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Abstract. We study the problem of learning conjunctive concepts from examples on structural domains 
like the blocks world. This class of concepts is formally defined, and it is shown that even for samples 
in which each example (positive or negative) is a two-object scene, it is NP-complete to determine if 
there is any concept in this class that is consistent with the sample. We demonstrate how this result 
affects the feasibility of Mitchell's version of space approach and how it shows that it is unlikely that 
this class of concepts is polynomially learnable from random examples alone in the PAC framework 
of Valiant. On the other hand, we show that for any fixed bound on the number of objects per scene, 
this class is polynomially learnable if, in addition to providing random examples, we allow the learning 
algorithm to make subset queries. In establishing this result, we calculate the capacity of the hypothesis 
space of conjunctive concepts in a structural domain and use a general theorem of Vapnik and Cher- 
vonenkis. This latter result can also be used to estimate a sample size sufficient for heuristic learning 
techniques that do not use queries. 

1. Introduction 

Since the publication of Winston's  results on learning blocks-world concepts f rom 

examples (Winston, 1975), considerable effort has gone into improving and gen- 

eralizing his learning algorithm and into developing a more  rigorous and general 

model of this and related A I  learning problems (Vere, 1975; Hayes-Roth ,  1978; 

Knapman,  1978; Michalski, et al., 1983; Dietterich, 1983; Bundy, et al., 1985; 

Sammut,  1986; Kodratoff ,  1986). Whereas  much of the earlier learning work, 

especially that associated with the field of Pat tern Recognition (e.g. Duda,  1973), 

relied on an attribute-based domain in which each instance of a concept is char- 

acterized solely by a vector of values for a given set of attributes, this work uses 

a structural domain in which each instance is composed of many objects and is 

characterized not only by the attributes of the individual objects it contains, but 

by the relationships among these objects. The classic example is Winston's  arch 

concept, defined as any scene that contains three blocks, two having the attributes 

required of posts and a third having the attributes required of a lintel, with each 

of the posts supporting the lintel and the posts set apart  f rom each other. This 

concept can be formalized by inventing variables x and y for the posts and z for 

the lintel and giving an expression in the predicate calculus roughly of the form 
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"there exist distinct x, y, z such that fl and f2 a n d . . ,  f~," where the f ' s  are atomic 

formulae in the variables x, y and z that describe attributes of and relations between 

the objects represented by these variables. A concept of this type will be called an 

existential conjunctive concept. The notions of an instance space in a structural 

domain and the class of existential conjunctive concepts over this instance space 

are defined formally in Section 1 below. Instances in the instance space will be 

called scenes in deference to the pioneering work of Winston, even though our 

treatment is by no means limited to a blocks-world-like domain. Instances and 

concepts will be represented by labeled graphs, as described in Section 1. 

Mitchell (1982) gives an elegant framework for viewing the process of learning 

from examples and illustrates this framework by analyzing the process of learning 

simple existential conjunctive concepts. A general version of this framework can 

be described as follows. Let us assume that we are trying to learn some unknown 

target concept defined on the instance space. This concept may or may not be an 

existential conjunctive concept (i.e., the target concept is allowed to be any subset 

of the instance space). We are given a sequence of examples of this target concept, 

each of which is either an instance contained in (i.e., satisfying) the concept (a 

positive example) or an instance not contained in the concept (negative example), 

each labeled accordingly. This is called a sample of the target concept. The task 

is to produce an existential conjunctive concept that is consistent with the sample, 

in that it contains all instances from positive examples and none from negative 

examples, or to detect when no existential conjunctive concept is consistent with 

the sample. Thus we assume a restricted hypothesis space H consisting of only 

existential conjunctive concepts. The set of all hypotheses h E H that are consistent 

with the sample is called the version space of the sample (with respect to the 

hypothesis space/4). The version space is empty in the case that no hypothesis in 

H is consistent with the sample. 

Mitchell shows how this learning task (and related tasks) can be solved by main- 

taining only two subsets of the version space: the set S of the most specific hy- 

potheses in the version space and the set G of the most general hypotheses. These 

sets are updated with each new example. There are two computational problems 

associated with this method. The first is that in order to update the sets S and G, 

we must have an efficient procedure for testing whether or not one hypothesis is 

more general than another and whether or not a hypothesis contains a given in- 

stance. Indeed, the latter would seem to be a requirement for the existence of any 

practical learning method. Unfortunately, both of these problems are NP-eomplete 

if we allow arbitrarily many objects in scenes and arbitrarily many variables in 

existential conjunctive hypotheses (see Hayes-Roth, 1978 and Section 1 below). 

This problem is avoided by fixing the maximum number of objects in a scene (and 

hence variables in a consistent concept) to a reasonably small number. For example, 

Mitchell uses two objects per scene in the running example of (Mitchell, 1982). 

The second problem is that the size of the sets S and G can become unmanageably 

large. In Haussler (1988), it is shown that using the hypothesis space of conjunctive 

concepts in a simple attribute-based domain (corresponding to existential con- 
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junctive concepts on scenes with only one object), the size of G can already grow 

exponentially in the number of examples if the number of attributes is large, 

However, in this case S never contains more than one hypothesis (see Bundy, et 

al., 1985), so a consistent (and maximally specific) hypothesis can be found by 

computing only S-(using the positive examples) and then checking to see if any 

negative example is contained in S in a second pass through the sample. This is 

not possible in structural domains. In fact, we show that both the size of S and the 

size of G can grow exponentially in the number of examples when structural do- 

mains are used. More precisely, even if we restrict ourselves to instance spaces 

like the one in Mitchell's paper in which 

1. each scene has exactly two objects, 

2. there are no binary relations defined between the objects, and 

3. each object has only Boolean-valued attributes, 

then using the hypothesis space of existential conjunctive concenpts and letting the 

number of attributes grow, the size of both S and G grow exponentially in the 

number of examples. Furthermore, in this case it is NP-complete to determine if 

the version space is nonempty, i.e., if there is any existential conjunctive concept 

consistent with a given sample (Theorem 1, Section 2). 

The version space paradigm of learning from examples is a rather demanding 

one in that it aims at either exact identification of the target concept or an exact 

description of the set of consistent hypotheses in the case that the number of 

examples is insufficient for exact identification. Another paradigm has recently 

been introduced by Valiant in which the goal of learning is merely to find a hy- 

pothesis that is a good approximation to the target concept in a probabilistic sense 

(Valiant, 1984). This framework has been called "Probably Approximately Cor- 

rect" (PAC) learning (Angluin, 1988). We describe this framework in Section 3 

and consider the problem of learning existential conjunctive concepts in this sense. 

It turns out that using results from (Pitt, 1986), Theorem I implies that existential 

conjunctive concepts are not learnable in the strict PAC sense, from random ex- 

amples alone (Proposition 2, Section 3.1). In Section 3.2 we use results of Vapnik 

and Chervonenkis to show that the problem is not that too many training examples 

are needed, but only that it is, in general, computationally difficult to find a hy- 

pothesis that is consistent (or nearly consistent) with the training examples. We 

show that for reasonable sample sizes, any hypothesis that is consistent with all 

but a small fraction of the training sample is good with high probability (Propositions 

3 and 4, Section 3.2). This implies that heuristic techniques, such as those considered 

in Vere (1975), Hayes-Roth (1978), Michalski (1983), Dietterich (1983), and Sam- 
rout (1986), will be effective in producing accurate hypotheses, so long as the 

training set is reasonably large, and they do not run into computational difficulties 
(Theorem 2, Section 3.2). 

Finally, in Section 3.3 we show how these computational difficulties can be 
overcome if we allowthe learning algorithm to make certain types of queries while 
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it is learning, in addition to receiving random training examples. The type of query 

we consider is a subset query, as defined in Angluin (1988). Here the learning 

algorithm asks if a hypothesis is contained in (i.e., equal to or more specific than) 

the target concept. We assume an oracle is available that answers yes or no. We 

show that existential conjunctive concepts are PAC learnable using subset queries 

and random examples, so long as we restrict the maximum number of objects per 

scene to a fixed constant (Theorem 3, Section 3.3). We close in Section 4 with a 

number of open problems. 

2. Attributes, relations, and existential conjunctive concepts 

2.1. Attributes and relations 

We define a set of attributes for which each object we consider has particular 

values. For example, we might have attributes shape, color, and size, and a par- 

ticular object (a small red square) might be characterized as having the value square 

for the attribute shape, red for color and 2 for size. The values an attribute can 

have are defined a priori, as is its value structure, which may be either tree-structured 

or linear (Michalski, 1983). In a tree-structured attribute, the values are ordered 

hierarchically as illustrated in Figure la for the attribute shape. The lowest or leaf 

values of this tree are the only observable values, i.e., actual objects must have 

one of these values for the attribute shape. The other values, called abstract values, 

are used only in logical formulae that represent concepts, as defined below. We 

assume that the node for each abstract value in the tree has at least two children. 

The values of a linear attribute are all directly observable and are linearly ordered, 

as in the attribute size, which may be defined, for example, to take only integer 

values between 1 and 5. At the other extreme, a linear attribute may be defined 

to take on any real number as its value. 

A scene that contains several objects is characterized not only by the attributes 

of its objects but by the relations between its objects. Here we will restrict ourselves 

to binary relations, but, for consistency with our treatment of attributes (henceforth 

viewed as unary relations), we will allow these binary relations to take on any of 

several values, with the same two types of possible value structures. To illustrate 

the flexibility of this model, we give a few examples of binary relations that might 

be used to characterize the spatial relationship between an ordered pair of objects 

in a two-dimensional scene. First, the relation distance-between may be defined as 

a linear binary relation in analogy with the attribute size, perhaps using the Eu- 

clidean distance between the centers of mass. In addition, the relative position in 

the x-y plane of two objects might be characterized similarly using two linear binary 

relations delta_x and delta y that give the difference in x coordinates and the 

difference in y coordinates of the centers of mass. Alternatively, a more qualitative 

binary relation to describe spatial relationship is given by the tree-structured re- 

lation rel_pos illustrated in Figure lb. 
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Attributes (Michalski '83) 

size: 1, 2 ..... 5 (linear) 

shaded: yes, no (Boolean) 

shape: (tree-structured) 

convex non-convex 

Fig. la. The value structures for the attributes size, shaded, and shape. 

