
Machine Learning, 9, 14%164 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Conjunctions of Horn Clauses

DANA ANGLUIN
Computer Science, Yale University, New Haven, CT 06520

MICHAEL FRAZIER
Computer Science, University of Illinois, Urbana, Illinois 61801

LEONARD PITT
Computer Science, University of Illinois, Urbana, Illinois 61801

ANGLUIN @CS.YALE.EDU

MFRAZIER@CS.UIUC. EDU

P1TT@CS .UIUC. EDU

Abstract. An algorithm is presented for learning the class of Boolean formulas that are expressible as conjunc-
tions of Horn clauses. (A Horn clause is a disjunction of literals, all but at most one of which is a negated variable.)
The algorithm uses equivalence queries and membership queries to produce a formula that is logically equivalent
to the unknown formula to be learned. The amount of time used by the algorithm is polynomial in the number
of variables and the number of clauses in the unknown formula.

Keywords. Propositional Horn sentences, equivalence queries, membership queries, exact identification, poly-
nomial time learning

1. The problem

Valiant (1984) introduced the distribution-free or "PAC" criterion for concept learning and
focused attention on the question of what classes of Boolean formulas can be learned in
polynomial time with respect to this criterion. He gave a polynomial-time algorithm to
learn k-CNF or k-DNF formulas and posed the question, which still remains open, of
whether general CNF and DNF formulas are learnable in polynomial time.

Positive results in this line of research include improved algorithms for k-CNF and k-DNF
formulas (Haussler, 1988; Littlestone, 1988), and algorithms for larger classes of formulas,
including linearly separable formulas (Littlestone, 1988), internal disjunctive formulas
(Haussler, 1988), decision lists (Rivest, 1987), and rank k decision trees (Ehrenfeucht &
Haussler, 1988). Kearns and Valiant (1989) give cryptographic evidence to tile effect that

t h e class of all Boolean formulas is not polynomial-time learnable.
Prediction-preserving reductions (Pitt & Warmuth, 1990) provide a powerful method for

relating the difficulties of distinct learning problems. For example, one of the reductions
given by Kearns, Li, Pitt and Valiant (1987) shows that PAC-learning monotone CNF and
DNF formulas is as hard, modulo a polynomial time transformation, as PAC-learning general
CNF and DNF formulas.

One approach to finding efficient learning algorithms has been to relax the problem by
making membership queries available to the learning algorithm (Angluin, 1988). That is,
the learning algorithm is allowed to query domain elements of its choice and receive their
correct classifications with respect to the target concept.

Membership queries can make a difference--for example, monotone DNF and CNF for-
mulas are PAC-learnable in polynomial time if membership queries are available (Valiant,

148 D. ANGLUIN, M. FRAZIER AND L. PITT

1984; Angluin, 1988), whereas by the remarks above their status is open without member-
ship queries. Another example is provided by read-once formulas (Boolean formulas in
which each variable occurs at most once). These are PAC-learnable in polynomial time
if membership queries are available (Angluin, Hellerstein & Karpinski, 1989). However,
by another reduction of Kearns, Li, Pitt and Valiant (1987), the PAC-learnability of read-
once formulas is equivalent to that of general Boolean formulas in the absence of member-
ship queries, and therefore as hard as certain apparently hard cryptographic problems, by
the results of Kearns and Valiant (1989).

What are the limits of this approach? How much are membership queries likely to help
with learning general Boolean formulas, or general CNF and DNF formulas? Angluin and
Kharitonov (1991) give cryptographic evidence that the answer in both cases is: "not much."
For general Boolean formulas there is cryptographic evidence of the same sort as given
by Kearns and Valiant that they are not PAC-learnable in polynomial time even if member-
ship queries are available. For general CNF and DNF formulas the situation is more com-
plicated, but, in effect, there is cryptographic evidence that either general CNF formulas
will be PAC-learnable in polynomial time without membership queries, or they won't be
PAC-learnable in polynomial time even with membership queries--that is, the membership
queries "won't help" in the case of general CNF and DNF formulas.

In this paper we consider the class of propositional Horn sentences, that is, CNF for-
mulas in which each clause contains an arbitrary number of literals, at most one of which
is positive. This class lies between general CNF and monotone CNF, being "nearly mono-
tone." For the class of propositional Horn sentences there are polynomial-time algorithms
to decide the satisfiability of a formula and the logical equivalence of two formulas (Jones
& Laaser, 1977), in contrast to the situation for general CNF formulas.

A Horn clause such as (-1 a V --1 b V -~ c V d) is logically equivalent to an implication
(a A b A c = d); thus, a propositional Horn sentence can be viewed as a conjunction
of such implications. Of course, conjunctions of universally quantified Horn clauses in
the predictate logic are familiar in the guise of Prolog programs, so one can also view
this class as a "toy" model of Prolog. Angluin (1988) provides further discussion of propo-
sitional Horn sentences.

The main result of this paper implies that the class of propositional Horn sentences is
polynomial-time learnable in the PAC model provided membership queries are available.
Thus, in this case, membership queries do help.

Our learning algorithms are presented in the paradigm of exact identification with equiv-
alence and membership queries, a more demanding setting than either PAC learning with
membership queries or mistake-bounded prediction with membership queries. That is, our
polynomial-time algorithm for exact identification of propositional Horn sentences using
equivalence and membership queries can be transformed in a straightforward way into either
(1) a polynomial-time PAC learning algorithm using membership queries (Angluin, 1988)
or (2) a polynomial-time prediction algorithm with a polynomial mistake bound (Littlestone,
1988) for the same class of formulas.

