
Learning Contact-Rich Manipulation Skills with Guided Policy Search

Sergey Levine, Nolan Wagener, Pieter Abbeel

Abstract— Autonomous learning of object manipulation skills
can enable robots to acquire rich behavioral repertoires that
scale to the variety of objects found in the real world. However,
current motion skill learning methods typically restrict the
behavior to a compact, low-dimensional representation, limiting
its expressiveness and generality. In this paper, we extend a
recently developed policy search method [1] and use it to learn
a range of dynamic manipulation behaviors with highly general
policy representations, without using known models or example
demonstrations. Our approach learns a set of trajectories for
the desired motion skill by using iteratively refitted time-varying
linear models, and then unifies these trajectories into a single
control policy that can generalize to new situations. To enable
this method to run on a real robot, we introduce several
improvements that reduce the sample count and automate
parameter selection. We show that our method can acquire
fast, fluent behaviors after only minutes of interaction time,
and can learn robust controllers for complex tasks, including
putting together a toy airplane, stacking tight-fitting lego blocks,
placing wooden rings onto tight-fitting pegs, inserting a shoe
tree into a shoe, and screwing bottle caps onto bottles.

I. INTRODUCTION

Autonomous acquisition of manipulation skills has the po-

tential to dramatically improve both the ease of deployment

of robotic platforms, in domains ranging from manufacturing

to household robotics, and the fluency and speed of the

robot’s motion. It is often much easier to specify what a

robot should do, by means of a compact cost function, than

how it should do it, and manipulation skills that are learned

from real-world experience can leverage the real dynamics of

the robot and its environment to accomplish the task faster

and more efficiently. For tasks with a significant force or

dynamics component, such as inserting a tight-fitting part in

an assembly task, standard kinematic methods either require

very high precision or fail altogether, while methods that

learn from real-world interaction could in principle navigate

the complex dynamics of the task without prior knowledge

of the object’s physical properties.

Although significant progress has been made in this area

in recent years [2], [3], learning robot motion skills remains a

major challenge. Policy search is often the method of choice

due to its ability to scale gracefully with system dimensional-

ity [3], but successful applications of policy search typically

rely on using a compact, low-dimensional representation

that exposes a small number of parameters for learning [4],

[5], [6], [7], [8], [9]. Substantial improvements on real-

world systems have come from specialized and innovative

policy classes [10], and designing the right low-dimensional

representation often poses a significant challenge.

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709

Fig. 1: PR2 learning to attach the wheels of a toy airplane.

In this paper, we show that a range of motion skills

can be learned using only general-purpose policy repre-

sentations. We use our recently developed policy search

algorithm [1], which combines a sample-efficient method for

learning linear-Gaussian controllers with the framework of

guided policy search, which allows multiple linear-Gaussian

controllers (trained, for example, from several initial states,

or under different conditions) to be used to train a single

nonlinear policy with any parameterization, including com-

plex, high-dimensional policies represented by large neural

networks. This policy can then generalize to a wider range

of conditions than the individual linear-Gaussian controllers.

We present several modifications to this method that

make it practical for deployment on a robotic platform.

We introduce an adaptive sample count adjustment scheme

that minimizes the amount of required system interaction

time, and we develop a step size adaptation method that

allows our algorithm to learn more aggressively in easier

stages of the task, further reducing the number of real-

world samples. To handle the resulting scarcity of training

data in the guided policy search procedure, we also propose

a method for augmenting the training set for the high-

dimensional nonlinear policy using synthetic samples, and

show that this approach can learn complex neural network

policies from a small number of real-world trials. Finally, we

propose a general framework for specifying cost functions

for a broad class of manipulation skills, which is used in all

of our experiments. Our experimental results include putting

together a toy airplane (Figure 1), stacking tight-fitting lego

blocks, placing wooden rings onto tight-fitting pegs, inserting

a shoe tree into a shoe, and screwing bottle caps onto bottles.