Binary Relations: 

dis t -between:  touching, close, far ( l inear)  

re l -pos:  

side-by-side above/below overlapping 

/ \  / \  
left-of right-of on-top-of under / 

other 

inside contains p-overlap 

Fig. lb. The value structures for the relations dist-between and rel-pos. 
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2.2. Instances and existential conjunctive concepts 

Henceforth we will assume a fixed set R of relations consisting of n attributes 

A I ,  . • . ,  A,, and 1 binary relations B1, . . . ,  Bt. We will also assume a fixed upper 

bound k on the number of objects per scene. A scene with t objects, 0 <- t -< k, 

will be represented as a complete directed graph on t nodes (i.e., there are two 

directed edges between every pair of nodes, one going each way), with each node 

representing an object in the scene and labeled by the n-tuple that gives the observed 

value of each attribute for that object, and a directed edge from the node repre- 

senting obj~ to the node representing oh j2 labeled with an/-tuple that gives the 

observed values of each binary relation on the ordered pair (objl, obj2). A graph 

of this type will be called an instance graph. This representation is illustrated in 

Figure 2, where the triples in the nodes give the values of the attributes size, 

shaded, and shape, respectively, and the pairs on the edges give the values of the 

relations teMpos and distance_between, respectively. Note that this representation 

implies that binary relations are not defined between an object and itself; this is 

1 

4 

.a_~n_instance 

" % 

(inside, touching) 

its graph representation 

Fig. 2. Graph representation of scenes (numbers denote size values). 
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reserved for attributes. Finally, the instance space is defined as the set of all instance 

graphs. Here, for simplicity, we identify scenes with the labeled graphs that rep- 

resent them. 

By using variables to denote unknown objects, we can define the set of (ele- 

mentary) atomic formulae over R as in (Michalski, 1983). Atomic formulae are 

either unary or binary. A unary atomic formula f(x), where x is a variable, has 

either the form (A(x) = v), where A is a tree-structured attribute in R and v is a 

value of A, or the form (vl <- A(x) <- v2) where A is a linear attribute in R and 

Vl, v2 are values of A such that Vl -< v2. In the former case the atomic formula f(x) 
restricts the value of A for the object x to be in the set of observable values in the 

tree for A that lie in the subtree below v, including v itself if v is observable. For 

example, the atomic formula shape(x) = convex restricts x to having shape triangle, 
hexagon, square, proper-ellipse, or circle (see Figure la).  In the latter case the 

value of A is restricted to be between Vl and v2, inclusive, with respect to the linear 

order on A. An object satisfies f(x) if its value for the attribute A complies with 

these restrictions. 

A similar semantics applies to binary atomic formulae. Thus a binary atomic 

formula f(x, y), where x and y are distinct variables, has either the form (B(x, y) 
-- v), where B is a tree-structured binary relation in R and v is a value of B, or 

the form (V 1 ~ B ( x ,  y) ~ V2) where B is a linear binary relation in R and vl, v2 are 

values of B such that v~ -< v2. An ordered pair of objects (Objl, obj2) in a scene 

satisfies the atomic formula fix,  y) if the binary relation between these objects has 

the appropriate value, as defined above for unary relations. 

An existential conjunctive expression over R (see Figure 3) is a formula + of the 

form 

3 "  X l ,  . • . ,  X r : f l  and f2 and • • • and fs, 

where s -> 1, each xj, 1 <- j -< r, is a variable and each f~, 1 -< i -< s, is an atomic 

formula over R involving either a single variable from {xl . . . .  , Xr} or an ordered 

pair of distinct variables from this set. We have dropped the names of the variables 

appearing in the individual atomic formulae to simplify the notation. The first part 

of this expression (up to the colon) may be read "there exist distinct objects xl 

through Xr such that . . ." Thus a scene (or its instance graph) satisfies ~ if it 

contains r distinct objects obj~ . . . .  obJr such that for every i, 1 -< i <- s, if f/ = 

f~(xj) then objj satisfies f~ and if f~ = f~(xj, x~) then the ordered pair (obj,, objk) 
satisfies f .  Note that the scene may also contain objects other than these r objects 

(see Stepp, 1987). 

The set of all instance graphs that satisfy ~b is called the concept represented by 

qb. The class of all such concepts (varying ~b) is referred to as the class of existential 
conjunctive concepts. Different existential conjunctive expressions can represent 

the same concept. However, each nonempty existential conjunctive concept can 

be associated with an existential conjunctive expression that is unique up to re- 

naming of the variables and rearranging the order of the atoms. Before describing 
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"~* x,y : (shape(x) = circle) and (1 _< size(x) _< 3) 

and (shape(y) = convex) and (rel-pos(x,y) = inside) 

and (rel-pos(y,x) = contains)" 

an existential coniunctive expression 

?, ?, convex ) ' , < ' %  

its concert ~raDh 

Fig. 3, Graph representation of concepts. 

this canonical form, let us say that an atomic formula is useless if it is satisfied by 

any object. This happens if and only if its value is the root of a tree-structured 

attribute or the entire range of values of a linear attribute. 

Proposition 1. (i) Each nonempty existential conjunctive concept can be rep- 

resented by an existential conjunctive expression that 

1. contains no useless atomic formulae, 

2. for every variable contains at most one atomic formula in that variable for each 

unary relation, and 

3. for every ordered pair of distinct variables contains at most one atomic formula 

in those variables for each binary relation. 

(ii) Moreover, each such expression represents a distinct existential conjunctive 

concept, modulo renaming the variables and rearranging the order of the atomic 

formulae. 

Sketch of Proof. Condition (1) can clearly be enforced without loss of generality. 

To see how condition (2) can be enforced, suppose that an existential conjunctive 

expression contains two atomic formulae f~(x) and fz(x) that both impose restrictions 

on the range of values of attribute A. These can be replaced by the single atomic 
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formula f3(x) that restricts the value of A to the intersection of the ranges allowed 

in f~(x) and f2(x). Since we are assuming that the concept is nonempty, this inter- 

section is nonempty. Hence f3(x) is well-defined, giving an interval range when A 

is linear and a single value (the most specific of the two values specified by f~(x) 
and f2(x)) when A is tree-structured. Condition (3) can be enforced in similar 

manner. This establishes (i). Part (ii) is easily verified. [] 

Henceforth we will assume, unless otherwise indicated, that a concept is non- 

empty and an expression is in the canonical form given in Proposition 1, thereby 

avoiding the need to distinguish between expressions and the concepts they rep- 

resent. 

2.3. The generalization relation among existential conjunctive concepts 

An expression in canonical form with r variables can also be represented as a 

complete directed graph on r nodes, similar to the way a scene is represented (see 

Figure 3). In this case, each node represents a variable of qb and the labels of nodes 

and edges represent restrictions imposed by the atomic formulae of +. Thus to 

label the graph, in addition to tuples of observable values, we will allow tuples 

that include abstract values for tree-structured relations and ranges of the form 

vl - v2, with Vl -< v2, for linear relations. (When vl = v2 only a single value will 

be used.) When no atomic formula is present for a given variable or pair of variables 

that involves a given relation, we will use the special symbol "?" to indicate that 

any value is possible. Such a graph is called a concept graph. 
The graphical representation of existential conjunctive concepts is very useful 

for placing these concepts into a partial order from the most specific concepts to 

the most general concepts, as is used in the version space framework. This partial 

order is just the set containment relation: a concept +1 is (the same as or) more 

general than another concept +2 if +2 C_ +1. This relation can also be defined directly 

on concept graphs. 

Let us first say that if ll and 12 are tuples of restrictions labeling nodes or edges 

in two different graphs, then 1i is stronger than 12 if every component of l~ represents 

a set of values that is contained in the set of values represented by the corresponding 

component of 12. If G~ and G2 are the graphs of existential conjunctive concepts 

(bl and d02, respectively, then it is easily verified that (b~ is more general than +2 if 

and only if there is a 1-1 mapping 19 from the set of nodes of G~ into the set of 

nodes of G2 such that each node in G2 in the range of 19 is labeled with a stronger 

tuple of restrictions than the corresponding node in G~ and each directed edge 

between two nodes in G2 in the range of 19 is labeled with a stronger tuple of 

restrictions then the corresponding edge in G~. Furthermore, we have used the 

"single representation trick" (Cohen, 1982), representing both scenes and concepts 

with the same type of graph, and thus it is easily verified that we can also check 

if a concept is satisfied by a given scene by checking if the concept graph is more 

general than the scene's instance graph. Figure 4 illustrates a mapping that shows 

that the scene in Figure 2 is an instance of the concept in Figure 3. 
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]~ (inside, touching) /~  
\ \ 

\ --- 1 I 

\ I 

\ I 

\ I 
\ / 

(?,?,convox))'-,,(% / 
J //  

(,-3, ?, o) 

Fig. 4. The generalization relation among concept and instance graphs. 