Our main result may be stated formally as follows. For alt natural numbers m and n
our algorithm, HORN1, exactly identifies all the Horn sentences H, with m clauses and
n variables using equivalence and membership queries and runs in time x O(m2n2), making
O(mn) equivalence queries and O(rn2n) membership queries.

LEARNING CONJUNCTIONS OF HORN CLAUSES 149

It is interesting to note that neither type of query may be eliminated. That is, there is
no polynomial-time algorithm that exactly identifies all the Horn sentences using only mem-
bership queries (Angluin, 1988) or only equivalence queries (Angluin, 199'0).

Despite the "almost monotone" nature of propositional Horn sentences, the algorithm
to learn them using membership and equivalence queries is quite different from flae algorithm
to learn monotone CNF and DNF formulas using membership and equivalence queries
(Valiant, 1984; Angluin, 1988). A natural question to ask is whether the results can be
extended by allowing "more" non-monotonicity in the clauses. If we define the k-quasi-
Horn formulas to be conjunctions of clauses each of which has at most k positive literals,
then the Horn sentences are also 1-quasi-Horn formulas. However, a reduction that preserves
prediction with membership queries shows that learning even 2-quasi-Horn formulas with
membership queries is as hard as learning general CNF formulas with membership queries.
Therefore, if learning general CNF formulas with membership queries is indeed intractable,
then Horn sentences are on the boundary of what can be learned in polynomial time with
membership queries.

The research presented here also improves the results of Angluin (1988), where the class
of Horn sentences is shown to be learnable by an algorithm that uses equivalence queries
that return Horn clauses as counterexamples and "derivation queries"--a type of query that
is significantly more powerful than a membership query.

The remainder of the paper is organized as follows. Section 2 gives basic definitions,
notation, and lemmas that will be used throughout. In Section 3 we describe the first ver-
sion of our algorithm, HORN, and give an example run. Section 4 provides a correctness
proof and an analysis of the time and query complexity of this algorithm. In Section 5
we present a modified version of the algorithm, HORN1, which has improved time and
query bounds. We conclude in Section 6 by discussing some related and open problems.

2. Preliminaries

2.1. Horn sentences

Definition 1. The logical constant " true" is represented by T and the logical constant
"'false" is represented by F.

Definition 2. Let V = { V l , . . . , Vn} be a set o f Boolean variables. A literal is either a
variable vi or its negation -1 vi. A clause over variable set V is a disjunction of literals.

• A Horn clause is a clause in which at most one literal is unnegated. A Horn sentence is
a conjunction o f Horn clauses.

The class of Horn sentences over variable set V is a proper subclass of the class of con-
junctive normal form (CNF) formulas over V.

Our presentation is simplified if we recall that a Horn clause has an equivalent represen-
tation as an implication. For example, the clause (--1 a V -~ b V -~ c v d) is logically equiv-
alent to the implication (a A b A c ~ d). Similarly, the "degenerate" clauses (-~ a v -~ b
v -~ c) and (a) have implicative forms (a A b A c = F) and (T = a) respectively. This
is captured formally by the following definition.

150 D. ANGLUIN, M. FRAZIER AND L. PITT

Definition 3. Let C be a Horn clause. Then antecedent(C) is the set o f variables that occur
negated in C. By convention, the constant T is also in antecedent(C), thus a clause with
no negated variables has a nonempty antecedent. 2 I f C contains an unnegated variable z,
then consequent(C) is just z. Otherwise, C contains only negated variables and conse-
quent(C) is F.

2.2. Positive and negative examples

Definition 4. Let H be any Horn sentence over V. An example is any assignment x : V
{T, F}. A positive (respectively, negative) example for H is an assignment x such that H
evaluates to T (respectively, F) when each variable v in H is replaced by x(v).

Definition 5. Let x be an example," then true(x) is the set consisting o f the constant T and
the variables assigned the value T by x. Similarly, false(x) is the set consisting o f the con-
stant F and the variables assigned the value F by x.

We now describe the relationships that may exist between an example and a Horn clause.

Definition 6. An example x is said to cover a Horn clause C if antecedent(C) c true(x).
We say that x does not cover C if antecedent(C) 9~ true(x). The example x is said to violate
the Horn clause C if x covers C and consequent(C) ~ false(x).

Notice that ifx violates C then x must cover C, but that the converse does not necessarily
hold. It will be more convenient throughout the rest of the paper to consider a Horn sentence
as a set of Horn clauses, representing the conjunction of the clauses. Our first observation
is trivial, but it is helpful to state it formally.

Proposit ion 1. I f x is a negative example for the Horn sentence H, then x violates some

clause o f H.

We next define the operation " O " denoting the intersection of a pair of examples.

Definition 7. Let x and s be two examples, then x n s is defined to be the example z such "
that true(z) = true(x) n true(s).

Note that this implies that false(x O s) is false(x) U false(s).

Lemma 1. Let x and s be examples. I f x violates C and s covers C, then x n s violates C.

Proof: If s covers C then antecedent(C) c true(s). Also, ifx violates C, then antecedent(C)
c_ true(x) and consequent(C) E false(x). Thus antecedent(C) c_ true(s) n true(x) =
true(s nx) and consequent(C) ~ false(x) c false(s) U false(x) = false(s Nx). Thus, s Ox
violates C. []

LEARNING CONJUNCTIONS OF HORN CLAUSES 151

Corollary 1. Let x and s be examples. I f x violates C and s violates C, then x n s violates C.

Proof: Apply Lemma 1 after noting that if s violates C then it also covers C. []

Lemma 2. I f x does not cover C, then for any example s, x N s does not violate C.