II. RELATED WORK

Direct policy search is a promising technique for learning

robotic motion skills, due to its ability to scale to high-

dimensional, continuous systems. Policy search has been

used to train controllers for games such as ball-in-cup and

table tennis [11], manipulation [9], [12], and robotic locomo-

tion [4], [5], [6], [7]. While contact-rich manipulation tasks

such as the ones considered in this work are less common,

several prior methods have addressed opening doors and

picking up objects [13], as well as using force sensors

during manipulation [14]. Other reinforcement learning tech-

niques, such as dynamic programming and temporal differ-

ence learning, have also been employed, though the curse

of dimensionality has typically prevented them from being

used to directly control high-dimensional articulated robots.

An overview of recent reinforcement learning methods in

robotics can be found in a recent survey paper [2].

Previous policy search methods in robotics generally use

one or more of the following techniques to achieve good

performance and reasonable training times: the use of ex-

ample demonstrations [15], [9], [16], the use of a prior

controller that allows the policy to only set high level targets,

such as kinematic end-effector motion [9], and the use

of carefully designed policy classes that ensure that most

parameter settings produce reasonable behavior [4], [5], [6],

[7]. In contrast, our method learns general-purpose time-

varying linear-Gaussian controllers, which can represent any

Gaussian trajectory distribution and contain thousands of

parameters. These controllers can further be used within

the framework of guided policy search to learn a policy

with any parameterization, including high-dimensional poli-

cies such as large neural networks. Although a number of

methods have been used to train neural network policies

[17], [18], prior applications have required large amounts

of training time and have been restricted either to low-

dimensional systems or to high-level control. We show that

our approach can quickly train neural networks with over

4000 parameters for a variety of complex manipulation tasks,

directly controlling the torques at every joint of a 7 DoF

manipulator arm. Furthermore, although our method could

easily be initialized with demonstrations, we show in our

experiments that it can quickly learn manipulation behaviors

completely from scratch, simultaneously discovering how to

actuate the robot’s joints and how to accomplish the task.

Our algorithm is based on our recent work on learning

policies with trajectory optimization under unknown dynam-

ics [1], which has been shown to learn complex policies

under unknown system dynamics even with a modest amount

of system interaction time. Previous guided policy search

algorithms have also focused on leveraging known models

of the environment [19], [20], [21] and more sophisticated

trajectory optimization algorithms [22]. Our linear-Gaussian

controller representation is related to other trajectory-centric

representations in policy search, such as dynamic movement

primitives (DMPs) [10]. However, while DMPs are primarily

kinematic, linear-Gaussian controllers explicitly encode a

distribution over actions (torques) in terms of the robot’s

state at each time step. Optimization of these linear-Gaussian

controllers can be viewed as accomplishing a similar task

to iterative learning control (ILC), though ILC optimizes a

controller for following a known trajectory [23], while our

approach also discovers the trajectory itself. In this light,

the guided policy search (GPS) component of our method

can be viewed as leveraging the strengths of trajectory-

centric controller optimization to learn a more complex

policy that can generalize to new situations. Simply using

a set of trajectories as a training set for supervised learning

is however insufficient [24]. Instead, GPS iteratively adapts

the trajectories to match the policy, eventually bringing their

state distributions into agreement.

III. OVERVIEW

We formulate robotic motion skill learning as policy

search, where the aim is to find a good setting of the param-

eters θ for a policy πθ(ut|xt), which specifies a probability

distribution over actions at each time step, conditioned on the

state. In a robotic system, the actions might be joint torques,

and the state might correspond to the configuration of the

robot (joint angles and velocities) and the environment (e.g.

the position of a target object). The policy parameters are

optimized with respect to the expected cost of the policy,

given by Eπθ
[
∑T

t=1 ℓ(xt,ut)]. The expectation is taken

under the policy’s trajectory distribution p(τ), which consists

of the policy πθ(ut|xt) and the dynamics p(xt+1|xt,ut). We

abbreviate this expectation as Eπθ
[ℓ(τ)] for convenience.

Our method consists of two parts: an algorithm that

trains time-varying linear-Gaussian controllers of the form

p(ut|xt) = N (Ktxt + kt,Ct), which can be thought of as

optimizing a trajectory together with stabilizing feedbacks

Kt, and a guided policy search component that combines

one or more such time-varying linear-Gaussian controllers to

learn a nonlinear policy with an arbitrary parameterization.

For clarity, we will reserve the term policy and the symbol

πθ for this final, nonlinear policy, while the linear-Gaussian

policy will be referred to as a controller, denoted by p.