An interesting special case occurs when the set of relations R contains no unary 

relations and only one binary relation, which has only two observable values: present 

and not_present. In this case, concept graphs labeled only with observable values 

correspond to simple, unlabeled directed graphs (edges marked present are there, 

others are not) and the problem of whether one such concept is more general than 

another, or indeed, the problem of whether a scene satisfies such a concept, is 

exactly the problem of subgraph isomorphism for directed graphs, known to be 

NP-complete (Garey, 1979). Hence we cannot expect to be able to solve these 

problems efficiently in the general case for concepts with many variables and scenes 

with many objects. 2 

It is for this reason that we limit the number of objects per scene to at most k, 

for some reasonably small constant k. Given this restriction, we would like to 

design learning algorithms that are efficient even when the number n of attributes 

and the number l of binary relations are large. In the next section we show that 

this also may be difficult, even when the number k of objects per scene is restricted 

to two. 
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3. Difficulty of finding consistent existential conjunctive concepts 

We assume the reader is familiar with the basics of the theory of NP-completeness 

as described in Garey (1979), and in particular with the fact that the following 

problem is NP-complete: 

Definition. SAT: Given a pair (V, C) where V = {v j , . . . ,  v,} is a set of Boolean 

variables and C = { C t , . . . ,  C,} is a collection of clauses, each of which is a set of 

literals (variables or their negations) over V, determine if (V, C) is satisfiable, i.e., 

if there is a truth assignment for the variables v~, . . . ,  v, (each variable set to 

either true or false) such that each clause contains at least one literal that has value 

true. 
The purpose of this section is to derive the following result. 

Theorem 1. The problem of determining if there is an existential conjunctive 

concept consistent with a sequence of m of examples over an instance space defined 

by n attributes (where m and n are variable) is NP-complete,  even when there are 

no binary relations defined, each attribute is Boolean valued, and each example 

contains exactly two objects. 

Proof. We describe a reduction of SAT to this problem, related to the reduction 

given in Theorem 3.2 of Pitt (1986). 

Let (V, C) be an instance of SAT with V = { v l , . . . ,  v,,} a set of Boolean variables 

and C = {C1, . . . ,  C} a set of clauses over V. 

Define a set of 2n Boolean attributes A = A ~ , . . . ,  A2n, each of which corresponds 

to one of the 2n literals vl, . . . ,  vn, ~1, • • , vn. Let qJ be a mapping from literals 

to the indices of their corresponding attributes, i,e. +(vi) = i and +(~i) = n + i, 

1 <- i _< n. It is assumed that t~ is also extended to map from clauses to sets of 

indices in the trivial manner,  i.e., q~(S) = {,(s) : s C S}. 

A two-object scene over the attributes A1 . . . . .  A2, (with no binary relations) 

is defined by an unordered pair (X, Y), where X is a Boolean vector of length 2n 

giving the values of the attributes for one object in the scene, and Y is the vector 

for the other object. To_simplify our notation (following Pitt, 1986), let 1 denote 

the vector of all l 's  and 0 the vector of all O's, and for any S _C {1 . . . .  ,2n} let 0s 

denote the vector that is all l 's  except at the indices given in S and ls denote the 

vector that is all 0's except at the indices given in S. 

Using these conventions, define a sample Q with the n + 2 positive examples 

{(1, 1), (1, 0)} u {(~,(~,, ~,~,~) : 1 -< i -< n} 

and the t negative examples 
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Thus (A, Q) is an instance of the above problem of finding a consistent existential 

conjunctive concept. 

Lemma 1. The SAT instance (V, C) is satisfiable if and only if (A, Q) has a 

solution, i.e., if and only if there is an existential conjunctive concept consistent 

with all examples in Q. 

Proof. Assume that (V, C) is satisfiable. Let L be the set of literals that are true 

in an assignment that satisfies (V, C), i.e., such that for all i, 1 -< i -< n either vi 

L or ~i E L but not both, and for all j, 1 -< j -< t, L f7 Cj # 0 .  Let 40 be the 

existential conjunctive concept defined by 

6 = 3 * x  : (Aq(x) = 1) a n d . . ,  and (Ain(x) = 1), where{il  . . . . .  in} = 

t~(L). 

We will show that 40 is consistent with the sample Q. 

The concept 6 clearly includes the positive examples (1, 1) and (1, 0) of Q; in 

each case we may take x to be the first object listed, for which all attributes have 

the value 1. In each of the remaining positive examples of Q there is an index i, 

1 -< i -< n, such that for one object, all attributes except A,(,i) have value 1, and 

for the other object,  all attributes except A,(~i) have value 1. Since L does not 

contain both vi and ~i, if v / ~  L then we may take x to be the former object,  and 

if ~i ~ L, we may take x to be the latter object. Hence all of the positive examples 

of Q are included in +. 

For each negative example in Q there is a clause C~ of C such that in each object,  

each of the attributes corresponding to the literals in C~ has value 0 and the re- 

maining attributes have value 1. Since L contains a literal from each clause in C, 

L contains a literal in Cj, and hence there is an atomic formula in the conjunctive 

expression of 40 that requires that the attribute corresponding to this literal have 

the value 1. Thus neither object satisfies the conjunctive expression of +, and hence 

no negative example is included in +. Hence + is consistent with all the examples 

in Q. 
For the other direction of the proof, assume that there exists some existential 

conjunctive concept 40 that is consistent with the sample Q. First note that the 

conjunctive expression of + cannot have any atomic formulae that sets the value 

of an attribute to 0, for otherwise 40 would not include the positive example 

(1, 1). However,  this implies that 40 cannot contain both atomic formulae for a 

variable x and atomic formulae for a different variable y, for otherwise we could 

not find an assignment of the objects in the positive example (1, 0) that would 

satisfy 40 (recall that the quantifier 3" means that distinct variables x and y must 

be mapped to distinct objects). Hence we may assume that 40 is of the form 

(~ = 3 "  X : ( A i l ( X )  ~- 1) a n d .  • • a n d  (A,.(x) = 1),  

where {i1, . . . ,  i,} C_ {1 . . . . .  2n}. 
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Since + also includes the remaining positive examples of Q, for any literal vi, 

1 -< i -< n, + cannot include both an atomic formula for the attribute corresponding 

to vi and an atomic formula for the attribute corresponding to ~i; otherwise, + 

would not include the positive example (0+~, 0,~i~), in which each object has one 

of these attributes set to the value 0. Finally, since + does not include any of the 

negative examples of Q, for each clause Q, 1 -< j -< t, + must contain an atomic 

formula for an attribute corresponding to a literal that appears in Q; otherwise, 

the negative example (0,~cj~, 0,ccjl), in which all attributes except those correspond- 

ing to literals in Cj have the value 1 for both objects, would be included in +. 

It follows that the set of literals L corresponding to the attributes that appear 

in the conjunctive expression of + can be used to define a truth assignment that 

satisfies (V, C): for any variable v E V, if v ~ L then set v to true, else set v to 

false. Hence (V, C) is satisfiable. [] 

Since the problem of finding a consistent existential conjunctive hypothesis can 

be solved in nondeterministic polynomial time for a fixed number k of objects per 

scene, and the above reduction can be accomplished in polynomial time, the theo- 

rem follows. [] 

One sidelight of the above proof is that it actually shows that the problem in 

question is NP-complete even if, in addition to the restrictions listed in the statement 

of the theorem, we restrict ourselves to existential conjunctive concepts whose 

canonical expressions have only one variable. This may appear contradictory at 

first, since such expressions are essentially equivalent to variable-free pure con- 

junctive expressions, e.g., as studied in (Haussler, 1988), for which there are many 

known learning algorithms. However, these algorithms work only in the attribute- 

based domain, where there is only one object in each example and hence no 

ambiguity regarding the mapping of attributes in the example to attributes in the 

hypothesis. The above result shows that as soon as we introduce even the minimal 

amount of ambiguity, i.e., by having two objects in each example instead of just 

one, then the problem of finding a consistent hypothesis becomes substantially 

more difficult. 

Another interesting sidelight of the above proof is that it indicates how to con- 

struct samples in which the size of the sets S and G of Mitchell's version space 

algorithm are exponential. This is to be expected, since otherwise Mitchell's al- 

gorithm could be used to solve the version space nonemptiness problem for exis- 

tential conjunctive concepts in polynomial time, implying that P = NP. An explicit 

construction can be given as follows. (The remainder of this section may be skipped 

without loss of continuity.) 

Let (V, C) be an instance of SAT with V = {v~ . . . .  , vn} a set of Boolean variables 

and C = {C1, . . . ,  C,} a set of clauses over V, where G = {vj, ~j} for all j, 1 -< 

j -< n. Clearly this is atrival instance of SAT, in the sense that every truth assignment 
of the variables in V satisfies this instance. 

Using the reduction of SAT to the problem of finding a consistent existential 

conjunctive concept given in Lemma I above, we can construct a set of 2n Boolean 

attributes A = A1 . . . .  , A2n and a sequence Q of m -- 2n + 2 two-object examples 
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that have the following property: If L is the set of literals that are true in a truth 

assignment that satisfies (V, C) then the existential conjunctive concept 

3 *  x : (Aii(x) = 1)  a n d .  • • a n d  (Ai,(x) = 1 ) ,  w h e r e  . . . ,  in} = $ ( L ) ,  

[11 

is consistent with Q, and conversely, any existential conjunctive concept that is 

consistent with Q has the form (1) for some L that constitutes the set of literals 

that are true in some truth assignment satisfying (V, C). This can be verified by 

the arguments given in the proof of Lemma 1, and by the additional observation 

that for the particular choice of C above, in order to contain a literal in each clause 

of C, L must include either v or ~ for each variable v ~ V. 

It follows that there is a 1-1 correspondence between the hypotheses in the version 

space of Q (with respect to existential conjunctive concepts) and the satisfying 

assignments of (V, C). This implies that the version space has size 2 n, since this is 

the number of distinct satisfying assignments of (V, C). Furthermore, any two 

distinct concepts in this version space, i.e., any two expressions of the form given 

in (1) that are not identical up to a rearrangement of atomic formulae, are clearly 

incomparable with respect to the partial order of increasing generality. Hence the 

set S of maximally specific concepts in the version space equals the set G of 

maximally general concepts in the version space, which in turn equals the entire 

version space. Hence both S and G have sizes exponential in n, and hence in m 

as well. 