Proof: If antecedent(C) ~= true(x)then antecedent(C) ~ true(x) n true(s) = true(xns).
Thus x n s does not violate C. []

Lemma 3. I f x N s violates C, then at least one of x and s violates C.

Proof: I fx n s violates C then consequent(C) E false(x O s) = false(x) U false(s). Therefore,
consequent(C) is an element of at least one of false(x) and false(s). But since x O s violates
C, we also have antecedent(C) c true(x) and antecedent(C) c_ true(s). Thus at least one
of x and s must violate C. []

2.3. The learning protocol

Let H, denote the target Horn sentence to be learned. The goal of the learning algorithm
is exact identification, that is, to succeed the algorithm must halt and output a Horn sentence
that is logically equivalent to H,. The learning algorithm may gather information about
H, using two types of queries, membership queries and equivalence queries.

A membership query is any assignment x to the variables, and the answer to the member-
ship query is "yes" i fx satisfies the target formula H,, and "no" otherwise. Thus, a mem-
bership query is a request for a classification of a specific example with respect to the
target concept.

In an equivalence query the learning algorithm may propose as a hypothesis any Horn
sentence H. If H is logically equivalent to H, then the answer to the query is "yes" and
the learning algorithm has succeeded in the inference task, and halts with output H. Other-
wise, the answer to the equivalence query is "no" and the learning algorithm receives
a counterexample--an assignment x : V ~ {T, F} that satisfies H, but does not satisfy
H (a positive counterexample), or vice-versa (a negative counterexample). Note that the
choice of counterexamples is arbitrary--the algorithm must work as advertised for the worst-
case selection of counterexamples.

Because the problem of determining whether two Horn sentences are equivalent (and
producing a counterexample if they are not) is solvable in polynomial time (Jones & Laaser,
1977), answers to both types of queries can be found in polynomial time given the target
formula H, and the input to the query (either an assignment x or a Horn sentence H.)

3. The algorithm HORN

The ideas behind our algorithm may be understood by considering the problems that arise
with more straightforward approaches. After this motivation, we describe the algorithm
HORN and give an example run. The correctness of HORN is demonstrated in the next
section. In Section 5 we present a more efficient version of our algorithm, HORN1.

152 D. ANGLUIN, M. FRAZIER AND L. PITT

3.1. Two unsuccessful approaches

Let 1-1, be the target Horn sentence with respect to which equivalence and membership
queries are answered. Every negative counterexample x violates some clause C of H,.
Given x, we would like to add the clause C to our current hypothesis, but we cannot exactly
determine C from x alone. We know however that antecedent(C) c_ true(x), and conse-
quent(C) ~ false(x). Thus one approach would be to add to our current hypothesis H all
elements of the set

clauses(x) = (I tvstrue(x) vl ~ z : z E false(x))

whenever a new negative counterexample x is obtained. Each clause in this set is a possible
explanation of why x is a negative example, since each one is falsified by x. However, there
are two kinds of problems that arise--the new clauses may be incorrect (that is, not implied
by H.) or they may be correct, but too weak.

The problem of incorrect clauses is not a serious one because any clause that is not logi-
cally implied by the target formula H. will eventually be discovered when a positive
counterexample is produced that does not satisfy the clause. At this point, at least one in-
correct clause will be eliminated?

The problem of correct but weak clauses is more serious. To see that there is at least
one correct clause, let C ' be the clause from clauses(x) with the same consequent as C;
C ' is subsumed by C, and thus is logically implied by H.. However, the antecedent set
of C ' may be much larger than the antecedent set of C, with the result that there are numer-
ous negative counterexamples that violate C but satisfy C'.

A simple scenario shows that an adversarial choice of counterexamples can force this
approach to add exponentially many correct but weak clauses. Let n be an even number,
let the variable set be V = {a, bl, b2 bn}, and suppose H. is just a single clause,
C, which is

a ~ F .

Any example in which a is set to T is a negative example. In particular, the example with
a set to T and also each variable b i such that i is even set to T is a negative example.
Among the clauses generated from this example is the correct but weak clause

(a A b 2 A b 4 A . . . A bn) = F.

Suppose we next see a negative example which is identical to the previous negative exam-
ple except that bl is T instead of b2. This example does not violate any clause that we
previously generated, so we must exclude this negative example by generating clauses for
it. Among these clauses is the correct but weak clause

(a A b 1 A b 4 A b 6 A . . . A b~) = F.

LEARNING CONJUNCTIONS OF HORN CLAUSES 153

The difficulty is now clear: there are exponentially many negative examples with a set
to T and exactly half of the variables {bi} set to T--we are forced to exclude each one
with its own clause.

In this scenario, because the antecedents of the clauses in clauses(x) are so much larger
than the antecedent set of C, the negative examples that fail to satisfy the correct added
clause are only a small fraction of those that fail to satisfy C. Thus the correct ,clause added
to H is a very weak "approximation" of C. Consequently, very many such approximations
to the target clause C are generated by the examples.

To counter this problem, a second approach might be to find smaller antecedents by using
membership queries to set more of the variables to F in the negative counterexamples that
we are given; this is the approach of the monotone DNF algorithm of Valiant (1984) and
Angluin (1988). Given a negative counterexample x, we set some variable which is cur-
rently T in x to F and ask whether the result satisfies H,. If not, then the result still violates
some clause of /4 , and we leave the variable set to E otherwise we set the variable back
to T. We repeat this process until we can set no more variables to E This process can
be done quickly and we are left with a minimal negative example. However, a second scenario
will disclose a flaw in this approach.

Suppose the variable set is V = {a, b, c, d} and H, is

(b A c = d) A (b = a).

