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Abstract Spreadsheets, comma separated value files and other tabular data representations
are in wide use today. However, writing, maintaining and identifying good formulas for
tabular data and spreadsheets can be time-consuming and error-prone. We investigate the
automatic learning of constraints (formulas and relations) in raw tabular data in an unsu-
pervised way. We represent common spreadsheet formulas and relations through predicates
and expressions whose arguments must satisfy the inherent properties of the constraint. The
challenge is to automatically infer the set of constraints present in the data, without labeled
examples or user feedback. We propose a two-stage generate and test method where the first
stage uses constraint solving techniques to efficiently reduce the number of candidates, based
on the predicate signatures. Our approach takes inspiration from inductive logic program-
ming, constraint learning and constraint satisfaction. We show that we are able to accurately
discover constraints in spreadsheets from various sources.

Keywords Constraint learning · Tabular constraint learning · Spreadsheets · Excel ·

Constraint programming · Constraint discovery · Machine learning

1 Introduction

Millions of people across the world use spreadsheets every day. The tabular representation
of the data is often intuitive, and the programming of functions in individual cells is quickly
learned. However, large and complex sheets, possibly with multiple tables and relations
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between them, can be hard to handle. Many end-users lack the understanding of the under-
lying structures and relations in such sheets and the data they contain. This is especially the
case when spreadsheets have been exported from other software such as Enterprise Resource
Planning (ERP) systems. In this case, often a Comma Separated Values (CSV) format is used
meaning that all formulas are lost, including inter-sheet formulas and relations. Even in man-
ually created spreadsheets, it can be challenging to be consistent and correct with formulas
across all tables. For example, the influential Reinhart-Rogoff economical paper “Growth in
a Time of Debt” (Reinhart and Rogoff 2010) had some of its claims contested (Herndon et al.
2013) after an investigation showed that the used Excel sheets contained mistakes in formulas.

Such issues and mistakes could be overcome through the development of intelligent user-
assisting tools that would be able to automatically discover what constraints and formulas
hold in a spreadsheet. This is the problem we study in this paper. We envision that automatic
constraint discovery can enable: auto-completion, error checking, formula suggestion, rich
import and data compression. Auto-completion can help users quickly populate spreadsheets
by suggesting values for unfilled cells based on constraints that have previously been detected
within the spreadsheet. Error checking can identify erroneous values in spreadsheets, for
example, while typing, by noticing that previously discovered constraint are violated by
newly entered values, or offline by selectively leaving out values. Both of these applications
can facilitate the use of spreadsheets even for users who do not explicitly use formulas at
all. Furthermore, these applications are able to explain what constraints are responsible for
suggesting or rejecting a value. Other potential applications include formula suggestion,
which is a variant of auto-completion that does not suggest a value but provides a formula
which computes the user provided value. This setting can help users in finding the formula to
perform a certain task or finding the right syntax for a formula. Rich import denotes importing
semi-structured data from another source such as CSV files and extracting the formula’s that
were used implicitly or explicitly. A similar approach could be used to compress the data:
instead of storing all data in a file, one can identify rows or columns generated by formula
and store just that formula instead of the values.

To this aim, we investigate whether machine learning and knowledge discovery techniques
can be used to learn constraints (formulas and other relations) in spreadsheet data in an
unsupervised way. From a machine learning point of view this is an unconventional problem
because the data is in tabular form, but the constraints we wish to learn can involve both rows
and columns of the table. Being unsupervised, there is no labeled information either, although
for every possible function one can verify whether a certain input satisfies the definition. From
a data mining point of view, the data is relational on the one hand, since one can have multiple
tables with relationships between them, but also consists of mixed textual and numeric types.
More closely related is clausal discovery (De Raedt and Dehaspe 1997; Lallouet et al. 2010),
learning CSP constraints (Bessiere et al. 2013; Bessière et al. 2005; Beldiceanu and Simonis
2012) and dependency discovery in databases (Savnik and Flach 2000). But an important
difference remains that we want to learn constraints on both columns and rows over integer,
floating point as well as textual data. Our inspiration comes from work on program synthesis,
in particular Flashfill (Gulwani 2011), where the definition of a string-manipulation function
is learned in spreadsheet data from very few examples.

The question that we ask in this paper is: is it possible to learn the set of constraints present
in a spreadsheet, from just tabular spreadsheet data? The main challenge is the number of
possible constraints and combinations of rows and columns that need to be considered as input
to the constraints. To answer this challenge we propose a general-purpose method and system,
named TaCLe (from: Tabular Constraint Learner, pronounced “tackle”), for discovering row-
wise and column-wise constraints. Constraints on contiguous rows and columns are most
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common in spreadsheets, with semantically related items stored in rows or columns and
formula’s usually ranging over contiguous ranges, as formulas parallel to a table are often
dragged over its entire span. Our contributions are as follows:

– we define the tabular constraint learning problem, where the goal is to find constraints
that range over entire rows or columns in an unsupervised way;

– we propose an effective two-stage generate-and-test method where the first stage rea-
sons only over properties of contiguous blocks of rows/columns, and the second stage
continues to investigate individual rows and columns and their content;

– furthermore, in the first stage we use a constraint solver to efficiently enumerate all
combinations of maximally contiguous blocks compatible with the arguments of the
candidate constraints

– experiments on different publicly available spreadsheets show that the system is able to
extract constraints with high precision and recall.

This paper is organized as follows. Section 2 discusses related work. Section 3 introduces
the relevant concepts and defines the problem formally while Sect. 4 presents our approach.
This is evaluated in Sect. 5 after which we show how to realize two of the motivating
applications using our system in Sect. 6, and we conclude in Sect. 7.

2 Related work

TaCLe combines ideas from several existing approaches and different fields of research.
First, it borrows techniques from logical and relational learning (De Raedt 2008), as it

discovers constraints in multiple relations or tables. Unlike typical logical and relational learn-
ing approaches, it focuses on data in spreadsheets and constraints involving both columns
and rows in the sheets. Furthermore, it derives a set of simple “atomic” constraints rather
than a set of rules that each consist of a conjunction of literals as in clausal discovery (De
Raedt and Dehaspe 1997; Lallouet et al. 2010). Nevertheless, several ideas from logical
and relational learning proved to be useful, such as the use of a canonical form, a refine-
ment graph, and pruning for redundancy. Tabular constraint learning also connects with
the logical generalization of given formulas in a spreadsheet (Isakowitz et al. Jan 1995),
where the existing formulas are abstracted by introducing parameters in the place of par-
ticular cell references. The key difference here is that we discover constraints/formulas
in the data, we do not have or use any prior information on the formulas in a spread-
sheet.

Second, there exist a number of algorithms in the constraint programming community that
induce constraints from one or more examples and questions. Two well-known approaches
include ModelSeeker (Beldiceanu and Simonis 2012) and Quacq (Bessiere et al. 2013). The
former starts from a single example in the form of a vector of values and then exhaustively
looks for the most specific constraints that hold given a large constraint library. To this aim,
it cleverly enumerates different de-vectorized tables; for instance, if the initial vector was of
dimension 1 × 20, it would consider rearrangements of size 2 × 10, 4 × 5, 5 × 4, . . . and
Modelseeker would then look for both column, row and even diagonal constraints. Key differ-
ences with our work are that we use spreadsheets with multiple tables and that ModelSeeker’s
constraints are restricted to integer values and constraints that are typical for the constraint
programming community, e.g., aimed at combinatorial optimization and scheduling. Conacq
[3] acquires a conjunction of constraints using techniques inspired by Mitchell’s version
space algorithm to process examples; its successor Quacq uses active learning to query the
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user. Each of the examples/queries is processed for each constraint, hence an important issue
is how fast the algorithm converges to the entire solution set (e.g. for Sudoku). The focus
is again on integer variables and typical combinatorial optimisation constraints. In a similar
spirit the field of equation discovery (Todorovski 2010) focuses, guided by heuristics based
on the structure of physical equations and unit measures, on the discovery of physical for-
mulas over numbers and times series. However, they focus specifically on noisy physical
data and formulas, e.g., a single variable can take values from a series of measurements
to get a regression parameter estimate or they apply specific data transformation such as
numerical calculation of time and partial derivatives. In other words, the method works with
approximations and the equation structures are heavily biased towards parameter estima-
tion, while our goal is to discover hard constraints that hold over a subset of the rows and
columns.