4. Learning from random examples 

Theorem 1 indicates that the computation time in the worst case is more than 

polynomial in the sample size for any learning algorithm that learns existential 

conjunctive concepts by drawing a set of examples and then producing an existential 

conjunctive hypothesis consistent with these examples, unless P = NP. There are 

several ways one might try to get around this negative result. We will look at two 

of them in Sections 3.2 and 3.3 below. Both involve making the assumption that 

the examples of the target concept are generated by choosing instance graphs 

independently at random (with replacement) from the instance Space according to 

some fixed probability distribution on this space, and labeling each instance as 

positive or negative according to whether or not it is an instance of the target 

concept. Such examples will be called random examples. 
We begin by discussing a specific framework for studying learning from random 

examples. 
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4.1. Valiant' s PAC learning framework 

Assume that given a sequence of random examples of some unknown existential 

conjunctive target concept, a learning algorithm produces a hypothesis that is itself 

an existential conjunctive concept, specified by a concept graph or an existential 

conjunctive expression. This hypothesis need not be consistent with all the ex- 

amples. Rather, we define a successful learning algorithm as one that, with high 

probability, produces a hypothesis that will perform well on further random ex- 

amples drawn according to the same fixed distribution. More formally, we define 

the error of a hypothesis as the probability that it disagrees with the target concept 

on a randomly drawn instance. A successful learning algorithm is then one that, 

from random examples of any existential conjunctive target concept,~ with high 

probability, finds a hypothesis with small error. (The assumption that the target 

concept is existential conjunctive is not actually needed in some of the results below 

(Propositions 3 and 4)). 

If we now add the requirement that 

(1) the learning algorithm uses only polynomial sample size and computation time 

and 

(2) it produces a hypothesis with small error with high probability for any proba- 

bility distribution on the instance space, 

then we get (essentially) the learning framework defined by Valiant (1984). This 

has been called Probably Approximately Correct (PA C) learning (Angluin, 1988). 

Here the polynomial in condition (1) is a function of the complexity of the learning 

task (i.e., the number of attributes and relations, and the syntactic size of the target 

concept in canonical form) and the inverses of the accuracy and confidence param- 

eters, usually denoted e and ~, respectively. Learning with accuracy 1 - e and 

confidence 1 - ~ means getting a hypothesis with error at most e with probability 
at least 1 - ~. 

We are already fixing the number of objects per scene to at most k for some 
constant k to avoid NP-completeness problems in determining concept membership. 

Thus we would not demand that the polynomial in (1) depend on k as well. This 

means that we would look for algorithms that scale well with the number of re- 

lations, but not necessarily with the number of objects per scene. A more detailed 

discussion of the PAC framework may be found in Haussler (1988) and Haussler, 
et al. (1988). 

Since it is conceivable that one could find a hypothesis with small error without 

fitting the training examples exactly, at first glance there appears to be some hope 

that this PAC framework, by itself, could avoid the problems indicated by Theorem 

1. However, results in Pitt (1986) show that finding hypotheses with small error 

for an arbitrary probability distribution on the instances is at least as hard as finding 
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a consistent hypothesis. So this hope is unfounded. This observation is formalized 
as follows. 

Let RP denote the class of all problems (expressed as formal languages) that 

have randomized polynomial time algorithms. These are deterministic algorithms 

that are allowed to flip a fair coin to decide their next move (Gill, 1977). (This 

class is actually called VPP in Gill (1977).) It is easy to show that RP C_ NP. 

Furthermore, just as it is strongly suspected that P ¢ NP, so it is strongly suspected 

that RP ~ NP. Using the results from (Pitt, 1986) (see Natarajan, 1987, Blumer, 
et al., 1988), Theorem 1 of the previous section implies. 

Proposition 2. Existential conjunctive concepts are not learnable in the PAC 

framework described above unless RP = NP. Moreover, this holds even when no 

binary relations are defined, each attribute is Boolean-valued, and each example 

contains exactly two objects. U] 

Hence it appears that we cannot avoid the computational complexity problems 

indicated by Theorem 1 by adopting the PAC model. In fact, adopting this model 

seems only to make matters worse, since even if we did find a consistent (or nearly 

consistent) hypothesis, we have no guarantee that it will have small error. We deal 

with this problem in the next section. For now we note only that Proposition 2 

does not follow from Theorem 1 in a variant of the PAC framework in which the 

hypothesis space is allowed to be different from the target class (see e.g., Kearns, 

et al., 1987, Haussler, et al., 1988). Thus there may be efficient PAC algorithms 

for existential conjunctive concepts that use different hypothesis spaces. Some very 

weak results of this type (from a practical point of view) are given in Haussler 

(1987). We will not pursue this further here. 

4.2. Sample size required to learn existential conjunctive concepts 

Many heuristic techniques have been developed for finding existential conjunc- 

tive concepts consistent with a set of examples (Vere, 1975; Hayes-Roth, 1978; 

Michalski, 1983; Kodratoff, 1986). Some of these techniques appear to work well 

in applications of practical interest even though Theorem 1 indicates that it is very 

likely that examples could be constructed that they will flounder on. We may try 

to get around Theorem 1 by postulating such a heuristic. However, suppose that 

we do find a heuristic technique that, in practice, often produces a hypothesis 
consistent with the sample in a reasonable time. What guarantee do we have that 

this hypothesis will have small error with respect to the target concept? We will 
show that learning any algorithm for existential conjunctive concepts, when it 

succeeds in finding a hypothesis consistent with a large enough random sample, 

inevitably produces a hypothesis that with high probability has small error. In fact, 
this also holds when hypotheses are not completely consistent with all training 
examples, but merely disagree with but a small fraction of training examples. Hence 
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each of the above referenced learning algorithms for existential conjunctive con- 

cepts can be an effective method, if not always an efficient method. 

Let us first return to Mitchell's version space framework, as discussed in the 

introduction. We define for any hypothesis space H and any sequence of examples 

Q, the version space of Q with respect to H as the set of all hypotheses in H that 

are consistent with all examples in Q. Assuming a fixed probability distribution on 

the instance space, as in (Haussler, 1988) we can define a situation in which enough 

critical examples have been drawn so that no hypothesis in the version space has 

large error. 

Definition. Given a hypothesis space H, a target concept +, a sequence of ex- 

amples Q of qb, and an error tolerance e, where 0 -< e -< 1, the version space of Q 

(w.r.t. H) is t-exhausted (w.r.t. +) if it does not contain any hypothesis that has 

error more than e with respect to qb. 

If the version space (w.r.t. H) is t-exhausted for small e, then any hypothesis in 

this version space is a good approximation to the target concept in the sense that 

its error is small relative to the target, hence any learning algorithm that finds a 

hypothesis in H consistent with the sample has found a good hypothesis. Further- 

more, as the sample gets larger, fewer hypotheses in H will be consistent with it, 

so the version space will shrink, increasing the probability that it becomes e-ex- 

hausted. This provides a way to force a learning algorithm that searches a hypothesis 

space H for a consistent hypothesis to produce either a good hypothesis or no 

hypothesis at all: we choose some small • and only run it on random samples Q 

that are large enough so that with high probability the version space of Q (w.r.t. 

H) is t-exhausted with respect to any possible target concept in H. This way, if it 

produces a consistent hypothesis, then with high probability this hypothesis has 

error less than e, simply because all hypotheses with error greater than • have been 

eliminated from the version space. The question that remains is how large Q must 

be. 

In Haussler (1988) the notion of bias (Mitchell, 1980) inherent in a restricted 

hypothesis space is quantified in a way that relates the bias of a hypothesis space 

to the number of samples required to t-exhaust a version space within it with high 

probability. To do this, bias is quantified by the growth function (or capacity) 
(Vapnik, 1982). 

Definition. Let X be an instance space and let H be a hypothesis space defined 

on X. For any finite set S C_ X of instances, IIu(S) = {S N h : h E H}, i.e., the 

set of all subsets of S that can be obtained by intersecting S with a concept in H. 

Equivalently, one can think of UH(S) as the set of all ways the instances of S can 

be divided into positive and negative instances so as to be consistent with some 

hypothesis in H, i.e., the set of all dichotomies of S induced by hypotheses in H. 

For every m >- 1, IIu(m) denotes the maximum of ]H~(S)] over all S of size m, 

Thus HH(rn) is the maximal number of dichotomies induced on any m instances by 
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the hypotheses in H. We will refer to IIH(m) as the growth function or capacity of 
H . •  

The capacities of a variety of attribute-based concept classes are calculated in 

(Haussler, 1988) (see also Pearl, 1978). The following result from (Blumer, 

Ehrenfeucht, Haussler, and Warmuth et al., 1988) (essentially due to Vapnik and 

Chervonenkis (Vapnik, 1982) and given in other forms in (Blumer, et al., 1988) 

(Haussler, 1986)) relates the capacity of a hypothesis space to the rate at which 

version spaces within it become exhausted. 

Proposition 3. Let H be a hypothesis space 4 and 0 < e < 1. If Q is a sequence 

of m independent random examples (chosen according to any fixed probability 

distribution on the instance space) of any target concept d), then the probability 

that the version space of Q (w.r.t./4) is not e-exhausted (w.r.t. +) is less than 

2II/~ (2m)2 ,m/2. []  

This result can also be extended to take into account a slightly larger version 

space, one that includes all hypotheses that disagree with the sample Q on at most 

a small fraction of the examples in Q (see Mitchell, 1982). This can be useful when 

the target concept is not itself existential conjunctive, and more importantly, when 

there is a stochastic element in the labeling of the training examples, as well as in 

the selection of training instances. This occurs, for example, when there is noise 

either in the classification labels themselves, or in the measurement of the values 

of the attributes. 