Further suppose that we minimize negative examples by trying to set the variables to F
in alphabetical order. Let T T T F (that is, the variables a, b, and c set to T and the variable
d set to F) be the first negative counterexample. We minimize this to FT'FF and add
clauses(FTFF) to our hypothesis, so H becomes

(b = a) A (b = c) A (b = d) A (b = F).

Next we see the positive counterexample T T F F which reduces H to

(b = a).

Thus we have indeed found a clause of H,. Next we see the negative counterexample
TTTF. But this is the same example that we saw at the beginning, and so our algorithm
will never terminate; it is forced to find the same clause repeatedly.

The difficulty lies in the fact that even though we were given an example that violated
the first clause of H,, our minimization produced an example that violated the second
clause of H,; and this fact led to non-termination. (One might object that it is foolhardy
to decide a priori the order in which we will try to set the variables of our negative exam-
ples to F; rather we should dynamically decide the order in which to minimize a new nega-
tive counterexample. However, it appears to be a difficult problem to design a polynomial-
time algorithm that is guaranteed to minimize a negative example and simultaneously avoid
rediscovering any of the previously found correct clauses even if it is known which clauses
in the current hypothesis are correct.)

154 D. ANGLUIN, M. FRAZIER AND L. PITT

3.2. Description of HORN

The first scenario above shows that we must reduce the number of variables set to T in
the negative counterexamples we are given, and the second scenario rules out the obvious
greedy approach. A data-driven approach solves the dilemma. A new negative example
is used to attempt to "refine" previously obtained negative examples by intersection. Each
such intersection, if it contains fewer true variables than the previously obtained negative
example, is then tested to see whether it is negative (using a membership query). If so,
it is a candidate to refine the previously obtained negative example. 4

The algorithm maintains a sequence S of negative examples. Each new negative counterex-
ample either is used to refine one element of S, or is added to the end of S. In order to
learn all of the clauses of H,, we would like the clauses induced by the (negative) examples
in S to approximate distinct clauses of H,. This will happen if the examples in S violate
distinct clauses of H,. Overzealous refinement may result in several examples in S violating
the same clause of H,. To avoid this, whenever a new negative counterexample could be
used to refine several examples in the sequence S, only the first among these is refined.

Collecting all of these ideas, the learning algorithm HORN (Figure 1) can be described
intuitively as follows. The sequence S of negative examples is used to generate new hypoth-
eses. Each negative example x in the sequence can be explained by O(n) different Horn
clauses (clauses(x)), and each of these possible explanations is placed in the hypothesis.

1 Set S to be ~he empty sequence/* si denotes the i-th element of S */

2 Set H to be the empty hypothesis

3 UNTIL equ iva len t (H) returns "yes" DO
4 BEGIN /* main loop */
5 Let x be the counterexamp]e returned by the equivalence query
6 IF x violates at least one clause of H
7 T H E N / * x is a positive example */
8 remove from H every clause that x violates
9 ELSE /* x i s a n e g a t i v e example */
10 BEGIN
11 FOR each si in S such that true(sJ]x) is properly contained in true(si)
12 BEGIN
13 query member (s /Nx)
14 END
15 IF any of these queries is answered "no"
16 THEN l e t / = min{j : member(sjAx) = "no"}
17 refine si by replacing sl with siNx
18 ELSE add z as the last element in the sequence S
19 ENDIF
20 Set H to be A~cs cla~ses(s) , where clauses(s) = {(A~e,~(~)v)~z: z c false(s)}
21 END
22 ENDIF
23 END /* main loop */
24 Return H

Figure 1. The algorithm HORN.

LEARNING CONJUNCTIONS OF HORN CLAUSES 155

Any clause in the hypothesis which is not logically implied by the target will be exposed
eventually by a positive counterexample. When a positive counterexample appears, the algo-
rithm removes any clause that this example violates from the hypothesis.

On the other hand, the hypothesis may also contain some correct clauses which are too
weak. Such a clause may be exposed eventually by a negative counterexample. When a
negative counterexample occurs, the algorithm refines the first element of S it can (using
an intersection and a membership query) or it appends the new negative example to the
end of S. In either case, after modifying S the algorithm generates a new hypothesis from
S. This process produces in polynomial time a hypothesis which is logically equivalent
to the target.

3.3. An example run of HORN

A simulated run of HORN follows. Suppose the variable set is V = {a, b, c, d} and H, is

H , : (a A c ~ d) A (a A b = c).

Initially we set S to be the empty sequence and H to be the null hypothesis (true on all
examples):

S : [] ,

H : O .

Suppose the first counterexample to our equivalence query for H is the negatwe example
TTTF. There are no elements of S that we can attempt to refine with this negative example,
so we simply append it to the end of the sequence. Since S has changed we generate a
new hypothesis H by conjoining all of the clauses from clauses(s) for all s ~ S. Thus,

S : [TTTF],

H : (a A b A c = d) A (a A b A c ~ F).

Suppose the next counterexample to our equivalence query for H is the positive example
TTTT. This eliminates an incorrect clause from H but does not change S, so we do not
generate a new H from S. Thus we now have

S : [TTTF],

H : (a A b A c ~ d).

For clarity, we will assume for the remainder of this simulated run that we are able to
discard immediately any incorrect clauses by positive counterexamples returned by equiva-
lence queries for H, and so we will only show the effect of receiving a (necessarily) negative

156 D. ANGLUIN, M. FRAZIER AND L. PITT

counterexample. Suppose the next negative counterexample is TTFT. We intersect this with
the (first) element of S and get the example TTFF, which has strictly fewer variables set to
T than the (first) element of S had. We then make a membership query with TTFF and
discover that it is also a negative example, so we can replace the (first) element of S with
the result of the intersection. Then, because S has changed, we generate a new hypothesis
H from S. (Again assuming that all incorrect clauses have been eliminated) we have

S : [TTFF],

H: (a A b = c) A (a A b = d).