Third, our work borrows from the seminal work of Gulwani (2011) on program syn-
thesis for string manipulation in tabular data, which is incorporated in Microsoft’s Excel.
In FlashFill, the end-user might work on a table containing the surnames (column A) and
names (column B) of scientists. The first row might contain the values A1 = “Curie” and
B1 = “Marie”, and the user might then enter in cell C1 the value “M.C.”. At that point
FlashFill generates a program that produces the output “M.C.” for the inputs “Curie” and
“Marie”, and also applies it to the other scientists (rows) in the table. While it might need
an extra example to deal with names such as “Bell”, “Alexander Graham” and determine
whether it should output “A.B.” or “A.G.B.”, FlashFill learns correct programs from very
few examples. Flashfill has been extended to, e.g., FlashExtract (Le and Gulwani 2014)
to produce a set of tables starting from an unstructured document (e.g., a txt or HTML
file) with a set of examples marked for extraction. However, unlike our approach, Flashfill
requires the user to identify explicitly the desired inputs/outputs from the function as well
as to provide explicitly some positive and sometimes also negative examples. In contrast,
our approach is unsupervised, although it would be interesting to study whether it could be
improved through user interaction and through user examples. Furthermore, FlashFill han-
dles only single tables with textual data to obtain a string transformation program, while
the examples we consider contain multiple tables with mixed numeric and textual data and
multiple constraints in them. An interesting open issue for all of these techniques, with the
exception of logical and relational learning, is how to deal with possibly incomplete or noisy
data.

Fourth, also related to this line of research is the work on deriving constraints in databases
such as functional and multi-valued dependencies (Savnik and Flach 2000; Mannila and Räihä
1994) although that line of research has focused on more specialized techniques for specific
types of constraints. Many of the discovery techniques rely on the database schema (Flach
and Savnik 1999), which is not available in our case. Techniques that work directly on the data
have been investigated for the discovery of functional dependencies between attributes (Huh-
tala et al. 1999). The constraints and formulas we wish to learn go beyond that, including
arithmetic, conditional arithmetic and fuzzy lookups, for example.

Finally, worth mentioning is BayesDB (Mansinghka et al. 2015) and Tabular (Gor-
don et al. 2013), two recent probabilistic modeling languages that have been specifically
designed for dealing with relational data in tabular form and that can, as FlashFill, also
automatically fill out missing values in a table. However, unlike the other mentioned
approaches, it is based on an underlying probabilistic graphical model that performs
probabilistic inference rather than identify the “hard” constraints that hold in spread-
sheets.
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SERIES(T1[:, 1]) T2[1, :] = SUMcol(T1[:, 3:7])

T1[:, 1] = RANK(T1[:, 5])
∗

T2[2, :] = AVERAGEcol(T1[:, 3:7])

T1[:, 1] = RANK(T1[:, 6])
∗

T2[3, :] = MAXcol(T1[:, 3:7])

T1[:, 1] = RANK(T1[:, 10])
∗

T2[4, :] = MINcol(T1[:, 3:7])

T1[:, 8] = RANK(T1[:, 7]) T4[:, 2] = SUMcol(T1[:, 3:6])

T1[:, 8] = RANK(T1[:, 3])
∗

T4[:, 4] = PREV (T4[:, 4]) + T4[:, 2] − T4[:, 3]

T1[:, 8] = RANK(T1[:, 4])
∗

T5[:, 2] = LOOKUP(T5[:, 3], T1[:, 2], T1[:, 1])
∗

T1[:, 7] = SUMrow(T1[:, 3:6]) T5[:, 3] = LOOKUP(T5[:, 2], T1[:, 1], T1[:, 2])

T1[:, 10] = SUMIF(T3[:, 1], T1[:, 2], T3[:, 2]) T1[:, 11] = MAXIF(T3[:, 1], T1[:, 2], T3[:, 2])

(a)

(b)

Fig. 1 Running example. a Example spreadsheet, black words and numbers only. Green background indicates
headerless tables, dark borders indicate maximal type-consistent blocks. Most tables only contain type-
consistent columns while table T2 also contains type-consistent rows. This example combines several Excel
sheets based on exercises in the book “MS Excel 2010” (Van den Broeck and Cuypers 2011). b Constraints
learned for the tables above, except 19 ALLDIFFERENT, 2 PERMUTATION and 5 FOREIGNKEY and 5
ASCENDING constraints not shown. Constraints marked with ∗ were not present in the original spreadsheets
(Color figure online)

3 Formalization

Our goal is to automatically learn the constraints that hold between the rows and/or columns
in a spreadsheet. This is applicable not just to data from spreadsheets, but to any data in
tabular form.

We first introduce some terminology and the concept of a constraint template, after which
we define the problem and discuss some additional considerations.

3.1 Terminology

Spreadsheets and tabular data may conceptually consist of multiple tables, as in Fig. 1a. Note
that a table can contain one or more headers; however, we wish to reason over entire rows
and columns of data, and hence we will consider headerless tables only. Headerless tables
contain only data entries and are obtained by stripping away all contextual information such
as headers.
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Formally, a (headerless) table is an n × m matrix. Each entry is called a cell. A cell has
a type, which can be numeric or textual. We further distinguish numeric types in subtypes:
integer and float. We also consider None as a special type when a cell is empty; None is a
subtype of all other types.

A row or a column is type-consistent if all cells in that row or column are of the same
base type, i.e., numeric or textual. We will use notation T [a, :] to refer to the a-th row of table
T and similarly T [:, a] for the a-th column. For example, in Fig. 1a, T1[:, 1] = [1, 2, 3, 4]

and T3[1, :] = [′Diana Coolen′, 5]. T3[1, :] is not type-consistent while T1[:, 1] is.
The most important concept is that of a block.

Definition 1 A block has to satisfy three conditions: (1) it contains entire rows or entire
columns of a single headerless table; (2) it is contiguous; and (3) it is type-consistent. The
rows or columns have to be contiguous in the original table, meaning that they must visually
form a block in the table, and each of the rows or columns has to be of the same type. If a
block contains only rows we say it has row-orientation, if only columns, column-orientation.

In line with this definition, we can use the following notation to refer to blocks: B =

T [a:b, :] for a row-oriented block containing rows a to b in table T ; and similarly B =

T [:, a:b] for a column-oriented block. We will refer to the vectors of a block when we wish
to refer to its rows/columns independently of their orientation.

Blocks are used to reason about multiple rows or columns simultaneously. Requiring
blocks to be contiguous is quite natural in the spreadsheet setting, as they logically group
neighboring rows or columns. This matches the way people commonly construct formulas,
by selecting a contiguous ranges in a sheet. For example, constraints such as summation
often occur over contiguous blocks.

A block has the following properties:

– type: a block is type-consistent, so it has one type;
– table: the table that the block belongs to;
– orientation: either row-oriented or column-oriented;
– size: the number of vectors a block contains;
– length: the length of its vectors; as all vectors are from the same table, they always have

the same length;
– rows: the number of rows in the block; in row-oriented blocks this is equivalent to the

size;
– columns: the number of columns in the block; in row-oriented blocks this is equivalent

to the length.

Example 1 Consider the (headerless) table T1 in Fig. 1a. Its rows are not type consistent (i.e.
they contain both numeric and textual data). However, the table can be partitioned into five
column-oriented blocks b1, b2, b3, b4, b5, as shown in the figure (b1 = T1[:, 1], b2 = T1[:, 2],
b3 = T1[:, 3:8], …).

Definition 2 Block containment ⊑. A block B ′ is contained in a block B, B ′ ⊑ B, iff
both are valid blocks (contiguous, type consistent) with the same orientation and table, and
each of the vectors in B ′ is also in B. For row-oriented blocks it means that: B ′ ⊑ B ⇔

B = T [a:b, :]∧ B ′ = T [a′:b′, :]∧a ≤ a′ ∧b′ ≤ b and similarly for column-oriented blocks.