In order to model this more general setting, let us now extend the fixed probability 

distribution used above from a distribution on the instance space to a distribution 

on the space of all possible examples. Formally, we define a distribution D on the 

space X x { +,  -} ,  where Xis  the instance space (e.g., all possible instance graphs 

with up to k nodes on a given set of relations), and { +,  - }  is the set of possible 

classification labelings of examples. We use two classification values here only as 

a matter of convenience, in keeping with our focus on simple concept learning. 

Random examples are now generated by drawing (independently with replacement) 

directly from the distribution D. Each draw provides a whole example, not just an 

instance, 'so we no longer need the notion of a target concept. The distribution D 

itself acts as a kind of stochastic target concept. This is in fact the typical model 

used in the pattern recognition literature (Vapnik, 1982; Duda, 1973) (see also the 

appendix of Blumer, et al. (1988) for further discussion). 

Using this model, the error of a hypothesis h with respect to the distribution D 

is defined as before: it is the probability that the hypothesis disagrees with an 

example drawn at random from D. In that case that the distribution D assigns 

probability 0 to all but one classification for any given instance, this reduces to the 

notion of the error of h relative to a certain target concept, defined above. Using 

the more general results of Vapnik and Chervonenkis for arbitrary distributions D 
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on X x {+,  - }  (see Theorem A3.3, Blumer, et al., 1988), Proposition 3 can now 

be generalized to 

P r o p o s i t i o n  4. Let X be an instance space, H be a hypothesis space on X, and 

0 < e < 1. If Q is a sequence of m independent random examples chosen according 

to any fixed probability distribution on X x { + ,  -} ,  then the probability that 

there is any hypothesis in H that disagrees with a fraction less than e/2 of the 

examples in Q, yet has error more than e with respect to D, is less than 

8IIH (2m)e ~m/,6. [] 

In essence, this result says that when the capacity of H does not grow too quickly 

as a function of the sample size m, then for large enough sample size, for any 

hypothesis h in H, the observed rate of error of h on the training sample is not 

much less than its true rate of error, i.e., the rate of error that would be observed 

on a large enough independent test sample. Thus a learning algorithm cannot be 

fooled into proposing a bad hypothesis just because it looks good on the training 

data. The choice of demanding observed rate of error less than ~/2 is somewhat 

arbitrary; any fixed fraction of e would do. Only the constants in the probability 

bound above would change (see Blumer, et al., 1988). 

To complete our analysis, we now calculate an upper bound on the capacity of 

the hypothesis space used in learning existential conjunctive concepts. 

As in previous sections we will assume that scenes contain at most k objects, 

where k -> 2, and there is a fixed set of n attributes and l binary relations, each 

tree-structured or linear, that characterize objects and relations between objects 

in a scene. To simplify notation, we will assume that n = l and use n to denote 

both the number of attributes and the number of binary relations. This set of scenes 

defines the instance space X. Given a sequence of examples from this instance 

space, our heuristic learning algorithm will search some restricted hypothesis space 

for a hypothesis that is consistent with these examples. For the present purposes, 

this will always be one of the hypothesis spaces H, ,  0 <- s <- n k  2, consisting of all 

existential conjunctive concepts that can be represented by an existential conjunc- 

tive expression with at most k variables and syntactic size at most s (i.e., using at 

most s atomic formulae). The restriction that s <- n k  2 comes from that fact that 

using the canonical form of Section 1, no expression needs more than one atomic 

formula for every combination of attribute and variable and one atomic formula 

for every combination of binary relation and ordered pair of distinct variables 

(k 2 = k + k (k - 1)). Since all concepts that are represented by expressions that 

use at most k variables are included in Hnk2 and since, in view of our limitation of 

at most k objects per scene, any expression with more than k variables represents 

the empty concept, the hypothesis space Hnk2 is actually the class of all existential 

conjunctive concepts over the instance space X. 
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Lemma 2. For all m, s --- 1, IIm(m ) <_ k (k6nm2)S/s!, where k is the maximum 

number of objects per scene and n is the maximum number of attributes defined 

on objects and relations defined between pairs of objects. 

Proof. Let S be a set of m scenes chosen from the instance space X. Let OBJ(S) 

be a list of all objects from scenes in S and PAIR(S)  be a list of all ordered pairs 

of distinct objects from scenes in S, where both objects in each pair come from 

the same scene. Since each scene contains at most k objects, OBJ(S) includes at 

most km objects and PAIR(S)  includes at most k (k - 1)m pairs. To establish our 

result, we calculate an upper bound on the size of Hm(S ) = {Z C S : Z = S n h 

for some h E Hs}. Our strategy is to determine some conditions that imply that 

two distinct hypotheses ha and ha ~ Hs induce the same subset Z, in the sense that 

S N ha = Z = S N hz. From this we will get an upper bound on the number of 

distinct Z's induced by hypotheses in Hs. 

We need the following notation. For any existential conjunctive expression 

+ = 3*x~ . . . .  , x , : f ~ a n d f 2 a n d . . . a n d f , ,  

and variable xi of qb, let RESx~(qb) be the pure conjunctive concept formed by the 

conjunction of all unary atomic formulae of + involving x~. For example, if 4) is 

q* x, y : (shape(x) -- polygon) and (rel_pos(x, y) = ontopof) 

and (shape(y) = square) and (color(x) = red) 

then RESx(+) is 

(shape = polygon) and (color = red). 

Similarly, for any ordered pair (xi, xj) of distinct variables in +, let RES(xi. xj)(+) be 

the pure conjunctive concept formed by the conjunction of all binary atomic for- 

mulae of + involving the pair (xi, xj). 

We claim that S 7/ha = S N h2 whenever 

(1) The number of variables in ha and h 2 a r e  the same and can be put in 1-1 

correspondence such that 

(2) for each variable x of hi and corresponding variable 2 of h2, the set of all objects 

in OBJ(S) that satisfy RESx(h~) is the same as the set that satisfy RES(h2) and 

(3) for each ordered pair of distinct variables (x, y) of h~ and corresponding 

pair (x, Y) of h2, the set of all ordered pairs of objects in PAIR(S)  that satisfy 

RES(x, y~(hi) is the same as the 04set that satisfy RES(~, y~(hz). 
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To verify this, simply observe that under assumptions (1), (2), and (3), if a scene 

in S satisfies h~ according to the definition given in Section 1 then it will also satisfy 

h: and vice versa. 

To obtain an upper bound on the cardinality of IIH,(S) we will now simply count 

(or upper bound) the number of ways we can 

(A) choose the number of variables r in a canonical expression, possibly with some 

useless atomic formulae, for an h C H~ and for a given r, assuming the variables 

in h are xl, . . . ,  Xr, 

(B) choose the subsets of OBJ(S) consisting of all objects that satisfy RESxi(h) for 

each i, where 1 -< i -< r and 

(C) choose the subsets of PAIR(S) consisting of all ordered pairs of objects that 

satisfy RES(xi. ,~j)(h) for each i, j, where 1 <- i < j -< r. 

As far as (A) is concerned, we can assume that the number of variables is between 

1 and k. This is because any existential conjunctive expression with more than k 

variables is not satisfied by any scene in S, and hence these hypotheses add at most 

1 to the cardinality of FIm(S ). 

As for (B) and (C), given r, where 1 -< r -< k, and h E Hs with variables 

xl . . . . .  xr, we can assume that h has exactly s atomic formulae, since if h has less 

than s atomic formulae then we can add useless atomic formulae without changing 

the set of scenes that satisfy h. Since h has a total of r + r (r - 1) = r 2 variables 

and pairs of distinct variables, there are a total of r 2~ ways that these s atomic 

formulae can be assigned to variables and pairs of distinct variables. In addition, 

each atomic formula can be defined using any one of n relations, so these relations 

can be assigned to the s atomic formulae in n" ways. Furthermore,  there are many 

ways to assign value restrictions to the atomic formulae (i.e., pairs of values vl and 

v2 with vl -< v2 for linear relations and observable or abstract values for tree- 

structured relations), but all that really matters is what subset of the objects in 

OBJ(S) (or the pairs in PAIR(S) if the atomic formula is binary) have values that 

comply with these restrictions. It is easy to see that the maximal number of such 

subsets occurs when the atomic formula is binary, PAIR(S) is as large as possible 

(i.e., has size k (k - 1)m), each pair of objects in PAIR(S) has a distinct value 

for the relation of the atomic formula, and this relation is linear. In this case we 

can imagine that all k (k - 1)m pairs are sorted in increasing order according to 

their values. A restriction that the value lie between two given values amounts to 

selecting an interval of pairs from this ordering, which can be done in 1 + 

k (k - l )m + (k(k21)m) --< (k (k - 1)m) 2 ways, giving an upper bound of 

(k (k - 1)rn) 2~ on the distinct (w.r.t. S) ways that the atomic formulae in h can 

be assigned value restrictions. Finally, the order of the atomic formulae is immater- 

ial, so this gives an upper bound of ~ ns (k (~ - 1)m) ~ s~ on the number of ways we can spe- 

cify (B) and (C) for a given choice r for (A). 
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It follows that the cardinality of IIm(S ) is at most 

1 + ~ (rzn (k (ks!- 1)m)2)s' 
r = l  

which is certainly less than k (k6nm2)'/s!. [] 

From Proposition 4 and Lemma 2 we get the following 

Theorem 2. Let the number of objects per scene in the instance space X be at 

most k and both the number of attributes defined on objects and the number  of 

relations defined between pairs of objects in scenes be at most n. Let D be an 

arbitrary distribution on X × { + ,  -} .  Then for any 1 <-- s <- nk  2, there is a sample 

size m that is 

that is sufficient for learning existential conjunctive concepts over X in  the following 

sense: Given m independent random examples from D, any algorithm that succeeds 

in finding an existential conjunctive hypothesis with s atomic formulae that disagrees 

with at most em/2 of these examples has, with probability at least 1 - O (ke-"m) ,  

found a hypothesis with error less than ~. 