Suppose our next negative counterexample is T F T E We intersect this with the (first) ele-
ment of S to get the example TFFE which a membership query shows to be a positive
example for H,. Thus, we cannot refine the (first) element of S with T F T E so we add
it to the end of S. This in turn mandates that we regenerate H from S, which (after elimina-
tion of incorrect clauses) leaves us with

S : [TTFF, TFTF],

H: (a A b = c) A (a A b = d) A (a A c = d).

Our final equivalence query for H tells us that we have learned H,; note that H is logically
equivalent to H,, though not identical to it.

4. Correctness and running time

We prove that the algorithm HORN given in Figure 1 correctly terminates in time 0(m3n4),
making O(m2n 2) equivalence queries and O(m2n) membership queries. In the next section,
a more efficient version of the algorithm, HORN1, improves these bounds to 0(m2n2),
O(mn), and O(m2n), respectively.

First observe that the algorithm terminates only if the hypothesis and the target Horn
sentence H, are logically equivalent. Therefore, if the algorithm terminates, it is correct.
To show termination in polynomial time we first prove a couple of technical lemmas.

Lemma 4. For each execution of the main loop of line 3, the following holds. Suppose
that in step 5 of the algorithm a negative example x is obtained such that for some clause
C of H, and for some si ~ S, x violates C and si covers C. Then there is somej <_ i such
that in step 17 the algorithm will refine sj by replacing sj with sjAx.

Proof: The proof is by induction on the number of iterations k of the main loop of line
3. If k = 1, then the lemma is vacuously true, since the sequence S is empty upon execu-
tion of step 5. Assume inductively that the lenuna holds for iterations 1, 2, . . . , k - 1
of the main loop, and assume that during the k-th execution of the loop, H is the value of
H in the equivalence query in step 3, and at step 5 a negative counterexample x is obtained

LEARNING CONJUNCTIONS OF HORN CLAUSES 157

such that for some clause C of H, and for some s i ~ S, x violates C and si covers C. Since
x is a negative counterexample, it must satisfy all the clauses of H.

Clearly, if in step 17 of the k-th iteration, the algorithm refines some sj where j < i,
then we are done. Suppose that this does not happen. Now by Lemma 1, we know that
si f)x violates C and therefore is a negative example of H,. It only remains to be shown
that true(siOx) is properly contained in true(si), for then s i will be refined in step 17.

Suppose to the contrary that true(s i 0 x) = true(si). Since si 17 x violates C, this implies
that si also violates C, so antecedent(C) ~ true(si) and consequent(C) ~ fa~e(si). Con-
sider the clause

vl c° seq e 'c'
Note that C E clauses(si) and also C implies C. We claim that x violates C' and C is a
clause of H, contradicting the fact that x is a negative counterexample to Jqr.

To see that x violates C, note that true(si) c true(x), which implies that antecedent(6")
c_ true(x). Also, since x violates C, consequent(C) ~ false(x), and therefore consequent(C)

false(x).
To see that C is a clause of [/, observe that each time the sequence S is modified, step

20 of the algorithm discards the old hypothesis and constructs a new hypothesis H from
the elements currently in S. Further observe that during each execution of the main loop
of line 3, either S is modified (lines 10-21), or else a clause is removed from H (line 8).
Let k' < k be the last execution of the main loop of line 3 during which S was modified.
Then, during the k'-th iteration, line 20 was executed and H was reconstructed from S. At
this time the clause 6" was included in H because s i was a member of S and C ~i clauses(si).
Now C logically implies C, so 6" could not have been removed in line 8 during iterations
k ' + 1, . . . , k of the main loop. Thus C must be a clause of/~.

This yields the desired contradition; therefore true(siOx) is properly contained in
true(si). Thus the algorithm will replace s i by si fqx in line 17. []

Lemma 5. Let S be a sequence o f elements constructed for the target H, by the algorithm.
Then

1. Vk¥(i < k)¥(C ~ H,) i f sk violates C then si does not cover C.
2. ¥k¥(i ~ k)¥(C E H,) i f sk violates C, then s i does not violate C.

Proof: We first show property 1 implies property 2, and then show inductively that prop-
erty 1 is preserved under any modifications the algorithm makes to the sequence S.

Suppose S is any sequence of examples with property 1. To see that S must have property
2, assume to the contrary that k and i are distinct positive integers such that sk and si both
violate some clause C in H,. Without loss of generality, assume that i < k. Then, since
property 1 holds of S and sk violates C, si does not cover C. By assumption si violates
C and therefore must cover C. This contradiction shows that S must have]property 2.

158 D. ANGLUIN, M. FRAZIER AND L. PITT

To see that property 1 is preserved, we argue inductively. Initially the sequence is empty,
so property l holds vacuously. Now suppose that property 1 (and therefore also property
2) holds for some sequence, and suppose that the algorithm modifies the sequence in re-
sponse to seeing the negative example x.

If the algorithm appends x to the sequence as, say, st, then suppose by way of contradic-
tion that property 1 fails to hold. Inductively, the only way that property 1 could now fail
to hold is if there is some i < t such that si covers some clause C of H, that sz = x violates.
This together with Lemma 4 contradicts the fact that the algorithm did not replace sj by
s jNx for some j < i. Thus property 1 is preserved in this case.