We will sometimes write that B ′ is a subblock of B or that B is a superblock of B ′. An
example of block containment is T1[:, 3:6] ⊑ T1[:, 3:8], which contains the sales numbers
of all employees for the four quarters.
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3.2 Constraint templates

The goal is to learn constraints over blocks in the data. The knowledge needed to learn
a constraint is expressed through constraint templates. A constraint template s is a triple
s = (Syntax, Signature, Definition):

– Syntax specifies the syntactic form of the constraint s(B1, . . . , Bn), that is, the name
of the template together with n abstract arguments Bi ; each of those arguments will
correspond to a block. Thus, a constraint is viewed as a relation or predicate of arity n in
first order logic.
Functions can be represented in a similar way. Any function Bn+1 = s(B1, . . . , Bn) that
has n arguments and computes Bn+1 can be represented with an (n+1)-ary predicate
s′(B1, . . . , Bn, Bn+1).

– Signature defines the requirements that the arguments of the predicate must satisfy. This
can concern properties of individual blocks as well as relations between properties of
arguments, for example, that the corresponding blocks must belong to the same table
or have equal length. In terms of logical and relational learning (De Raedt 2008), the
Signature is known as the bias of the learner, it specifies a conjunction of the properties
that the arguments must have for the constraint to be well-formed. We denote this bias
for a template s using the predicate Sigs .

– Definition is the actual definition of the constraint that specifies when the constraint
holds. Given an assignment of blocks to its arguments, it can be used to verify whether
the constraint is satisfied or not by the actual data present in the blocks. In logical and
relational learning this is known as the background knowledge. We introduce the predicate
Defs to capture this background knowledge for a template s.

The constraint templates implemented in TaCLe are defined in Table 1.

Example 2 Consider, for example, the constraint template for the row-based sum:

– Syntax: B2 = SU Mrow(B1), for arguments B2 and B1.
– Signature: B2 has to be a single vector (size = 1) while B1 can be a block (size ≥ 1),

which can be derived from the use of a normal or bold font. Both blocks have to be
numeric. This constraint is orientation-specific, so it requires that the number of rows in
B1 equals the length of B2. Moreover, the bias specifies that the number of columns to
sum over is at least 2. This avoids that B1 contains only a single column.

– Definition: each value in the vector B2 is obtained by summing over the corresponding
row in B1.

SUMrow and SUMcol are part of a family of constraints that we refer to as aggregate

constraints that range over multiple rows or columns and are also available for aggregate
operators MIN, MAX, AVERAGE, PRODUCT and COUNT. SUMIF is part of a family con-
straints that we refer to as conditional aggregate constraints which aggregate over a vector
and only include those cells that satisfy a condition on a related cell in that table, e.g., for
the spreadsheet in Fig. 1a: T1[:, 10] and the data in T5 for matching salesperson names. Con-
ditional aggregates are also available for the above aggregate operators, except for product.
Note that SUMPRODUCT is not considered part of the family of aggregate constraints in
this paper as it is not defined for other aggregate operators. See Sect. 4.4.3 for a more detailed
discussion of the constraints used in TaCLe.

It is helpful to see the analogy of constraint templates with first order logic (FOL) and
constraint satisfaction. From a FOL perspective, a constraint of the form B2 = RANK(B1)
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can be seen as a predicate RANK(B2, B1) where RANK is the name of the predicate and
its arguments B2 and B1 are terms, which can be seen as either uninstantiated variables
or as concrete values. This also holds in our setting, where an instantiation of a variable
corresponds to a concrete block. For example, for the spreadsheet in Fig. 1a, when we write
T1[:, 8] = RANK(T1[:, 7]), then the value of B2 is the 8th vector in T1: Br = T1[:, 8] =

[2, 1, 3, 4] and the value of B1 is the 7th vector: Bx = T1[:, 7] = [1514, 1551, 691, 392].
With this interpretation, we can speak about the signature and definition of a constraint

template being satisfied. We say that a signature of a constraint template s with n arguments
is satisfied by the blocks (B1, . . . , Bn) if Sigs(B1, . . . , Bn). Likewise a definition is satisfied
if Defs(B1, . . . , Bn) is. The template is hence satisfied if both the signature and definition are
satisfied; in logic programming, we would define the predicate s using a Prolog like clause:
s(B1, . . . , Bn) ← Sigs(B1, . . . , Bn)∧ Defs(B1, . . . , Bn). Under this interpretation, the term
constraint and constraint template can be used interchangeably.

Definition 3 A valid argument assignment of a constraint template s is a tuple of blocks
(B1, . . . , Bn) such that s(B1, . . . , Bn) is satisfied, that is, both the signature and the definition
of the corresponding constraint template are satisfied by the assignment of (B1, . . . , Bn) to
the arguments.

3.3 Problem definition

The problem of learning constraints from tabular data can be seen as an inverse constraint

satisfaction problem (CSP). In a CSP one is given a set of constraints over variables that
must all be satisfied, and the goal is to find an instantiation of all the variables that satisfies
these constraints. In the context of spreadsheets, the variables would represent blocks of
cells, and one would be given the actual constraints and functions with the goal of finding
the values in the cells. The inverse problem is, given only an instantiation of the cells, to find
the constraints that are satisfied in the spreadsheet.

We define the inverse problem, that is the Tabular Constraint Learning Problem, as
follows:

Definition 4 Tabular Constraint Learning.

Given: a set of instantiated blocks B over tables T , and a set of constraint templates S.
Find: all constraints s(B ′

1, . . . , B ′
n) where s ∈ S, ∀i : B ′

i ⊑ Bi ∈ B and (B ′
1, . . . , B ′

n) is a
satisfied argument assignment of the template s.

The input is a set of blocks, and in Sect. 4 we will discuss how these can be extracted from
a spreadsheet. Figure 1b shows the solution to the tabular constraint learning problem when
applied to the blocks of Fig. 1a and constraint templates listed in Table 1.

3.4 Other considerations

3.4.1 Dependencies

In Table 1 one can see that for some constraints we used the predicate of another constraint
in its signature, e.g. for PERMUTATION. This expresses a dependency of the constraint on
that other base constraint. This can be interpreted as follows: the signature of the constraint
consists of its own signature plus the signature of the base constraint, and its definition of
its own definition plus the definition of the base constraint. In FOL, we can see that one
constraint entails the other, for example if PERMUTATION(B) holds for a block B, then
ALLDIFFERENT(B) also holds.
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While dependencies are optional, they simplify the specification of signatures and defini-
tions. Moreover, in Sect. 4 we will see how such dependencies can be used to speed up the
search for constraints.

3.4.2 Redundancies

Depending on the application, some constraints in the solution to the tabular constraint
learning problem may be considered redundant. This is because constraints may be logically
equivalent or may be implied by other constraints, e.g., if you know PERMUTATION(B),
then ALLDIFFERENT(B) is redundant.

Within the same constraint, there can be equivalent argument assignments if the order
of some of the arguments does not matter. For example, for the product constraint, B3 =

B1 × B2 ≡ B3 = B2 × B1, so one can be considered redundant to the other. Two different
constraints can also be logically equivalent, due to their nature, e.g., for addition / subtraction
and product / division: B3 = B1 × B2 ≡ B1 = B3/B2.

Finally, when the data has rows or columns that contain exactly the same values, then
any constraint with such a vector in its argument assignment will also have an argument
assignment with the other equivalent vectors.

Dealing with redundancy is often application-dependent. Therefore, in Sect. 4 we first
explain our generic method for finding all constraints, before describing some optimizations
that avoid obvious equivalences (Sect. 4.4). In the experiments we will investigate the impact
of redundancy further.

4 Approach to tabular constraint learning

The aim of our method is to detect constraints between rows and columns of tabular data.
Recall that a valid argument assignment for a constraint is an assignment of a block to each
of the arguments of the constraint, such that the signature and definition of the constraint
template is satisfied.

Our proposed methodology contains the following steps (Algorithm 1):

Algorithm 1 The TaCLe approach
Step 1 Extract headerless tables from tabular data
Step 2 Partition the tables into contiguous, type-consistent blocks (input blocks) using the BlockDetect tool
Step 3 Generate for each constraint template all valid argument assignments in two steps:

(a) For each constraint template s, generate all assignments (B1, . . . , Bn) where each Bi is an input
block and the Bi are compatible (defined below) with the signature of s.