Proof. We show that this holds for 

128s 512ek6n 
m = - -  In - - ,  

E E 

where In denotes the natural logarithm and e its base. We claim that using Lemma 

2, with H = Hs and this value of m, the bound given in Proposition 4 is at most 

ke on/32 The result follows. 
s 

To verify the claim, first note that using Stirling's approximation, k (k6nrn2)S< k 

( ~ ) ~ .  L e t s -  8/~ _ ~ k  a n d  [3 = 4ek6rl. Then by Lemma 2, 8IIm(2rn ) -< oL([3m2/ 
2 ~  ~rs 

s) '. Hence if ([3m2/s) ~ <- e ~m/32, then the bound in Proposition 4 is at most ~e -~'~/32, 
N ~ j  

as claimed. It is easily verified that the former inequality holds for 

128s 12813 128s 512ek6n 
m = - - l n - -  - - -  l n - - ,  

E E E E 

using the fact that s <- n k  2 < [3. []  

Theorem 2 shows the sample size required grows only logarithmically as the 

number of objects per scene and the number of relations between attributes is 
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increased. Note also that the bound given is independent of the number of values 

that each attribute and relation can take on. See (Haussler, 1988) for further 

discussion of this point. Finally, note that sample size bounds that hold for any 

algorithm that produces a nearly consistent hypothesis, regardless of the number 

of atomic formulae it contains, can be obtained by setting s = k2n, since this is 

the maximum number of atomic formulae needed in any existential conjunctive 

expression by Proposition 1. 

The constant factors in the proof of Theorem 2 are still quite large. It is likely 

that with more work, including improvements to Proposition 4, smaller constants 

can be obtained. In the case that the hypothesis produced is completely consistent 

with the training examples, a sample size of 

16s 64eh6n 
m = - -  log - - ,  

E 

can be used, where log denotes the logarithm base 2. The analysis is similar, but 

uses Proposition 3 in place of Proposition 4. However, there is a limit to how much 

this theorem can be improved. From Corollary 5.7 of Haussler (1988) using results 

from Ehrenfeucht, et al. (1988) it can also be shown that for k = 1 (i.e., for 

attribute-based instance spaces) 

is a lower bound on the sample size required by any learning algorithm for con- 

junctive concepts when examples are drawn according to the worst case distribution 

on the instance space and labeled correctly according to the worst case conjunctive 

target concept that has at most ~ atomic formulae. Clearly this lower bound also 

holds for larger k, and thus this shows that the bound in Theorem 2 cannot be 

improved by more than a logarithmic factor. 

4.3. Finding good hypotheses using subset queries 

The results above indicate that the only obstacle to learning existential conjunctive 

concepts from random examples is the computational complexity of finding a con- 
sistent or nearly consistent hypothesis. This leads us to consider learning algorithms 

that use other information to help them search the hypothesis space. One possibility 

is to allow the learning algorithm to formulate queries during learning, as in (Sam- 

rout, 1986; Subramanian, 1986; Muggleton, 1988; Valiant, 1984; Angluin, 1988). 
While many types of queries have been used, we will consider only subset queries. 

In a subset query, the learning algorithm formulates a hypothesis h, here expressed 
as an existential conjunctive expression or concept graph, and then asks an oracle 
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if h is contained in (i.e., equal to or more specific than) the target concept. The 

oracle, representing a teacher or expert that knows the target concept, responds 

yes or no. We do not assume that a eounterexample is returned when the answer 

is no, as in Angluin (1988). 

We will first describe an algorithm that, for a fixed bound k on the number of 

objects per scene, finds a hypothesis consistent with any set of examples of an 

existential conjunctive target concept using a number of subset queries at most 

linear in the number of examples. Then by applying a greedy simplification step 

as in (Haussler, 1988), this hypothesis will be reduced to one that has a number 

of atomic formulae within a logarithmic factor of the minimum possible for any 

consistent hypothesis. The latter hypothesis will still be consistent with most of the 

examples. Using Proposition 4 above, we will show that this algorithm is a PAC 

learning algorithm for existential conjunctive concepts, modulo the added ability 

to make subset queries, and that it uses a sample size that is within a poly-logarithmic 

factor of optimal for any PAC learning algorithm. 
The main technique used in the algorithm is that of matching positive eXamples 

with each other and with intermediate hypotheses to form maximally specific com- 

mon generalizations. This is the technique used in constructing the set S in Mitchell's 

(1982) version space algorithm, and in many other learning algorithms for existential 

conjunctive concepts that have been investigated (see Dietterich, 1983). In pre- 

senting the algorithm, we will, for simplicity, assume that all examples have exactly 

k objects, for some k - 2. 

The technique of forming maximally specific common generalizations (MSG's) 

can be illustrated by considering the set of examples and target concept given in 

Figure 5. Here the attributes and relations are those given in Figures la and lb. 

Considering only the first two positive examples in Figure 5, two MSG's can be 

obtained, each from one of the two possible 1-1 matchings between the objects in 

the first example and the objects in the second. These MSG's are given in Fig- 

ure 6. 

The first is obtained by matching the triangle of the first example with the triangle 

of the second, and similarly for the circles. Since both circles are unshaded, we 

specify that the circle must be unshaded. Since one has size 1 and the other size 

4, we specify a size range of 1 to 4 (Michalski's "closing interval rule" (Dietterich, 

1983)). The attributes for the triangle are calculated in a like manner, except that 

the size range of i to 5 leads to a useless atomic formula, which is denoted by the 

value "?". To calculate the relations between the objects, note that in the first 

example the triangle is to the left of the circle and in the second it is to the right. 

Therefore, the maximally specific value for the rel_pos relation between the objects 

is side-by-side (Michalski's "climbing generalization tree rule"). Finally, in both 
examples the objects are close. The second MSG is computed in a similar manner, 

matching the triangle of the first example with the circle of the second. 

In the same manner we can obtain the MSG's of any pair of existential conjunctive 

concepts, the MSG's of a pair of instances being a special case (using the single 
representation trick). The maximally specific generalization of two concept graphs 
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Set of Examples: 
(numbers denote sizes) 

Ao 
4- 4-" 4 -  

q 

:L / .  

Target concept: "i~, x,y : (shape(x) = reg-polygon) 

and (shape(y) = circle) and 0el-pos(x,y) = side-by-side) 

and (dist-bmween(x,y) = close)" 

F/g. 5. Positive and negative examples of a target concept. 

(- (?,yes, Z~) ) 

 sb sc,  l scl  
( (1-4, no, O) ) 

( (1, 7, convex) ) 

(left-of, cl) l tr ight-of,  cl) 

((4-5, ?, convex)-) 

Fig. 6. The two MSG's for the first two positive examples. 

under a given 1-1 matching of their nodes is defined by taking the maximally specific 
restrictions that include the value ranges specified in labels of the matched graphs 
as the value range of each attribute and relation in the resulting graph. Figure 7 
shows the two MSG's obtained from the first generalization in Figure 6 and the 
third positive example. Each corresponds to one of the 1-1 matchings of the nodes 
in the generalization with the objects in the example. Note, however, that the first 
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( ( ? ,  ?, reg-poly), ) ( (?, ?, convex) ) 

( s - b y - s , c l ) I ) ( s - b y - s , c l )  (s-by-s,cl l l  t s -by - s , c l )  

(, (1-4, no, ( 3 ) )  {1-4, no, convex)) 

Fig. 7. MSG's obtained from the first generalization in figure 6 and the third positive example, 

1 

MSG is a specialization of the second MSG. This shows that not every matching 
leads to an MSG that is maximally specific among all possible MSG's of the two 
graphs (i.e., not every matching produces a generalization in Mitchell's S set). 

The notion of the MSG's of two concept graphs extends directly to the case of 
more than two graphs. Given m graphs with 2 nodes each (resp. k nodes each), 
there are 2 m-1 (resp. (k!) m-l) different 1-1 matchings among the nodes of these 
graphs, each potentially creating a distinct MSG. The set of positive examples used 
to create the exponential size set S in the construction at the end of Section 2 comes 
close to achieving this worst case for k = 2. However, to find a hypothesis consistent 
with a set of examples, it suffices to find just one of these MSG's of the positive 
examples that does not include any negative examples. Instead of doing this by 
heuristic search, a process that is very likely exponential time in the worst case by 
Theorem 1, we propose to do it by making subset queries. We use the following 
simple lemma. 

Lemma 3. Let G, G1, G2 be concept graphs for existential conjunctive concepts 
+, qb~, +2, respectively, where G1 and Gz each have k nodes. If +1 C_ ~b and +2 C_ 
+ then there exists a 1-1 matching between the nodes of G1 and the nodes of G2 
such that the MSG of G1 and G2 under this matching is contained in +. 

Proof. Since +1 C qb, there is a 1-1 mapping ®1 from the set of nodes of G into 
the set of nodes of G1 such that each node in G1 in the range of 1~1 is labeled with 
a stronger tuple of restrictions than the corresponding node in G and each directed 
edge between two nodes in G1 in the range of @1 is labeled with a stronger tuple 
of restrictions then the corresponding edge in G. Since 4)2 C qb, there is a similar 
mapping 192 from the nodes of G into the nodes of G2. The desired matching 
between the nodes of G1 and the nodes of G2 can be defined by taking 192 composed 
with the inverse of 191 and extending it to a full matching by defining an arbitrary 
1-1 matching among the nodes of G1 and G2 that are not in the range of 191 or  1927 

respectively. [] 

Theorem 3. For any fixed bound k on the number of objects per scene, existential 
conjunctive concepts are PAC learnable using subset queries. 
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Proof. Again we assume that each example contains a scene with exactly k 

objects; the proof of the general case with less than or equal k objects per scene 

is similar. We use the following simple learning algorithm: 

Suppose that S is a set of examples of some existential conjunctive target concept 

+. If S contains no positive examples, return the empty hypothesis, Otherwise, 

choose any positive example in S and initialize the hypothesis h to be the most 

specific existential conjunctive concept that contains this example. We can do this 

by simply interpreting the instance graph for this example as a concept graph. Now, 

while there are still positive examples left in S that are not contained in h, do 

1. choose any such positive example, 

2. for each 1-1 matching of the nodes in this example with the nodes in h, form 

the MSG h' and make a subset query to determine if h' C_ +, until a matching 

is found for which the answer is yes, 

3. replace h by h'. 