Now suppose that instead of appending x to the sequence, the algorithm replaces some
sk with skNx. Suppose by way of contradiction that property 1 fails to hold. There are
two possibilities, either (a) there is some i < k such that si covers and s~ f'l x violates some
particular clause C of H, or (b) there is some i > k such that sk Nx covers and si violates
some particular clause C of H,.

If case (a) holds, then by Lemma 3 either x violates C or sk violates C. If x violates
C then (since si covers C) by Lemma 4 there must be some j < i < k such that sj was
refined instead of sk, a contradiction. On the other hand, if sk violates C, then the fact
that si and Sk both violate C contradicts the inductive assumption that property 1 (and there-
fore property 2) held before the modification.

In case (b), there is some i > k such that skOx covers and si violates some clause C
of H,. Since skfqx covers C, Sk covers C as well. Since si violates C and i > k, this con-
tradicts the inductive assumption that property 1 held before the modification. Thus, in
either case property 1 is preserved. []

Corol lary 2. At no time do two distinct elements in S violate the same clause of H,.

Proof: This is property 2 of Lemma 5. []

Lemma 6. Every element of S violates at least one clause of H,.

Proof: Each of the elements in S is a negative example, thus by proposition 1, each of
the elements violates some clause of H,. []

Lemma 7. I f H , has m c~uses, ~en at no rime are ~ere more than m elemen~ in the
sequence

Proof: This follows immediately from the fact that each of the elements in S violates some
clause of H, but no two elements violate the same clause of H,. []

FinallN we have our theorem.

Theorem 1. For all positive integers m and n, the algorithm HORN exactly identifies every
Horn sentence with m clauses over n variables in time O(m3n 4) using O(m2n 2) equivalence
queries and O(m2n) membership queries.

LEARNING CONJUNCTIONS OF HORN CLAUSES 159

Proof: The only changes to the sequence S during any run of the algorithm involve either
appending a new element to S, or refining an existing element. Thus I s I cannot decrease
during any execution of the main loop of the algorithm. But Lemma 7 shows that there
are at most m elements of S at any time. Thus line 18 is executed at most rn times.

Now observe that whenever any element si of the sequence S is refined (line 17), the
resulting new i-th element is s iNx, which, by line 11, must contain strictly fewer variables
assigned the value T than si. This can happen at most n times for each element of S. Thus
line 17 is executed at most mn times.

Whenever the ELSE clause at line 9 is executed, either line 17 or 18 must be executed.
It follows that lines 9-21 are executed at most mn + m = m(n + 1) times. Note that this
bounds the total number of membership queries made by m2(n + 1).

Next observe that for any element s of S, the cardinality of false(s) is at most n + 1
(recalling that F fi false(s)). Thus the cardinality of clauses(s) is at most n + 1. Therefore,
the number of clauses in any hypothesis H constructed in line 20 is at most m(n + 1).

Now, since each positive counterexample obtained in line 5 necessarily causes at least
one clause to be removed from H by line 8, the equivalence query can produce at most
m(n + 1) positive counterexamples between modifications to S. Therefore, liLne 8 is exe-
cuted at most mZ(n + 1) 2 times.

Since each execution of line 3 that does not result in termination causes execution of
line 8 or lines 9-21, the total number of executions of line 3 (and hence the total number
of equivalence queries made) is at most mZ(n + 1) 2 + m(n + 1) + 1.

To complete the proof we need only show that the time needed for each ,execution of
the main loop is (~(mn2). Using the facts (above) that at any time during the execution
of the algorithm tSI -< m and IHI - m(n + 1), and that each element of H consists of
at most n + 1 variables (antecedent + consequent), it is easily verified that the time needed
to execute either of steps 8 and 20 is O(mn2), and that these steps dominate the time to
execute one iteration of the main loop. []

5. Improvements to the algorithm

We now describe a more efficient version, HORN1, of our learning algorithm for Horn
sentences. There is a natural shorthand notation for propositional Horn sentences obtained

"by gathering up all the clauses with the same antecedent set and conjoining the conse-
quents. The conjunction of several clauses C1, . . . , C k with the same antecedent will be

. represented as a recta-clause whose antecedent is the common antecedent of the clauses
and whose consequent is the conjunction of consequent(Ci) for i = 1, . . . , k. For exam-
ple, the meta-clause

(a A b A d = c A e)

is logically equivalent to, and will be used to represent, the conjunction

(a A b A d = c) A (a A b A d ~ e).

160 D. ANGLUIN, M. FRAZIER AND L. PITT

The new version of the algorithm maintains the current hypothesis as a sequence of meta-
clauses, one meta-clause corresponding to each negative example in the sequence S in the
previous version. We assume that this representation is used both by the algorithm and
for the equivalence queries. (If the equivalence queries require that the representation be
strictly a conjunction of Horn clauses, further (straightforward) optimizations must be made
to achieve the time bounds below.)

In addition to this shorthand representation, we make use of the observation that once
a positive counterexample eliminates a clause, it eliminates any clause with a refined antece-
dent. For example, the positive counterexample TTTF eliminates the clause (a A b A c ~ d),
and also refinements like (a A b = d) and (b A c ~ d). Thus, when we refine the antece-
dent of a meta-clause, we do not need to re-introduce possible consequents that have been
eliminated.

The effects of counterexamples on meta-clauses can be exemplified as follows, starting
with the metal-clause

(a A b A c = d A e A f) .

A positive counterexample causes item(s) to be struck from the consequent, for example,
a positive counterexample T T T T F T would result in the meta-clause

(a A b A c = d A f) .

A subsequent negative counterexample that refines the corresponding negative example
moves variable(s) from the antecedent to the consequent. For example, the negative exam-
ple T T F F F F then results in

(a A b = c A d A f) .