(b) For each generated assignment (B1, . . . , Bn), find all constraints s(B′
1, . . . , B′

n) such that B′
i

⊑ Bi

holds for all i and the signature and definition of s are satisfied.

The core of our method is step 3. In principle, one could use a generate-and-test approach
by generating all possible blocks from the input blocks and testing each combination of
blocks for each of the arguments of the constraints. However, each input block of size m has
m ∗ (m +1)/2 contiguous subblocks, meaning that a constraint with n arguments would have
to check O(nm2

) combinations of blocks.
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Instead, we divide this step into two parts: in step 3a, we will not reason over individual
(sub)blocks and their data, but rather over the properties of the input blocks. Consider table T1

in Fig. 1a and the SUMrow constraint template. Instead of considering all possible subblocks
of T1 (b1, b2, b3, b4, b5), we first reason over the properties of the input blocks. For example,
blocks b2 and b4 are not numeric so they can be immediately discarded. Input blocks b1, b3

and b5 are valid candidates for the second argument of the constraint, i.e., the functionally
defined block. However, since they all have length 4, the first argument, which is the block
to sum over, needs at least 4 columns which is only satisfied by b3. Hence, the assignments
generated for SUMrow in step 3a would be (b1, b3), (b3, b3), (b5, b3).

In step 3b, we start from an assignment (B1, . . . , Bn) with input blocks Bi and generate
and test all possible (sub)block assignments to the arguments, using the properties and actual
data of the blocks. As we only have to consider the blocks B ′

i ⊑ Bi contained in each input
blocks, this is typically an easier problem to solve. For SUMrow in the above example and
assignment (b5, b3), each of the vectors of b5 will be considered as candidate for the left-hand
side, and one can enumerate all subblocks of b3 for the right-hand side, verify the signature
(e.g. at least size 4) and test whether for each row the definition is satisfied.

We now describe in more detail how headerless tables are extracted (step 1, Sect. 4.1), how
input blocks are generated from them (step 2, Sect. 4.2), and in Sect. 4.3 how the candidate
input block assignments are generated (Step 3a) and how the actual assignments are extracted
from that (Step 3b). In Sect. 4.4 we describe a number of optimizations designed to improve
the effectiveness algorithm.

4.1 Step 1: Table extraction

Many spreadsheets contain headers that provide hints at where the table(s) in the sheet are
and what the meaning of the rows and columns is. However, detecting tables and headers is
a complex problem on its own (Fang et al. 2012). Furthermore, headers may be missing and
their use often requires incorporating language-specific vocabulary, e.g. English.

Instead, our algorithm will assume tables are specified by means of their coordinates
within a spreadsheet and optionally a fixed orientation of each table. The orientation can be
used to indicate that a table should be interpreted as having only rows or only columns.

We developed two simple tools that can be used for the specification of the tables:

Automatic detection (AutoExtract) Under the following two assumptions, the table detection
task becomes easy enough to be automated; 1) tables are rectangular blocks of data not
containing any empty cells; and 2) tables are separated by at least one empty cell from other
tables. The sheet is then processed row by row, splitting each row into ranges of non-empty
cells and appending them to adjacent ranges in the previous row. Headers can be detected,
for example, by checking if the first row or column contains only textual values. If a header
row (column) is detected, it is removed from the table and the orientation of the table is fixed
to columns (rows), otherwise, we assume there is no header and the orientation is not fixed.
Our implementation of this approach is called the AutoExtract tool.

Visual selection (VisualExtract) The above assumptions do not hold for many tables. However,
since the specification of tables is usually easy for humans, we employ a second approach
which allows users to indicate tables using a visual tool. Screenshots are available in the
accompanying GitHub repository with meta-data1 and in “Appendix 2”. Users select tables
excluding the header and optionally specify an orientation. The VisualExtract tool then gen-
erates the specification of the tables automatically.

1 https://github.com/SergeyParamonov/TaCLe.
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Algorithm 2 Learn tabular constraints
1: Input: S – constraint templates, B – maximal blocks
2: Output: C – learned constraints
3: procedure LearnConstraints(B, S)
4: C ← ∅

5: for all s in S do

6: A ← InputBlockAssignments(s, B)

7: for all (B1, . . . , Bn) ∈ A do

8: A′ ← Subassignments(s, (B1, . . . , Bn))

9: for all (B′
1, . . . , B′

n) ∈ A′ do

10: C ← C ∪ {cs (B′
1, . . . , B′

n)}

11: return C

4.2 Step 2: Block detection with BlockDetect

The goal of the block detection step is to partition tables into maximally type-consistent
(all-numeric or all-textual) blocks. First, the BlockDetect tool preprocesses the spreadsheet
data so that currency values and percentual values are transformed into their corresponding
numeric (i.e. integer or floating point) representation (e.g. 2.75$ as 2.75 and 85% as 0.85).
Then, each table is partitioned into maximal type-consistent blocks.

To find row-blocks, each row is treated as a vector and must be type-consistent; similarly
for columns and column-blocks. Then, adjacent vectors that are of the same type are merged
to obtain the maximally type-consistent blocks.

4.3 Step 3: Constraint learning algorithm

Our learning method assumes that constraint templates and input blocks are given and solves
the Tabular Constraint Learning problem by checking for each template: what combination of
input blocks can satisfy the signature (input block assignment) and which specific subblock

assignments satisfy both the signature and the definition. The pseudo-code of this approach
is shown in Algorithm 2.

This separation of checking the properties of input block assignments from checking the
actual data in the subblock assignment controls the exponential blow-up of combinations
to test. Furthermore, we use constraint satisfaction technology in the first step to efficiently
enumerate input block assignments that are compatible with the signature.

Step 3a: Generating input block assignments

Given a constraint template s and the set of all input blocks B, the goal is to find all com-
binations of input blocks that are compatible with the constraint signature. An argument
assignment (B1, . . . Bn) is compatible with the signature of template s if for each block Bi

there exists at least one subblock B ′
i ⊑ Bi that satisfies the signature.

The choice of one argument can influence the possible candidate blocks for the other
arguments, for example, if they must have the same length. Instead of writing specialized
code to generate and test the input block assignments, we make use of the built-in reasoning
mechanisms of constraint satisfaction solvers.

A Constraint Satisfaction Problem (CSP) is a triple (V, D, C) where V is a set of variables,
D the domain of possible values each variable can take and C the set of constraints over V

that must be satisfied. In our case, we define one variable Vi for each argument of a constraint
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Table 2 Translation of signature requirements to input block constraints. The following need not be relaxed:
length(B) = x , orientation(B) = x , table(B) = x and size(B) ≥ x

Requirement Input block constraint

type(B) = x basetype(type(B)) = basetype(x)

size(B) = x size(B) ≥ x

columns(B) = x if orientation(B) = column : columns(B) ≥ x

if orientation(B) = row : columns(B) = x

rows(B) = x if orientation(B) = column : rows(B) = x

if orientation(B) = row : rows(B) ≥ x

template. Each variable can be assigned to one of the input blocks in B, so the domain of the
variables consists of |B| block identifiers.

To reason over the blocks, we add to the constraint program a set of background facts that
contain the properties of each input block, namely its type, table, orientation, size, length and
number of rows and columns.

The actual CSP constraints must enforce that an input block assignment is compatible with
the requirements defined in the signature. Table 2 shows how the conversion from require-
ments of the signature to CSP constraints works: Requirements on the lengths, orientations
and tables of blocks can be directly enforced since they are invariant under block contain-
ment (⊑). Typing requirements need to be relaxed to check only for base types, namely
numeric and textual. Minimum sizes can be directly enforced, but exact size requirements
are relaxed to minimum sizes, since blocks with too many vectors contain subblocks of the
required smaller size. Finally, restrictions on the number of rows or columns behave as length
or size constraints based on the orientation of the block they are applied to.

The InputBlockAssignments(s, B) method will use these conversion rules to construct a
CSP and query a solver for all solutions. These solutions correspond to the valid input block
assignments for constraint template s.