The advantage of this approach over directly learning πθ

is that the optimization of the linear-Gaussian controllers can

exploit their special structure to learn very quickly with only

a small amount of system interaction, while the nonlinear

policy is optimized with supervised learning to match the

linear-Gaussian controllers, alleviating many of the chal-

lenges associated with learning complex, high-dimensional

policies in standard reinforcement learning methods.

Both the linear-Gaussian controller and the nonlinear pol-

icy are highly general representations. The linear-Gaussian

controller can represent any trajectory, and by including

additional variables in the state (such as the vector to the

target in a reaching task), it can perform feedback on a rich

set of features. As we show in Section VII-A, the linear-

Gaussian controller alone can be sufficient for a range of

tasks, and provides good robustness to small perturbations.

When the initial conditions can vary drastically, using multi-

ple linear-Gaussian controllers to train a complex nonlinear

policy, represented, for instance, by a large neural network,

can provide sufficient generalization to succeed in new,

previously unseen situations, as shown in Section VII-B. This

representation is even more general and, with enough hidden

units, can capture any stationary policy.

IV. TRAJECTORY OPTIMIZATION UNDER UNKNOWN

DYNAMICS

Policy search methods can be divided into model-based

methods, which learn a model of the system and optimize

the policy under this model [3], and model-free methods,

which improve the policy directly, for example by estimating

its gradient using samples [8]. Model-based methods must

learn a global model of the system, which can be extremely

challenging for complex manipulation tasks, while model-

free methods tend to require a large amount of interaction

time. To optimize the linear-Gaussian controllers p(ut|xt),
we employ a hybrid approach that learns local models around

the current trajectory, combining the flexibility of model-

free techniques with the efficiency of model-based methods.

While prior policy search methods have been proposed that

leverage locally linear models (see, e.g., [25]), the LQR-

based update discussed in this section has been previously

shown to achieve substantially better sample efficiency on

challenging, contact-rich problems [1].

We use the samples collected under the last controller to

fit time-varying linear-Gaussian dynamics p(xt+1|xt,ut) =
N (fxtxt + futut,Ft), and then solve a variant of the

linear-quadratic-Gaussian (LQG) problem to find a new

controller p(ut|xt) that is optimal under this model, subject

to the constraint that its trajectory distribution p(τ) =
∏

t p(xt+1|xt,ut)p(ut|xt) deviates from the previous one

p̂(τ) by a bounded amount. This bound ensures that the

linear model remains mostly valid for the new controller. The

derivation in Sections IV-A and IV-B follows our prior work

[1], and we discuss some novel improvements Section IV-C.

A. KL-Divergence Constrained LQG

In the LQG setting, the optimal feedback controller can be

computed by a backward dynamic programming algorithm

that computes the Q-function and value function at each time

step, starting at the end of the trajectory. These functions are

quadratic, and are given by the following recurrence:

Qxu,xut = ℓxu,xut + fT
xutVx,xt+1fxut

Qxut = ℓxut + fT
xutVxt+1

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,x

Vxt = Qxt −QT
u,xtQ

−1
u,utQut.

Subscripts denote derivatives: ℓxut is the derivative of the

cost at time t with respect to (xt,ut)
T, ℓxu,xut is the Hes-

sian, and so forth. The optimal controller is given by g(xt) =
ût + kt + Kt(xt − x̂t), where Kt = −Q−1

u,utQu,xt and

kt = −Q−1
u,utQut. We can also show that the linear-Gaussian

controller p(ut|xt) = N (ūt + kt +Kt(xt − x̂t), Q
−1
u,ut) is

the optimal solution to the maximum entropy objective

minEp[ℓ(τ)] − H(p(τ)), where the usual minimum cost is

augmented with an entropy maximization term [19].

To update the linear-Gaussian controller p(ut|xt) without

deviating too far from the previous trajectory distribution

p̄(τ), we must optimize a constrained objective, given by

min
p(τ)∈N (τ)

Ep[ℓ(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ǫ.