When all positive examples are contained in h, return h. 

To illustrate this algorithm, assume the sample S and target + are as given in 

Figure 5, and that the first two positive examples in that figure are used to form 

the first MSG h' in step (2), using the matching that leads to the first MSG in 

Figure 6. It is easily verified that the subset query returns yes. Hence this MSG 

becomes the new h. Since the third positive example is not contained in h, another 

MSG is formed with this example; perhaps the first MSG given in Figure 7. Again 

the subset query returns "yes" and h is updated. All positive examples are now 

included, so this hypothesis is returned. 
To see that this algorithm always finds a consistent hypothesis, note that its initial 

hypothesis is always contained in the target ~b, and that this property is preserved 

in step (3), since the answer to the previous query in step (2) was yes. Thus by 

induction, Lemma 3 shows that step (2) will always terminate correctly, giving a 

matching for which the answer to the query is yes. Since the hypothesis is gener- 

alized in each execution of step (3), it must eventually contain all positive examples. 

Since it is always contained in the target concept, it will never contain any negative 

examples. Hence the algorithm is correct. 

It is clear that for fixed k this algorithm is linear in the number m of training 

examples and the number n of relations, assuming each call to the oracle is charged 

unit cost. Furthermore, by Theorem 2 with s = k2n, this algorithm is a PAC learning 

algorithm for existential conjunctive concepts using sample size 

plus some small logarithmic term involving the confidence 8 (see e.g., Haussler, 
1988). [] 
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The worst case computation time for the algorithm given above is proportional 

to k2k!nm, where n is the number of relations (in the worst case all binary). Note 

that this is the same as the time needed to find which of m instances are contained 

in a given concept by straightforward matching. The worst case number of queries 

used is approximately k!m. These bounds can probably be improved in practice 

by choosing examples and matchings judiciously. We do not pursue this further 

here. 

We have also assumed that the examples are generated without noise and that 

the queries are always answered correctly. We can get around the former assump- 

tion to a certain extent by using queries to find an initial hypothesis that is contained 

in the target concept and then simply rejecting any positive example that is not 

included in the current hypothesis h and has no MSG with the current hypothesis 

that is contained in the target concept. When the fraction of such examples is small, 

Theorem 2 still applies. Here we rely on correct answers to the queries. We know 

of no way of avoiding this latter assumption. 

The algorithm we have given does not make use of negative examples at all. 

This is similar to the classical algorithm for conjunctive concepts in attribute-based 

domains, which forms the unique MSG of the positive examples directly (see, e.g., 

the discussion in Haussler, 1988). However, as in Haussler (1988), a variant of the 

above algorithm that does use the negative examples can get by with fewer examples 

by restricting its hypothesis space to existential conjunctive concepts that are not 

much larger than the target concept. We briefly sketch this idea. 

First note that since the algorithm of Theorem 3 always forms a maximally specific 

hypothesis, for smaller sample sizes, this hypothesis is likely to contain more atomic 

formulae than necessary to eliminate all the negative examples. For example, in 

the illustration of the algorithm given above, the final hypothesis contains super- 

fluous atomic formulae indicating that the circle must be unshaded and have size 

between 1 and 4, among others. This means that the hypothesis h is more complex 

than it needs to be, in terms of the number s of atomic formulae it has. We call s 

the size of h. 

Given an existential conjunctive hypothesis h that is consistent with a set of 

positive and negative examples, it is in general NP hard to find the smallest hy- 

pothesis which is consistent with the examples that can be obtained from h by 

deleting atomic formulae. This follows from the analogous result for attribute- 

based domains given in Haussler (1988). However, there is a greedy method that 

produces a simplification h' ofh that is consistent and reasonably small. We describe 

this method now. 
First note that any simplification h' of h obtained by deleting atomic formulae, 

since it generalizes h, will still be consistent with all the positive examples. In order 

to be consistent with a single negative example, all possible 1-1 matchings from 

the nodes of h' into the nodes of the example must conflict with at least one atomic 

formula in h'. When such a conflict occurs, we will say that the atomic formula 
eliminates the given matching. Only if the set of atomic formulae of h' collectively 
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eliminates every matching to every negative example is h' consistent with the 

negative examples. 

The greedy method produces h' as follows: Starting with just the quantifiers, we 

add the atomic formula of h that eliminates the largest number of matches to 

negative examples. Ties are broken arbitrarily. Continuing the illustrative example 

from the proof of Theorem 3, using the hypothesis h given in the first graph of 

Figure 7, this atomic formula could either be the one specifying that the node at 

the top of the graph (call it x) has shape(x) = regular_polygon or the one specifying 

that the other node (call it y) has shape(y) =- circle. The first formula eliminates 

2 matchings from each of the second and fifth negative examples (counting left to 

right, row by row), and one matching from the third, fourth, and sixth negative 

examples, for a total of seven matchings eliminated. The second also eliminates 

seven matchings. Assume we add the former to our evolving expression. To con- 

tinue with the greedy algorithm, we now add the atomic formula of h that eliminates 

the largest number of the remaining matches to negative examples, and continue 

in this way until all matches are eliminated. In our illustrative example, the next 

formula would be shape(y) = circle, which eliminates three of the five remaining 

matchings. Specifying that one object must be close to the other, but not touching 

or inside, e.g., by the formula distance_between(x, y) = close, eliminates the last 

two matchings, and we get the hypothesis 

h' = 3*x, y : (shape(x) = regular_polygon) and 

(shape(y) -- circle) and (distance_between(x, y) = close). 

Except for the fact that we are counting matchings, this greedy algorithm is the 

same as that used in Haussler (1988) for the attribute-based case. Now, however, 

we will make a slight modification to this algorithm, as suggested by M. Warmuth: 

Instead of continuing until all matchings are eliminated, we will continue only until 

the number of matchings that remain is less than era~2, where rn is the total sample 

size (positive and negative examples) and e is a bound on the error we can allow 

in the final hypothesis. This implies that the final hypothesis will be consistent with 

all but at most ern/2 of the training examples as required by Theorem 2, since there 

must be an uneliminated matching for each inconsistent negative example. (Here 

we assume perfect consistency with the positive examples, although this can also 

be relaxed somewhat.) The following Lemma bounds the complexity of this hy- 
pothesis. 

Lemrna 4. Let s be the minimum number of atomic formulae from h needed to 

eliminate all matchings to the negative examples. Then the hypothesis h' produced 

by the above modified greedy method will have no more than ~ In (~) + 1 atomic 

formulae, where k is the maximum number of objects per scene. 
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Proof. Assume there are m negative examples. Hence we begin with at most 

k!m matchings. Since ~ atomic formula suffice to eliminate all these matchings, 

there is at least one formula that eliminates a fraction 1/3 of them. Hence, since 

the greedy method picks the formula that eliminates the most matchings, after the 

first formula is added, there will remain no more than (1 - 1/~)k!m matchings. 

Continuing this reasoning, using the fact that some formula always eliminates a 

fraction 1/3 of the remaining matchings, we conclude that after r formulae are 

added, there will remain no more than (1 - 1/~)rk!m matchings. So long as there 

is still one more formula that will be added to h', this latter number must be at 

least em/2, Since 1 - 1/3 -< e 1~, this implies that e-r/~k!m >- em/2, i.e. r -< 

~ln (~). Hence h' will have no more than ~ln (2~!/+ 1 atomic formulae. ~] 

By applying Theorem 2 with s = ~ln (~!) +'~,/this shows that for existential 

conjunctive target concepts with at most ~ atomic formulae, the learning algorithm 

given in Theorem 3, followed by the modified greedy simplification method sug- 

gested by Warmuth, gives a PAC learning algorithm that requires only a sample 

size m that is 

O l o g - - l o g - -  . 
E 

For constant k this is within a poly-logarithmic factor of the lower bound given 

above at the end of Section 3.2. When s is small and n is large, the savings in 

sample size obtained by using the greedy method could be significant. However, 

as the method is described above, there is no room for heuristics to reduce the 

number of matchings that have to be examined (unlike in the initial process of 

forming the hypothesis), so this method will not be practical unless k is very small. 

5. Extensions and open problems 

Our definition of existential conjunctive concepts is obtained by taking a class of 

concepts defined on attribute-based domains that is well-studied from a learning 

point of view, namely the pure conjunctive concepts as they are called in Haussler 

(1988), and generalizing them by adding either single variables or pairs of distinct 

variables to the individual atomic formulae and allowing these variables to bind to 

the objects in a scene in any 1-1 mapping, i.e., prefixing the expression with the 

3* operator. There are obviously many other variants of this scheme that yield 

interesting classes of concepts from a learnability point of view. 

One possibility is to use the standard 3 operator instead of 3*, i.e., to allow 

more than one variable to map to the same object. This is an easy modification of 

the framework given in Section 1 above; we simply insist that binary relations be 

defined between any object and itself and drop the restriction that the mappings 
be 1-1 in the definitions of satisfaction and the "more general than" partial order. 
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Many AI learning systems avoid these many-one mappings because they make 

the expressions for simple concepts more complex and add additional overhead to 

heuristic search algorithms. The problem is that once you allow many-one map- 

pings, you have to take additional steps to avoid unwanted interpretations. For 

example, at first glance the expression 3x, y : (shape(x) = square) and (color(y) 

= red) seems to represent all scenes that contain one object that is square and 

another that is red, but in fact this expression is satisfied by some scenes that 

contain only one object, so long as that object is a red square. To avoid this 

interpretation, we must specify that x and y must be different objects by adding 

an atomic formula with something equivalent to a binary relation of identity that 

has a value different when applied to two distinct objects and a value identical when 

applied to an object and itself. (This relation is sometimes called '*equals," but 

this invites confusion with the Boolean-valued binary relation that has value 1 if 

both objects have the same values for all attributes and 0 otherwise.) In general, 

if there are r variables then up to r 2 - r additional atomic formulae must be added 

to the expression to force a 1-1 correspondence between variables and objects. 