Example 3 Consider the constraint template B2 = SU Mrow(B1), then the generated CSP
will contain two variables V2, V1 corresponding to arguments B2 and B1. Given maximal
blocks B, the domain of these variables are D(V1) = D(V2) = {1, . . . , |B|}. Finally, the
signature of B2 = SU Mrow(B1) (see Table 1) will be translated into constraints:

numeric(V2) ∧ numeric(V1) ∧ columns(V1) ≥ 2

(orientation(V1) = column) ⇒ (rows(V1) ≥ length(V2))

(orientation(V1) = row) ⇒ (rows(V1) = length(V2))

Step 3b: Generating subblock assignments

Given an input block assignment (B1, . . . , Bn) from the previous step, the goal is to discover
valid subassignments, i.e., assignments of subblocks (B ′

1, . . . , B ′
n) with for all i , B ′

i ⊑ Bi ,
that satisfy both the signature and the definition of template s.

Example 4 Consider the sum-over-rows template B2 = SU Mrow(B1) again; an example
input block assignment from Fig. 1a is (B2, B1) = (T1[:, 3:8], T1[:, 3:8]). Note that this
assignment does not satisfy the signature yet, because B2 contains more than one vector.
This step aims to generate subassignments (B ′

2 ⊑ B2, B1
′ ⊑ B1) that do satisfy the signature
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and test whether they satisfy the definition: ∀i, B2[i] =
∑length(B1)

j=1 row(i, B1)[ j]. In Fig. 1a
there is exactly one such subassignment: (T1[:, 7], T1[:, 3:6]).

In this step, we could also formulate the problem as a CSP. However, few CSP solvers
support floating point numbers, which are prevalent in spreadsheets. Furthermore, in a CSP
approach we would have to ground out the definition for each of the corresponding elements
in the vectors. This is inefficient, as such blocks may not even satisfy the signature or just
the first element in the data may already not satisfy the definition.

Algorithm 3 Generate-and-test for Subassignments

procedure Subassignments(s, (B1, . . . , Bn))
n ← number of arguments of template s

Asub ← ∅

for all (B′
1, . . . , B′

n) where ∀i : B′
i
⊑ Bi ∧ disjoint j 	=i (B′

i
, B′

j
) do

if Sigs (B′
1, . . . , B′

n) ∧ Defs (B′
1, . . . , B′

n) then

Asub ← Asub ∪ {(B′
1, . . . , B′

n)}
return Asub

On the other hand, a simple generate-and-test approach, as illustrated in Algorithm 3, will
usually suffice. Given an input block assignment, all disjoint subassignments are generated
taking into account the required size, columns or rows. For every disjoint subassignment the
exact signature (e.g. subtypes will not have been checked yet) and definition will be tested
and all satisfying subassignments are returned.

Based on the assumptions that most subassignments will not satisfy the definition of the
constraint template, the implementation of the definition check is geared to fail-fast when
possible. Specifically, for many constraints the entries of every subblock are fetched one by
one, and as soon as one does not hold failure is returned. Often, the first entry will already not
satisfy the definition (e.g. if B3[0] 	= B1[0] × B2[0] then B3 = B1 × B2 does not hold). As
a result, many subassignments can be discarded by looking at just one or a few entries, and
considering all subassignments that will be checked, the runtime of the checks will typically
not be influenced much by the length of the vectors.

4.4 Optimizations

This section discusses various design decisions and optimizations aimed at improving the
extensibility and effectiveness of our method, as well as reducing the redundancy in the
output.

4.4.1 Template dependencies

As discussed in Sect. 3.4.1, some constraint templates depend on others by including tem-
plates they depend on in their signature (see Table 1).

In Inductive Logic Programming, one often exploits implications between constraints to
structure the search space (De Raedt 2008). Our approach uses the dependencies between
templates to define a dependency graph. Dependencies are provided to the system as part
of the specification of the constraint templates. We assume that signatures do not contain
equivalences or loops, and hence the resulting graph is a directed acyclic graph (DAG).
Figure 2 shows the dependency graph extracted from the signatures in Table 1. Constraint
templates that have no dependencies are omitted.
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Fig. 2 Dependency graph of Table 1; an arrow from s1 to s2 indicates that s2 depends on s1: its signature
includes s1

Using the dependency graph (D) we can reorder the templates such that a template occurs
after any template it depends on. Concretely, in Algorithm 2 line 5 the input templates S

are handled following an ordering that agrees with the partial ordering imposed by D (e.g.
ALLDIFFERENT before FOREIGNKEY ). When using this ordering, templates later in the
ordering can use the learned constraints of the templates they depend on. To enable this reuse
of constraints, the set of learned constraints C is added to the argument of InputBlockAssign-

ments on line 6.
The previously learned constraints are used to speed up the InputBlockAssignments step.

For constraint templates where some arguments are also part of a constraint that it depends on,
it is not needed to search for input blocks and subblocks from scratch. Instead, one can start
from all and only the actual argument assignments of the base constraint, and only search
matching input blocks for the remaining arguments. Therefore, the number of candidate
assignments for a constraint template can be reduced by adding a dependence on a lower
arity constraint.

Example 5 Consider FOREIGNKEY(B f k, Bpk), which states that every value in B f k also
exists in Bpk ; its signature includes ALLDIFFERENT(Bpk). There are 18 ALLDIFFERENT

constraints to be found in Fig. 1a, hence, the InputBlockAssignments only needs to check
which input blocks for B f k are compatible (different table, same type) with these 18 assign-
ments to Bpk .

In this case, instead of generating one CSP to find all assignments, a CSP is generated
for every known assignment of the depending constraint, which then searches for all assign-
ments completing this partial assignment. The procedure to generate CSPs remains the same
otherwise.

4.4.2 Redundancy

We consider two types of redundancy that we aim to eliminate during search. Specifically,
these redundancies are taken into account in the implementation for finding subassignments
for a constraint. As noted in Sect. 3.4.1, for some constraint templates there are symmetries

over the arguments that lead to trivially equivalent solutions, for example, B ′
3 = B ′

1 × B ′
2 ⇔
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B ′
3 = B ′

2×B ′
1. Such duplicates are avoided by defining a canonical form for these constraints.

In practice, we define an arbitrary but fixed block ordering and require those blocks that are
interchangeable to adhere to this ordering. Moreover, among the semantically equivalent
constraints product (B ′

3 = B ′
1 × B ′

2) and division (B ′
1 = B ′

3/B ′
2) we only added product, as

well as only difference (B3 = B1 − B2) and not sum (B1 = B3 + B2). However, division and
sum could easily be added, and they could equivalently be added in post-processing based
on the matching product and difference constraints.

A last type of redundancy we chose to avoid during search is that there may be multi-
ple overlapping subblocks that satisfy the definition of a constraint template. For example,
consider the constraint B2 = SU Mcol(T [:, 1:n]) where T [:, k:n] consists of only zeros, then
B2 = SU Mcol(T [:, 1: j]) will be true for all k − 1 ≤ j ≤ n. In TaCLe we have, therefore,
chosen to only consider maximal subblocks. This can be seen as a bias of our system.

In some cases a maximal subblock might falsely include irrelevant columns. Consider
input block B1 = T [:, 1:3] = [[200, 300], [200, 150], [1, 2]] and B2 = [200, 300], then
TaCLe will find the constraint B2 = MAX(T [:, 1:3]). Should the target constraint be B2 =

MAX(T [:, 1:2]), then TaCLe is only able to find exactly that constraint if T [:, 3] is split off into
a separate block in the block detection phase or by post-processing the detected constraints.

4.4.3 Constraints

The 33 constraints that are currently supported in our system are shown in Table 1. We
included most formulas that we encountered in tutorial spreadsheets including the popular
SUM and LOOKUP constraints.2 We also added four structural constraints (ALLDIFFER-

ENT, PERMUTATION, ASCENDING and FOREIGNKEY ) so that they can be used in
the signature of other constraint templates; they are also popular in constraint satisfac-
tion (Beldiceanu and Simonis 2012). In our current system, the signature for these structural
constraints was chosen to be strict, i.e. only support those types that are required by depend-
ing constraints. Therefore, ALLDIFFERENT does not support floating point numbers and
ASCENDING does not support strings.

