler models. For comparison,

the bottom plot in Figure 7 shows the errors when using

the Moebius dataset itself for training. In this case find-

ing a low-gradient solution means that we have effectively

matched the distribution of disparity changes and associated

intensity gradients of the ground-truth image. Not surpris-

ingly, this results in lower errors, but not significantly lower

than in the top plot — which indicates that the parameters

learned from the other 5 images generalize reasonably well.

Figure 8 shows the equivalent plots for a different

dataset, Reindeer. Again we show the errors during leave-

one-out training at the top and those during training on the

dataset itself on the bottom. Here we get slightly different

results. First, the leave-one-out results no longer indicate
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Figure 8. Results of leave-one-out learning on the Reindeer

dataset. Top: Disparity errors using the parameters obtained dur-

ing learning from the other 5 datasets. Bottom: Disparity errors

using the parameters learned from the dataset itself.

that performance increases with the number of parameters.

In fact the model with K = 2 does best in the end. But

the results in the bottom plot (where we train the parame-

ters on the test data itself) show that this is not necessar-

ily a problem of insufficient generalization, but rather that

learning the best parameters (which amounts to matching

the smoothness properties of the ground truth) might not al-

ways yield to lower matching errors. On the other hand,

this could also be due to noisy gradient approximations as

mentioned earlier.

5.3. Performance on standard benchmarks

Finally, we examine how well the parameters learned

from our six datasets generalize to other stereo images. Ta-

ble 2 shows the disparity errors on the Middlebury bench-

mark consisting of the Tsukuba, Venus, Teddy, and Cones

images. We compare these errors with those of the graph

cuts (GC) method [1], which uses a hand-tuned MRF model

with two gradient bins, and the state-of-the-art method by

Sun et al. [10], which uses BP and an explicit occlusion

model. Our average results for K =1 and K =2 are slightly

better than those of GC, and would result in a similar rank-

ing as the GC method in the Middlebury evaluation. The

fact that the errors for the more complex models are higher

Tsukuba Venus Teddy Cones Average

K =1 3.0 1.3 11.1 10.8 6.6

K =2 2.2 1.6 11.3 10.7 6.5

K =3 3.1 2.6 16.4 19.6 10.4

K =4 3.0 2.5 17.3 21.5 11.1

K =5 2.8 2.1 16.4 21.2 10.6

K =6 3.1 2.7 14.5 16.8 9.3

GC 1.9 1.8 16.5 7.7 7.0

BP+occl 1.0 0.2 6.5 4.8 3.1

Table 2. A comparison of models with different numbers of pa-

rameters K trained on our ground-truth data but evaluated on the

Middlebury data set. The last two rows are the performance of

the graph cut implementation of [1] and the symmetric BP method

with occlusion model by Sun et al. [10].

indicates that the learned parameters of those models are

tuned more finely to the characteristics of the training data

and generalize less well to datasets that are quite different.

We include the BP method, which is currently ranked third,

to show the potential of explicit occlusion models. We plan

to adopt our learning approach to such models next.

6. Discussion and conclusion

Our work makes a number of contributions. We pro-

vide a large database of ground-truth stereo datasets that,

for the first time, enables supervised learning methods in

stereo. We also develop a novel conditional random field

(CRF) model for stereo, and present an approximate but ef-

ficient gradient-based learning procedure. This procedure

leverages the effectiveness of graph-cut-based energy mini-

mization to solve a most-probable-explanation (MPE) prob-

lem. The specific model we experimentally investigate in

this paper is a gradient-modulated Potts model with a vary-

ing number of gradient bins.

Our experiments show that models with more parameters

can better capture the relationship between image gradients

and disparity jumps, usually resulting in reduced disparity

errors. On the other hand, our simple scheme using fixed

gradient bins becomes more sensitive to brightness and con-

trast changes as the number of bins increases. This may be

one of the reasons that the more complex learned models

generalize less well to other datasets. Previous applications

of CRFs in text processing have included a Gaussian prior

on parameters to mitigate model overfitting [31]. Such tech-

niques may be worth exploration for stereo. However, we

believe more promising extensions to the approach here in-

clude learning across larger datasets and more robust gradi-

ent binning schemes.

Based on our results, we feel that our proposed frame-

work has great potential. We believe the most promising

avenues for future work include: (1) including an occlu-



sion model, (2) learning more general forms of the pairwise

V potentials, and (3) improving the approximate gradient

computations.
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