Using suitable data structures, this means that the total processing time spent modifying
the hypothesis is O(mn), since each variable can appear in the antecedent, be moved to
the consequent, and be deleted, from each meta-clause. A more formal treatment follows.

We use the partial ordering < on assignments defined by x < y if and only if xi = Yi
for i = 1, . . . , n. (Equivalently, x < y if and only if xi <- Yi, where we take F < T.)
If C is a meta-clause, let negex(C) denote the example that assigns T to all the variables "
in the antecedent of C and F to all the other variables. Then negex(C) is the minimum
example in the ordering by < that violates C. In the new version of the algorithm, H is
the conjunction of a sequence of meta-clauses Ci such that negex(Ci) = si.

We define three meta-clause operations: generating a new meta-clause from a negative
example (new(x)), reducing a meta-clause with a positive counterexample (reduce(C, x)),
and strengthening a meta-clause with a negative example (refine(C, x).)

Given a negative example x, define new(x) to be the meta-clause whose antecedent is
the set true(x) and whose consequent is F. Note that negex(new(x)) = x. For example,

new(TFTFT) = (a A c A e = F).

LEARNING CONJUNCTIONS OF HORN CLAUSES 161

This operation is used to construct an initial meta-clause from a new negative example.
It replaces the operation clauses(x). The consequent F is introduced first because the Horn
clause with antecedent set A and consequent F logically implies every other Horn clause
with antecedent set A. The other possible consequents are only introduced if and when
the consequent F is eliminated by some positive counterexample.

Given a meta-clause C and an example x > negex(C) for which C is false (intuitively,
x is a positive counterexample) we define reduce(C, x) to be a meta-clause with the same
antecedent as C and consequent defined as follows.

1. If the consequent of C is E then the consequent of reduce(C, x) is the conjunction of
those variables v i such that v i ~ false(negex(C)) O true(x).

2. If the consequent of C is not E then the consequent of reduce(C, x) is the conjunction
of those variables v i in the consequent of C such that v i ~ true(x).

For example,

reduce((a A b = F), TTTFT) = (a A b = c A e).

Also,

reduce((a A b = c A d), TTTFT) = (a A b = c).

Given a meta-clause C and an example x < negex(C) (intuitively, x is a negative counter-
example) we define refine(C, x) to be a meta-clause whose antecedent is the set true(x)
whose consequent is defined as follows.

1. If the consequent of C is E then the consequent of refine(C, x) is E
2. If the consequent of C is not E then the consequent of refine(C, x) is the conjunction

of all the variables in the consequent of C and all of the variables vi such that vi,
false(x) n true(negex(C)).

For example,

refine((a A b A c = F), TFTFF) = (a A c ~ F).

Also,

refine((a A b = c A e), TFFFF) = (a = b A c A e).

Note that the possible consequent d is not re-introduced here, having been (presumably)
eliminated by a previous positive example.

The new version of the algorithm, named HORN1 and shown in Figure 2, has the same
line numbers as the previous version, for ease of comparison. As for the previous version,
if the algorithm halts then its output is correct, so we need only give bounds on its running
time.

162 D. ANGLUIN, M. FRAZIER AND L. PITT

1 /* H i s a c o n j u n c t i o n of m e t a - c l a u s e s C~ */
2 Set H to be the empty hypothesis
3 UNTIL e q u i v a l e n t (H) returns "yes" DO
4 B E G I N / * main loop */
5 Let z be the counterexample returned by the equivalence query
6 IF x violates at least one meta~clause of H
? T H E N / * x i s a p o s i t i v e example * /
8 replace Ci by reduce(Ci, x) for every Ci that x violates
9 ELSE /* x i s a n e g a t i v e example * /
10 BEGIN
1l FOR each C~ in H such that (negez(C~)Nx) < negez(Ci)
12 BEGIN
13 query member(negez(Ci)Nx)
14 END
15 IF any of these queries is answered "no"
16 THEN let i = min{j : member(negez(C3)Nz) : "no"}
17 replace C{ by refine(C{, ~egez(Ci)Nx)
18 ELSE add new(x) as the last meta-clause in H
19 ENDIF
20 /* H i s a l r e a d y updated */
21 END
22 ENDIF
23 E N D / * main loop * /
24 Return H

Figure 2. The algorithm HORN1.

Since throughout the new version negex(Ci) is equal to si in the old version, the same
argument shows that if m is the number of clauses of the target H,, then there are at most
m meta-clauses in H at any time. Note that no meta-clause is ever deleted from H.

Consider the career of a particular meta-clause C/. Ci is initially created in response
to a negative counterexample. When Ci is first created, its antecedent consists of a con-
junction of variables (and the constant T), and its consequent is F.

The antecedent of C i then only changes in response to negative counterexamples, and
the change must be to delete one or more variables from the antecedent. Thus, there can
be at most n such changes. Since every negative counterexample must either cause the crea-.
tion of a new meta-clause or refine an existing one, there can be at most m(n + 1) negative

counterexamples.
The consequent of C~ may change in response to negative or positive counterexamples."

The first positive counterexample to Ci changes its consequent from F to the conjunction
of a subset of the variables not in the antecedent of Ci. Negative counterexamples before
the first positive counterexample do not change the consequent of C i --it remains F. Subse-
quent negative counterexamples to Ci may move one or more variables from the antece-
dent to the consequent of Ci. Positive counterexamples to Ci, after the first, can only
remove variables from the consequent of Ci. Every variable can be deleted at most once
from the consequent of Ci, and, if the consequent is not E at least one variable must re-
main in it. Thus, Ci can be changed by at most n positive counterexamples. Since every

LEARNING CONJUNCTIONS OF HORN CLAUSES 163

positive counterexample must change one or more meta-clauses, there can be at most mn
positive counterexamples.