For LOOKUP, aggregate constraints and PROJECT we use optimized implementations
to find subassignments instead of generic generate-and-test.

Given an input block assignment, the implementation for B2 = L O O KU P (B f k, Bpk, B1)

first generates candidate vectors for Bpk and B1, then populates a hash table that allows it to
quickly look up keys, afterwards it generates candidate vectors for the remaining arguments
and, finally, checks which subassignments are valid.

For aggregates (e.g. SUM) and PROJECT, a custom implementation is used that tries to
find maximal subblocks that satisfy the constraint templates. Instead of generating all possible
subblocks, given an inputblock assignment, these implementations start from an input block
and repeatedly generate and test smaller subblocks. Therefore, once a match is found, all
smaller subblocks do not need to be considered anymore.

Finally, for FOREIGNKEY and conditional aggregates, generate-and-test is used, but in
combination with caches that store intermediate results and a preparation step to populate
some of the caches. For example, for conditional aggregates, input block assignments are
analyzed to find vectors with overlapping values. These results are then cached and used to
quickly reject subassignments where there is no overlap between Bpk and B f k .

2 https://support.office.com/en-us/article/Excel-functions-by-category-5F91F4E9-7B42-46D2-9BD1-63F26
A86C0EB.
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4.4.4 Limited precision

One of the challenges of discovering mathematical functional constraints, such as product,
is that values in spreadsheets often have limited precision and might have been rounded.
Testing whether such a constraint holds for a given subassignment, e.g., B3 = B1 × B2, can
be done by calculating the expected result (B1 × B2) first and testing if it corresponds to the
actual result (B3). For the values B1 = [1.7], B2 = [1.8], B3 = [3.1], we would compute
first B1 × B2 = [3.06] and conclude [3.06] 	= [3.1] unless the expected result is first rounded.
Therefore, TaCLe analyzes how long the fractional part of an actual result is and rounds the
expected result accordingly.

5 Evaluation

In this section we experimentally validate our approach. We first explain the experimental
setup and illustrate it on the example in Fig. 1a, we then investigate the effectiveness of our
method on synthetic spreadsheets, after which we evaluate our method on spreadsheets from
various sources.

5.1 Experimental setup

All spreadsheets used in the experiments are in CSV format and for each spreadsheet the tables
are specified. The tables were obtained by running the table extraction tool, AutoExtract.
Manual intervention of the simple automatic detection was needed only in the case of None

values (e.g. to merge split-up tables caused by the None’s) and in cases where the headers
are ambiguous (e.g. headers containing textual and numeric cells). In these cases the tables
specifications were generated using the VisualExtract tool.

Blocks are then detected automatically using the block detection algorithm, BlockDetect.
Manual intervention was required for tables that contain None values (e.g. if the type of
empty cells cannot be inferred).

All spreadsheets also have a set of ground-truth of constraints, we call these the intended

constraints, that are expected to be (re-)discovered. These were determined by us using either
the formulas of the original sheet if present, or inferring them based on, for example, the
header names in the sheet. Five spreadsheets contained rows or columns that were entirely
identical in which case results can be computed in multiple ways and there are multiple
valid constraints. For these spreadsheets, we used the original formulas when present and
otherwise inferred the intended constraints based on the headers and the location within
the sheet. However, some of the intended constraints are currently outside of the scope of
TaCLe, in particular nested mathematical or nested logical formulas. We denote by supported

constraints the subset of intended constraints that the system can find in theory.
In the following experiments, we focus on spreadsheets specifically and hence only include

functional constraints, constraints that can be expressed as formulas. Therefore, we filter out
the structural constraints ALLDIFFERENT, FOREIGNKEY, PERMUTATION and ASCEND-

ING in the output. All constraints are stored in their canonical form.
We will use recall and precision to measure how well our tool is performing. Recall

is the fraction of intended constraints actually discovered by the system: intended discovered
all intended ,

while precision is the fraction of constraints found by the system that are indeed intended:
intended discovered

all discovered .
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We include a no-CSP baseline to compare our approach to. This baseline follows a sim-
ilar approach as TaCLe, however, it does not prune input blocks in step 3a and generates
subassignments directly. Therefore, the signature is also only tested on the subassignment
level. While the modified approach still benefits from the reuse of earlier solutions, it does
not generate partial assignments for dependent constraint templates.

All experiments were run using Python 3.5.1 on a Macbook Pro, Intel Core i7 2.3 GHz
with 16 GB RAM. The constraint solver that is used by the input block assignment phase
(Step 3a) is python-constraint (Niemeyer).

5.2 Results on the running example

For the example presented in Fig. 1a, TaCLe takes a few seconds to find the constraints listed
in Fig. 1b. These include 5 spurious RANK constraints, e.g. T1[:, 1] = RANK(T1[:, 5]), that
are true by accident. Moreover, there is one LOOKUP constraint that was not intended in the
original spreadsheet (looking up ID based on Salesperson) and which is symmetric to the
intended one (Salesperson based on ID).

Hence, for this example we achieve a recall of 100%, that is, all intended constraints are
discovered, and a precision of 12/18 = 67%. All intended constraints are supported. The
recall is perfect, but the precision is rather low. This is mostly due to the spurious RANK
constraints. We note that the tables are quite short, which increases the chance of a constraint
like RANK to be true by chance; we expect less spurious constraints on larger datasets.

We now investigate three main questions that influence the quality of the solutions found
by a constraint learning method:

– Q1: the method may fail to find intended constraints if it takes too much time to find
them; what are the factors that influence the runtime of the method most?

– Q2: the method may fail to find intended constraints because it does not support such
constraints; how does our method perform on real spreadsheets?

– Q3: the method may find non-intended constraints; how many and what type of non-
intended constraints are found on real spreadsheets?

We first investigate Q1 on synthetic spreadsheets and investigate Q1, Q2 and Q3 on a col-
lection of real spreadsheets.

5.3 Effectiveness on synthetic data

In this section we investigate the factors that influence the runtime of TaCLe the most; we do
this by investigating the impact on the running time of 1) the number of vectors; 2) the length
of the vectors; and 3) the size of the blocks. This analysis is accomplished by testing our
system on synthetic spreadsheets. The timeout for all experiments was set to 200 seconds.

Spreadsheet generation The synthetic sheets should trigger the checking of many different
constraints, both in the first phase (input block assignment) and in the second phase (sub-
block assignment), in order to clearly study the effect on the constraint checking. As many
constraints require numeric or discrete data, we will use integers in the synthetic sheets as
these are both numeric and discrete.

We generate spreadsheets with random data. The result is that there are no intended
constraints in the data. This is reasonable, as even in real data most of the constraints will
not hold. Additionally, for vectors in random data the ALLDIFFERENT constraint is likely
to hold, which is a requirement for many other constraint templates.
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(a) (b)

(c) (d)

Fig. 3 Loglog plots of the experiments with synthetic (random) data. In plot a the number of vectors is
increased; in plot b the size of the vectors is increased; and in plots c and d the number of blocks is increased
(the block size is decreased). Missing values for the no-CSP baseline indicate that it timed out. a Number of
vectors. b Vector size. c Number of blocks (32 vectors). d Number of blocks (16 vectors)

The synthetic spreadsheets contain two tables, because a number of constraints require
that their arguments are picked from different tables. For one table the number of vectors and
block size is fixed to two, while for the other table these properties are varied according to
the experimental setup. The reported number of vectors and the block size in the experiments
refer to those of the second table. The length of the vectors can also be adapted and applies
to both tables, since equal length vectors are a required property of many constraints. Unless
otherwise mentioned, the ’adaptable’ table consists of one block of 8 vectors of length 8, and
hence 2 vectors of length 8 in the ’fixed’ table.

Effect of number of vectors Figure 3a shows the results of our experiments, in which TaCLe

was run on synthetic spreadsheets containing an increasing number of equally sized vectors.
As shown in the figure, the number of vectors in a spreadsheet can have a significant impact
on the running time. Moreover, TaCLe performs favorably to the no-CSP baseline whose
running time not only starts off slower but also grows faster.