This type of policy update has previously been proposed

by several authors in the context of policy search [26], [8],

[27]. However, the special structure of the linear-Gaussian

controller and dynamics admits a particularly simple solution

in our case. The Lagrangian of this problem is

Ltraj(p, η) = Ep[ℓ(τ)] + η[DKL(p(τ)‖p̂(τ))− ǫ] =
[

∑

t

Ep(xt,ut)[ℓ(xt,ut)−η log p̂(ut|xt)]

]

−ηH(p(τ))−ηǫ,

where the simplification results from assuming that the two

distributions share the same dynamics. This Lagrangian has

the same form as the maximum entropy objective when the

cost is set to ℓ̃(xt,ut) =
1
η
ℓ(xt,ut)− log p̂(ut|xt). There-

fore, we can minimize it with respect to the primal variables

(the parameters of p(ut|xt)) by solving the LQG problem

under the modified cost ℓ̃. The dual variable η is obtained

with dual gradient descent (DGD) [28], by repeatedly solving

the LQG problem and updating η by the amount of constraint

violation. A bracket line search on η can reduce the required

number of DGD iterations to only 3 to 5.

Unfortunately, the sample complexity of fitting the linear

dynamics scales with the dimensionality of the system. In the

following sections, we discuss several improvements that can

greatly reduce the required number of samples, making the

method practical for real robotic systems.

B. Background Dynamics Distributions

For high-dimensional systems, gathering enough samples

to fit the linear dynamics can result in very long training

times. We can greatly reduce the required number of samples

by using a simple insight: the dynamics at nearby time steps

and prior iterations are strongly correlated with the dynamics

at a particular time in the current iteration. We can therefore

use all of these additional dynamics samples to construct a

prior for fitting N (fxtxt + futut,Ft) at each step t.
A good choice for this prior is a Gaussian mixture model

(GMM). As discussed in prior work [29], GMMs are well

suited for modeling piecewise linear dynamics, which are a

good approximation for articulated systems (such as robots)

that contact objects in the environment. We build a GMM at

each iteration from points (xt,ut,xt+1)
T, gathered from all

steps at the current iteration and several prior iterations. In

each cluster ci, the conditional distribution ci(xt+1|xt,ut)
is a linear-Gaussian dynamics model, while the marginal

ci(xt,ut) is the region where this model is valid.

To use the GMM as a prior on the linear dynamics, we find

the average cluster weights of the samples at each step and

compute their weighted mean and covariance. This mean and

covariance then serves as an normal-inverse-Wishart prior

for fitting a Gaussian to (xt,ut,xt+1)
T at step t, and the

dynamics are obtained by conditioning on (xt,ut)
T.

We previously found that this GMM allows us to take

many fewer samples than there are state dimensions [1]. In

this work, we reduce the number of samples even further by

using an adaptive sample count adjustment scheme, and we

reduce the number of iterations (and therefore total samples)

by adaptively inreasing the step size ǫ, as described below.

C. Adaptive Adjustment of Step Size and Sample Count

The limit ǫ on the KL-divergence between the new and

old trajectory distributions acts as a step size: large values

can speed up learning, but at the risk of taking steps that

are too large and do not improve the objective. In our prior

work, we heuristically decreased ǫ when the method failed

to improve the objective [1]. Here, we introduce a more

sophisticated step size adjustment method that both increases

and decreases the step size, by explicitly modeling the

additional cost at each iteration due to unmodeled changes

in the dynamics. In our experiments, we found that this

scheme removed the need to manually tune the step size,

and achieved significantly faster overall learning.

After taking samples from the current controller and fitting

its dynamics, we estimate the step size ǫ that would have

been optimal at the previous iteration by comparing the

expected decrease in cost under the previous dynamics to the

actual cost under the current ones. Let ℓk−1
k−1 denote the cost

under the previous dynamics and previous controller, ℓkk−1

under the previous dynamics and current controller, and ℓkk
under the current dynamics and controller. We assume that

the improvement in cost is linear in ǫ and the additional cost

due to unmodeled changes in the dynamics is quadratic:

ℓkk − ℓk−1
k−1 = aǫ2 + bǫ,

where a is the additional cost due to unmodeled changes in

the dynamics and b = (ℓkk−1−ℓk−1
k−1)/ǫ is the expected linear

improvement rate. Since we know all values except a, we

can solve for a. To pick a new step size ǫ′, we use the step

size that would have been optimal at the previous iteration

based on the known values of a and b:

ǫ′ = −
b

2a
=

1

2
ǫ(ℓkk−1 − ℓk−1

k−1)/(ℓ
k
k−1 − ℓkk).