Since each negative counterexample can cause at most m membership queries, no more
than m2(n + 1) membership queries will be made. With a straightforward representation
of meta-clauses and assignments as lists of length n, this algorithm can be implemented
to run in time O(m2n 2) on a log-cost RAM.

Our analysis of the improved algorithm establishes the following theorem.

Theorem 2. For all positive integers m and n, the algorithm HORN1 exactly identifies every
Horn sentence with m clauses over n variables in time O(m2n 2) using O(mn) equivalence
queries and O(m2n) membership queries.

6. Conclusions

Our main result is a polynomial-time algorithm for exact identification of Horn sentences
using equivalence and membership queries. One corollary of the result is that the class
of Horn sentences is polynomial-time PAC learnable if membership queries are available.
Another is that the class of Horn sentences is polynomial-time predictable with a polynomial
mistake bound if membership queries (excluding the elements to be predicted) are available.

I f membership queries are not available, it is an open problem whether Horn sentences
are PAC-learnable or polynomial-t ime predictable. By the reductions of Kearns, Li, Pitt,
and Valiant (1987) PAC-learnability of Horn sentences would imply PAC-learnability of gen-
eral CNF and DNF sentences, and similarily for polynomial predictability.

An interesting open problem is whether the algorithm here can be extended to handle
restricted types of universally quantified Horn sentences (see the papers of Valiant (1985)
and Haussler (1989) for related classes of formulas). This class is of significant interest
due to its similarity to the language Prolog, and its use in logic programming and expert
system design.

Acknowledgments

Financial support for this research from the Department of Computer Science of the Univer-
• sity of Illinois at Urbana-Champaign and from the National Science Foundation under grants
IRI-8718975, IRI-8809570, IRI-9014840 and CCR-9014943 is gratefully acknovdedged. The
authors thank Jonathan Gratch, David Haussler, Michael Kearns and the anonymous referees
for their contributions to this paper. A preliminary version of this paper was presented
at the 31st Annual Symposium on Foundations of Computer Science (Angluin, Frazier,
& Pitt, 1990).

Notes

1. The O(), or "soft-O,' notation is similar to the usual O() notation except that 0() ignores logarithmic factors.
2. Throughout the paper, we omit writing the "T" in an otherwise nonempty antecedent so as to avoid cluttering

our examples.

164 D. ANGLUIN, M. FRAZIER AND L. PITI

3. This method of discarding overly restrictive pieces of a conjunctive hypothesis is a standard technique and
is incorporated in step 8 of the learning algorithm in Figure 1.

4. The approach of intersections was used by Haussler in an alternative algorithm to learn monotone DNF (Haussler,
private communication).

References

Angluin, D. (1988). Learning with hints. In Proceedings of the 1988 Workshop on Computational Learning Theory
(pp. 16%181). Boston, MA: Morgan Kaufmann.

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.
Angluin, D. (1988). Requests for hints that return no hints (Technical Report YALE/DCS/RR-647). Department

of Computer Science, Yale University.
Angluin, D. (1990). Negative results for equivalence queries. Machine Learning, 5, 121-150.
Angluin, D., Frazier, M., & Pitt, L. (1990). Learning conjunctions of Horn clauses. In Proceedings of the 31st

Annual Symposium on Foundations of Computer Science (pp. 186-192). St. Louis, MO: IEEE Computer Society
Press.

Angluin, D., Hellerstein, L., & Karpinski, M. (1989). Learning read-once formulas with queries (Technical Report,
University of California at Berkeley, Report No. 89/528). (Also, International Computer Science Institute Technical
Report TR-89-050. To appear, JACM.)

Angluin, D. & Kharitonov, M. (1991). When won't membership queries help? In Proceedings of the Twenty Third
Annual ACM Symposium on Theory of Computing (pp. 444-454). New Orleans, LA: ACM Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-Chervonenkis
dimension. J. ACM, 36, 929-965.

Ehrenfeucht, A. & Haussler, D. (1988). Learning decision trees from random examples. In Proceedings of the
1988 Workshop on Computational Learning Theory (pp. 182-194). Boston, MA: Morgan Kaufmann.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artifi-
cial Intelligence, 36, 177-221.

Haussler, D. (1989). Learning conjunctive concepts in structural domains. Machine Learning, 4, 7-40.
Haussler, D., Littlestone, N., & Warmuth, M.K. (1988). Predicting {0, 1} functions on randomly drawn points.

In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, (pp. 100-109). Washington,
D.C.: IEEE Computer Society Press.

Jones, N.D. & Laaser, W.T. (1977). Complete problems for deterministic polynomial time. Theoretical Computer
Science, 3, 107-113.

Kearns, M., Li, M., Pitt, L., & Valiant, L.G. (1987). On the learnability of Boolean formulae. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing (pp. 285-295). New York, NY: ACM Press.

Kearns, M. & Valiant, L.G. (1989). Cryptographic limitations on learning boolean formulae and finite automata.
In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing (pp. 433-444). Seattle,
WA: ACM Press.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2, 285-318.

Pitt, L. & Warmuth, M.K. (1990). Prediction-preserving reducibility. J. of Computer and System Sciences, 41,
430-467.

Rivest, R.L. (1987). Learning decision lists. Machine Learning, 2, 229-246.
Valiant, L.G. (1985). Learning disjunctions of conjunctions. In Proceedings of the 9th International Joint Confer-

ence on Artificial Intelligence (pp. 560-566). Los Angeles, CA.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.