The number of vectors is expected to impact the running times, especially when few input
block assignments can be discarded in the first phase. This occurs, for example, when most
vectors belong to the same block or all vectors have the same type and size as we artificially
enforced in this experiment. In this case, for a constraint template that requires n single vector
arguments and a spreadsheet with v vectors, up to v!

(v−n)!
subassignments are generated and

checked by the algorithm.
Typically, we expect the number of generated subassignments to be much smaller in real

world spreadsheets and, therefore, the running time to be less sensitive to the number of
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vectors. This is because in the first phase entire blocks can be disqualified that do not match
the signature requirements, e.g. blocks of vectors with different lengths.

Effect of length of vectors To measure the effect that the length of the vectors has on the
running time, we ran our system on spreadsheets in which the length of the vectors was
gradually increased. Figure 3b summarizes our results and shows that the length of the
vectors has a small impact on the performance for most templates. The no-CSP baseline
performs similarly, however, its runtime is higher by a large margin.

As discussed in Sect. 4.4.3, our implementation attempts to detect as fast as possible if a
subassignment does not satisfy a constraint template. Our experiments satisfy the assumption
that the large majority of possible subassignments do not satisfy most constraints. Therefore,
the results confirm that our implementation is able to severely limit the impact of the length
of vectors.

Most of the increase in running time can be attributed to the RANK constraint. The imple-
mentation is often not able to quickly detect that subassignments do not satisfy RANK,
meaning that it will have to analyze many if not all entries in the vector.

Effect of block size To measure the effect of changing the block size, the number of vectors
is set to 32 and the vectors are explicitly split into varying number of blocks/tables (up to
32). Figure 3c shows the running times of TaCLe for various settings. As the blocks become
smaller, the total running time first decreases before increasing again. Looking at the running
times for aggregate constraints and non-aggregate constraints separately reveals that they are
affected differently by the block size. For aggregate constraints (green line) the running time
decreases with the block size, while for non-aggregate constraints (red line) the running time
first stays more or less constant but then increases more strongly as the size of the blocks
becomes small.

Aggregate constraints, e.g. sum or max, have an argument that allows subblocks of vary-
ing sizes while non-aggregates only allow single vector arguments. Hence, for aggregate
constraints our method will try to find any subblock in the given input block that satisfies the
constraint. Since a input block of size m has m(m + 1)/2 contiguous subblocks, the search
for aggregate constraints becomes faster if there are more but smaller blocks.3

Non-aggregate constraints have only single vector arguments. By splitting a set of vectors
into many blocks, however, there will be a larger number of input blocks given as input to the
first phase. In the synthetic spreadsheets, the first phase, which looks at properties of input
blocks alone, can disqualify few or no input block assignments, leading to some increase in
runtime as more blocks are added.

In order to compare to the baseline, we had to lower the number of vectors from 32 to 16.
Figure 3d shows that here, too, our system performs better. Both approaches profit from lower
running times for aggregates and the no-CSP baseline can offset some of the slowdown as
the block size grows small.

These experiments with synthetic data have given us a better understanding of what effect
the properties of vectors and blocks can have on runtime and hence on the ability of the
algorithm to finish within reasonable time. We next investigate the behavior of our method
on real spreadsheets.

3 Consider, for example, v vectors distributed over b blocks of size v/b, the number of subblock candidates
then is O(b ∗ v2/b2) = O(v2/b).
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Table 3 Summary of properties and results per spreadsheet category

Exercises (9) Tutorials (21) Data (4)

Overall Sheet avg. Overall Sheet avg. Overall Sheet avg.

Tables 19 2.11 48 2.29 4 1

Cells 1231 137 1889 90 2320 580

Intended constraints 34 3.78 52 2.48 6 1.50

Recall (all) 0.88 0.85 0.88 0.87 1.00 1.00

Recall (supported) 1.00 1.00 1.00 1.00 1.00 1.00

Precision 0.94 0.96 0.69 0.90 1.00 1.00

Runtime TaCLe 0.91 0.10 0.87 0.04 0.79 0.20

Runtime no-CSP baseline 58.36 6.48 36.84 1.75 19.73 4.93

5.4 Effectiveness on real spreadsheets

In order to test our approach on real data we assembled a benchmark of spreadsheets from
three sources: (1) spreadsheets from an exercise session for teaching Excel at the Brus-
sels Business School based on the book (Van den Broeck and Cuypers 2011), covering the
most popular Excel formulas; (2) spreadsheets from online tutorials on Excel formulas; and
(3) publicly available data spreadsheets such as real-world crime statistics (FBI:UCR) or
financial reports (US BEA). The data and its extended description are available in “Appendix
1” in Table 4 and at the same repository as before with the links to all original publicly
available spreadsheets used in the experiments.

Table 3 gives an overview of the spreadsheets in the different categories and summarizes
the results of our experiments. The data is also visualized in Fig. 4.
Q1: Effectiveness Our first question, Q1, is about the inability to find intended constraints
due to excessive runtime. As Table 3 (last row) shows, the runtime of our method on these
spreadsheets is always fast. The average runtime across all spreadsheets is 0.08s. Across
categories the average running times fluctuate in the range between 0.04s to 0.20s. While
most spreadsheets can be processed very quickly, running times can go up to around 0.61s for
others. In the previous section we analyzed the effect of various factors that can help explain
runtime behavior on data generated to allow many candidate subassignments (e.g. using only
vectors of the same type and length). Our benchmark experiments show that our algorithm
is able to perform well on real spreadsheets, even for larger numbers of vectors. Moreover,
these experiments validate our two-step approach, since TaCLe is able to find constraints 20
to 60 times faster than the no-CSP baseline.

Looking at the runtime per constraint template individually, the slowest by far is fuzzy
lookup using ±21% of the running time. It is followed by product (±7%), relative difference
(±6%), running total (±5%), difference (±5%) and various row-aggregates (±5%).

Dependencies are optional and do not affect precision or recall. However, our method
can exploit dependencies in order to find constraints incrementally and increase the sys-
tems efficiency. To illustrate the effect this can have, we ran the benchmarks without using
ASCENDING as base constraint for fuzzy lookup. The total running times per category
increase by 74% (exercises), 84% (tutorials) and 13% (data). This shows that the use of
dependencies can have a strong effect on running times by reducing the number of candidate
assignments for depending constraints and sharing the computation and pruning done for
one constraint with another.
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Fig. 4 This figure visualizes the data from Table 3, i.e., the average properties and performance of spreadsheets
within every benchmark category. Values are scaled relatively to the maximum value across all individual

spreadsheets. Green bars indicate standard deviation within the category (Color figure online)

Q2: Intended and supported constraints The overall recall achieved by our system, TaCLe,
is 0.88 (81/92). When looking at the recall per category, TaCLe is able to consistently obtain
high values for both overall and average recall, as shown in Table 3. The intended constraints
not discovered correspond to constraints that are not supported by the system, hence the
supported recall is 1. Therefore, TaCLe is able to find all constraints for supported constraint
templates, which shows that our method is able to learn all constraints using the bias chosen,
that is, the formalism of signature and definition.

The intended constraints that are not discovered correspond with nested constraints (e.g.,
R = W

(L/100)2 ), variants of supported constraints (e.g., series that do not start at 1) or more
complex versions of supported constraints (e.g. conditional aggregates whose conditions are
constant values).
Q3: Precision The final question, Q3, is about the amount and type of non-intended con-
straints found. Across all spreadsheets TaCLe achieves a precision of 0.79 (81/103). While
the average precision per spreadsheet is high, over 0.90 in every category, we observe that
the overall precision is much higher for the exercises and data categories (0.94 and 1.00)
than for the tutorials category (0.69).

Examining the tutorial spreadsheets confirms that there are a few spreadsheets that have a
high number of additional constraints, e.g., one spreadsheet computes aggregates on inventory
data, but copies the data column for every aggregate. Since every aggregate can be calculated
based on any of the equal columns, our method will find all of these constraints. However, for
every aggregate only one constraint is considered to be intended, the others will be considered
as redundant and decrease the precision.

Such redundant or unintended constraints are the result of multiple ways to calculate the
same result, e.g., if there is duplicate data as in the example above. One way to increase pre-
cision for this case is to post-process the constraints to detect equivalences and implications,
and heuristically select one among multiple ways to compute the same vector.