However, the other side of this is that allowing many-one mappings increases the 

class of concepts we can rep~:esent. Several examples are given in Hayes-Roth 

(1978). Hence it would certainly be of interest to extend the results given here to 

cover this case. 

Another direction of generalization is to allow some disjunction among the atomic 

formulae of the expression, i.e, begin with a class of expressions more general than 

the pure conjunctive concepts and then add variables and prefix the expression 

with either 3 or 3*. Again, restricted cases that have been studied in the attribute- 

based domains would be logical choices. Among these are the internal disjunctive 

expressions of (Michalski, 1983) and the k-CNF and k-DNF expressions of Valiant 

(1984) (see also Haussler, 1988).. In Valiant (1985) it is shown that existentially 

quantified k-DNF expressions with a bounded number of variables (similar to the 

bound we have used on the number of objects per scene) are PAC learnable in 

structural domains with Boolean relations. No queries are used in this method, but 

the computational effort grows exponentially in the bound k on the number of 

atomic formulae per conjunction. Hence the method is not practical when this 

bound is large. 

Other directions of generalization might further exploit the fact that we are using 

structural domains. One possibility is to enhance the system of concept represen- 

tation by allowing objects to have types as well, and having different sets of attri- 

butes be defined for objects of different types. In most applications, these types 

would also be partially ordered, with the objects of one type inheriting the attributes 

from the types above it in addition to its own indigenous attributes (see e.g., 

Winston, 1984, Chapter 8). In this enhanced representation, the set of binary 

relations relevant to an ordered pair of objects would also depend on the types of 

the objects. Computational time would be saved by disallowing matchings between 

objects whose types conflict. 

Other extensions would be to allow the values of relations to be themselves 
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objects or scenes, thereby creating a recursive structure (Boriga, et al., 1986; 

Sammut, 1986), or allowing additional axioms that constrain the values of certain 

relations beyond those implicit in the tree-structured or linear ordering, e.g., an 

axiom that states that the relation distance_between must be symmetric (Kodratoff, 

1986; Buntine, 1986). 

This latter extension leads to the following more general question: To what extent 

can domain knowledge be incorporated into the learning methods we have de- 

scribed? When can it be used to replace the queries we have used to constrain the 

search for a hypothesis? Clearly a domain theory (Mitchell, et al., 1986) that is 

capable of determining if a given hypothesis is contained in the target concept 

could implement the oracle we have postulated for answering subset queries. This 

may lead to some interesting hybrid EBG/empirical learning systems. 

Apart from extensions of the model, it would be interesting to know if the results 

we have given could be obtained with a simpler type of query, perhaps a membership 
query, in which the learning algorithm constructs an instance and asks if it is in 

the target concept. Except for some very special cases (corresponding to monotone 

conjunctions of Boolean relations (Angluin, 1988)), we have not been able to show 

this. 

Finally, we may be able to avoid queries altogether by showing that for some 

useful classes of distributions on examples, there are algorithms that, given random 

examples, can be proven to produce existential conjunctive hypotheses that are 

nearly consistent in polynomial time with high probability. Proposition 4 could 

then be used to show that these are effective learning algorithms under this par- 

ticular class of distributions. We are not currently aware of any results of this type 

in AI learning domains. 
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Notes 

1. In some cases the labeling of the nodes and edges in the graphs is "rich and varied" enough so that 

most labels are incompatible, i.e. neither is stronger than the other. In this case the number of 

possible 1-1 mappings satisfying the requirements of a "more general than" matching may be severely 

limited and an exhaustive search may be feasible, even when the number of nodes is large. 

2. Here only positive examples are used and the object is to find a maximally specific consistent concept 

meeting certain criteria. 

3. Here and in Proposition 4 we are suppressing some additional measurability assumptions required 

in the general form of the theorem sinee they are not relevant for our application. 



CONJUNCTIVE CONCEPTS 39 

References 

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342. 

Baum, E. & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1, 

151-160. 

Buntine, W. Induction of Horn clauses: Methods and the plausible generalization algorithm. (Technical 

Report). New South Wales, Australia: New South Wales Institute of Technology, Department of 
Computer Science. 

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. (1989). Learnability and the Vapnik- 

Chervonenkis dimension. J. ACM, 36. 

Boriga, A., Mitchell, T. & Williamson, K. Learning improved integrity constraints and schemas from 

exceptions in data and knowledge bases. In M. Brodie and J. Mylopoulos, (Eds.), On knowledge 

base management systems, New York: Springer-Verlag. 

Bundy, A., Silver, B. & Plummet, D. (1985). An analytical comparison of some rule-learning programs. 

Artificial Intelligence, 27, 137-181. 
Cohen, P. & Feigenbaum, E. (1982). Handbook of Artificial bltelligence (Vol. 3). William Kaufmann. 

Dietterich, T.G. & Michalski, R.S. (1983). A comparitive review of selected methods for learning from 

examples. In Machine learning: An artificial intelligence approach. Palo Alto, CA: Tioga Press. 
Duda, R. & Hart, P. (1973). Pattern classification and scene analysis. John P. Wiley & Sons. 

Ehrenfeucht, A., Haussler, D., Kearns, M. & Valiant, L. (1989). A general lower bound on the number 

of examples needed for learning. Information and Computation, 82. 

Garey, M. & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. 

San Francisco, CA: W. H. Freeman. 
Gill, J. (1977). Probabilistic Turing machines. SIAM J Comput, 6, 675-695. 

Haussler, D. (1987). Learning conjunctive concepts in structural domains. (Technical Report UCSC- 

CRL-87-01). Santa Cruz, CA: University of California. 

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning frame- 

work. Artificial Intelligence, 36, 177-221. 

Haussler, D., Kearns, M., Littlestone, N. & Warmuth, M. (1988). Equivalence of models for polynomial 

learnability. (Technical Report UCSC-CRL-88-06). Santa Cruz, CA: University of California. 

Haussler, D. & Welzl, E. (1987). Epsilon nets and simplex range queries. Discrete and Comp. Geometry, 
2, 127-151. 

Hayes-Roth, F. & McDermott, J. (1978). An interference matching technique for inducing abstractions, 
CACM, 21, 401-410. 

Kearns, M., Li, M., Pitt, L. & Valiant, L. (1987). Recent results in Boolean concept learning. Pro- 

ceedings of the Fourth International Workshop on Machine Learning (pp. 337-352). Irvine, CA. 

Kodratoff, Y. & Ganascia, J. (1986). Improving the generalization step in learning. In R. Michalski, 

J. Carbonell & T. Mitchell (Eds.), Machine learning ll. Los Altos, CA: Morgan Kaufmann. 

Knapman, J. (1978). A critical review of Winston's learning structural descriptions from examples. 

AISB Quarterly, 31, 319-320. 

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Machine learning: An 

artificial intelligence approach. Palo Alto, CA: Tioga Press. 

Mitchell, T.M. (1980). The need for biases in learning generalizations. (Technical Report CBM-TR- 
117). New Brunswick, NJ: Rutgers University, Department of Computer Science. 

Mitchell, T.M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226. 

Mitchell, T.M., Keller, R.M. & Kedar-Cabelli, S.T. (1988). Explanation-based generalization: A unify- 
ing view. Machine Learning, 1, 47-80. 

Muggleton, S. & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. 
Proceedings of the Fifth International Conference on Machine Learning (pp. 339-352). Ann Arbor, 
MI. 

Natarajan, B.K. (1989). On learning sets and functions. Machine Learning, 4, 67-97. 
Pearl, J. (1978). On the connection between the complexity and credibility of inferred models. Int. J. 

Gen. Sys., 4, 255-264. 



40 D. HAUSSLER 

Pitt, L. & Valiant, L.G. (1988). Computational limitations on learning from examples. Journal of the 

ACM, 35, 965-984. 
Sammut, C. & Banerji, R. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonell 

& T. Mitchell, (Eds.), Machine learning II. Los Altos, CA: Morgan Kaufmann. 
Stepp, R. (1987). Machine learning from structured objects. Proceedings of the Fourth International 

Workshop on Machine Learning (pp. 353-363). Irvine, CA. 
Subramanian, D. & Feigenbaum, J. (1986). Factorization in experiment generation. Proceedings of the 

AAAI-86 (pp. 518-522). Philadelphia, PA. 

Utgoff, P. (1986). Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell & 
T. Mitchell, (Eds.), Machine learning II, Los Altos, CA: Morgan Kaufmann. 

Valiant, L.G. (1984). A theory of the learnable. CACM, 27, 1134-1142. 
Valiant, L.G. (1985). Learning disjunctions of conjunctions. Proceedings of the Ninth International 

Johtt Conference on Artificial Intelligence (pp. 560-566). Los Angeles, CA. 
Vapnik, V.N. (1982). Estimation of dependences based on empirical data. New York: Springer-Verlag. 
Vapnik, V.N. & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events 

to their probabilities. Th. Prob. and its Appl., 16, 264-280. 

Vere, S.A. (1975). Induction of concepts in the predicate calculus. Proceedings of the Fourth Inter- 

national Joint Conference on Artificial Intelligence (pp. 281-287). Tbilisi, USSR. 
Winston, P. (1975). Learning structural descriptions from examples. In P. H. Winston, (Ed.), The 

psychology of computer vision. New York: McGraw-Hill. 

Winston, P. (1984). Artificial intelligence. Addison-Wesley. 