6 Applications

In this section, we illustrate how two of the motivating applications, auto-completion and
error checking, can build on our method for solving the tabular constraint learning problem.
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Fig. 5 Auto-completion works by learning constraint on a snapshot (green tables T1 and T2) and combining
those constraints with new data ΔD (purple). For example, in this figure a user types a new value West. The
system can then suggest values (blue) for the other cells in that row (Color figure online)

6.1 Auto-completion

Auto-completion can be seen as using knowledge derived from the current data to predict
new values before they are written by the user. We can decompose this process into three
phases: (1) learn constraints on a snapshot of the spreadsheet; (2) new data (ΔD) is added
by the user; and (3) the system uses the learned constraints to predict missing values.

Step 1 corresponds to running TaCLe on the snapshot to discover constraints in the spread-
sheet. In step 2, the user extends one or more vectors in the spreadsheet with new values.
These extended vectors now stretch beyond the original table they are situated in. Therefore,
the remaining vectors and blocks in the same table are marked as incomplete, indicating they
are missing some values required to complete the table. Finally, in step 3, functional con-
straints discovered in step 1, are used to predict missing values. A functional constraint, such
as Br = SU Mcol(Bx), calculates a result (Br ) based on its input (Bx). Hence, a functional
constraint can predict missing values if the result block is incomplete and none of the input
blocks is incomplete.

Let us illustrate this application on the two-table spreadsheet shown in Fig. 5. First, we
run TaCLe on tables T1 and T2 (in green) and discover the constraints T2[:, 2] = SUMIF(T1[:

, 2], T2[:, 1], T1[:, 3]) and T2[:, 3] = SUMIF(T1[:, 2], T2[:, 1], T1[:, 4]). Afterwards, vec-
tor T2[:, 1] is extended with a new value West and vectors T2[:, 2] and T2[:, 3] are marked
as incomplete. Finally, the SUMIF constraints are used to complete their incomplete result
blocks, suggesting T2[4, 2] = 1547 and T2[4, 3] = 428128.

In an interactive setting, auto-completion can be performed whenever new values are
entered, however, to update the learned constraints, TaCLe would need to consider only
assignments containing modified vectors.

6.2 Error detection

We discuss two cases of error detection. The first setting is the online detection of errors and
is similar to the auto-completion setting. Constraints are learned on a snapshot before new
data is added. Functional constraints whose result block was modified are checked on the
new data. If such a constraint does not hold anymore, it could indicate errors such as typing
errors in the data just entered. For example, filling in T2[4, 2] = 1572 in Fig. 5 would violate
the corresponding SUMIF constraint and likely indicate an error.

The second setting is offline error detection, that is, on a given file. First, TaCLe is run
to detect all constraints (S) in the given spreadsheet. Then, from this spreadsheet, one can
repeatedly remove one or multiple rows or columns (v) and detect all constraints (Sv) that
hold in the modified spreadsheet. Every constraint in Sv that did not occur in S is violated
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by a value in the rows or columns v that were removed. Therefore, values in the rows or
columns v that occur in such a violated constraint can be marked as potential errors to be
reviewed by a user. This approach allows constraint discovery to be treated as a black-box,
however, it requires a scheme for choosing which row(s) or column(s) are removed.

Alternatively, we propose to extend current constraint definitions to tolerate up to a given
number of wrong values and report these. This approach would be more robust, however, it
requires definition tests to be able to deal with wrong values.

7 Conclusions

Our goal is to automatically identify constraints in a spreadsheet. We have presented and
evaluated our approach, implemented as the system TaCLe, that is able to learn many dif-
ferent constraints in tabular data. The resulting method has high recall, produces a limited
number of redundant constraints and is sufficiently efficient for normal and interactive use.
Our approach also allows new constraint templates to be easily added by specifying their
signature in terms of properties and providing an implementation that finds subassignments
satisfying the definition.

The approach is designed to find constraints that hold over entire columns and rows. In
future work we plan to extend this to learn arbitrary nested constraints (e.g. B4 = (B1 +

B2)/B3), as well as constraints over only a subset of the vectors. This may give rise to more
redundant and spurious constraints, which was not problematic up to this point.

Two promising ways to mitigate redundant and spurious constraints are heuristic filtering
or post-processing of the constraint set and the integration of our approach in an interactive
setting where users can receive and provide feedback. The latter is more similar to an active
learning setting.

A final direction is that the current approach assumes consistent (noise-free) data, typi-
cally generated by some external system. We do support the detection of limited precision
calculations as this is a type of noise generated by exporting data. Also, our approach can be
used for error correction in case some noise/errors are assumed. However, in inductive logic
programming there has been much work on how to handle constraints over noisy data such
as allowing a tolerance level ǫ when a rule or a constraint

∑n
i=1 bi = c matches up to ǫ:

|
∑n

i=1 bi − c| ≤ ǫ, while in constraint satisfaction a popular alternative is to consider soft

constraints that can be violated at a cost, which is a real value, and then the task is to find
the top-k best matching constraints. Threshold bounded error tolerance can be supported by
adapting constraint definitions to allow such noise. This could extend the approach to new
application domains, beyond traditional spreadsheets.

Acknowledgements This work has been partially funded by the ERC AdG SYNTH (Synthesising inductive
data models) and a PhD and Postdoctoral Fellowship of the Research Foundation—Flanders.

Appendix 1: Spreadsheet dataset overview

We collected spreadsheets from three main sources.

– After identifying popular Excel functions, the MS Office web page has an overview of
popular functions (see the link in Sect. 4.4.3), we searched for online tutorials about
these functions and collected them under the category Tutorials. A link to each webpage
found and used is provided in the accompanying GitHub repository.

123



1466 Mach Learn (2017) 106:1441–1468

Table 4 Constraint occurrence
in the collected dataset in
absolute values by category

Constraint Exercises Data Tutorials

Average (col) 0 0 2

Average (row) 0 1 0

Average-if 1 0 0

Count (col) 0 0 1

Count-if 1 0 0

Difference 2 1 0

Equal 0 0 10

Foreign-product 1 0 0

Fuzzy-lookup 2 0 1

Lookup 1 0 0

Max (col) 0 0 2

Max-if 1 0 0

Min (col) 0 0 3

min-if 1 0 0

Percentual-diff 5 1 0

Product 2 0 3

Project 1 0 0

Rank 1 0 0

Series 2 1 0

Sum (col) 5 0 10

Sum (row) 2 2 3

Sum-if 2 0 9

Sum-product 0 0 2

– We have collected the exercises under the category Exercises from the introductory Excel
book (Van den Broeck and Cuypers 2011) that focused 1) on popular Excel functions
and 2) on datatypes supported by our system.

– We have collected under the category Data spreadsheets reporting data. More specif-
ically, economic data, crime reporting data and data from runtime experiments. The
spreadsheets on economic data and crime reporting are publicly available and originate
from the U.S. Bureau of Economic Analysis (BEA), the RWE annual report 2014 and
the U.S. FBI Uniform Crime Reporting (UCR) Program. The links are also provided in
the accompanying GitHub repository) and data summary spreadsheets.

The overview of constraint distributions per category is presented in Table 4.
The file links.txt, available in the accompanying GitHub repository, contains the links to

all original publicly available spreadsheets used in the experiments.

Appendix 2: Examples of learned constraints

This section provides examples of actual constraints learned by TaCLe on real spreadsheets
from our benchmark dataset. Figure 6 shows constraints learned on a dataset containing
conditional aggregates. In Fig. 7 a dataset is used that contains arithmetic constraints. More
examples and screenshots can be found in the accompanying GitHub repository: https://
github.com/SergeyParamonov/TaCLe.
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Fig. 6 This screenshots shows the five constraints learned from a spreadsheet containing conditional aggre-
gates. The first table extends below the depicted area. (Translated spreadsheet from exercises (Van den Broeck
and Cuypers 2011), originally in Dutch.)

Fig. 7 This screenshot shows the six constraints learned on a spreadsheet containing arithmetic constraints:
sum and relative difference. (Translated spreadsheet from exercises (Van den Broeck and Cuypers 2011),
originally in Dutch.)
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