To compute ℓk−1
k−1, ℓkk−1, and ℓkk, we note that under linear dy-

namics, the marginals p(xt,ut) are Gaussian (see e.g. [20]),

and we can evaluate Ep[ℓ(τ)] =
∑T

t=1 Ep(xt,ut)[ℓ(xt,ut)]
analytically when using a local quadratic expansion of the

cost. This also justifies our assumption that cost change

is linear in the KL-divergence, since the KL-divergence is

quadratic in the mean and linear in the covariance, as is the

expectation of the quadratic cost.

In addition to automatically setting the step size, we can

also use the estimated expected cost to adjust the number of

samples to take at the next iteration. We employ a simple

heuristic that compares the prediction of the expected cost

under the estimated dynamics with the Monte Carlo estimate

obtained by averaging the actual cost of the samples. The

intuition is that, if there are too few samples to accurately

estimate the dynamics, the expected cost under these dynam-

ics will differ from the Monte Carlo estimate. We increase

the sample count by one if the analytic estimate falls more

than one standard deviation outside of the Monte Carlo mean,

and decrease it if it falls within half a standard deviation.

V. GENERAL PARAMETERIZED POLICIES

While the approach in the previous section can solve a

range of tasks, as shown in Section VII-A, it only provides

robustness against small variations in the initial conditions.

This is not a problem in some cases, such as when the

robot is already gripping both of the objects that it must

manipulate (and therefore can position them in the correct

initial state), but we often want to learn policies that can

generalize to many initial states. Previous work has addressed

this by explicitly defining the policies in terms of object

positions, effectively hard-coding how generalization should

be done [9]. We instead train the policy on multiple initial

conditions. For example, to attach one lego block to another

at any location, we might train on four different locations.

A. Guided Policy Search

Simple linear-Gaussian controllers typically cannot handle

such variation, so we must train a more expressive parame-

terized policy. Policies with high-dimensional parameteriza-

tions are known to be a major challenge for policy search

techniques [3], but we can still leverage the linear-Gaussian

method from the preceding section by using the framework

of guided policy search (GPS) [19], [20], [21]. With GPS,

the final policy is not trained directly with reinforcement

learning. Instead, a set of trajectories are optimized, using

for example the method in the previous section, and samples

from these trajectories are used as the training set for

supervised training of the policy. Since supervised learning

can reliably optimize function approximators with thousands

of parameters, we can use GPS with very rich policy classes.

Training policies with supervised learning is not guaran-

teed to improve their expected cost, since the state distribu-

tion of the training set does not match that of the policy [24].

In the constrained guided policy search algorithm, which we

use in this work, this is addressed by reoptimizing the trajec-

tories to better match the current policy, such that their state

distributions match at convergence [21]. This approach aims

to solve the following constrained optimization problem:

min
θ,p(τ)

Ep(τ)[ℓ(τ)] s.t. DKL(p(xt)πθ(ut|xt)‖p(xt,ut)) = 0 ∀t,

where p(τ) is a trajectory distribution, and πθ is the parame-

terized policy.1 When the constraint is satisfied, πθ and p(τ)
have the same state distribution, making supervised learning

a suitable way to train the policy. The constrained problem is

solved by relaxing the constraint and applying dual gradient

descent (note that this instance of DGD is not related to the

use of DGD in the preceding section). The Lagrangian is

LGPS(θ, p, λ) =

Ep(τ)[ℓ(τ)] +
T
∑

t=1

λtDKL(p(xt)πθ(ut|xt)‖p(xt,ut)).

As is usual with DGD, we alternate between optimizing

the Lagrangian with respect to the primal variables (the

trajectory distributions and policy parameters), and taking

a subgradient step on the dual variables λt. The primal

1In the case of multiple training conditions (e.g. target positions), each
with their own separate trajectory p(τ), the constraint and objective are
replicated for each trajectory, and the policy is shared between all of them.

Algorithm 1 Guided policy search with unknown dynamics

1: for iteration k = 1 to K do

2: Generate samples {τ ji } from each linear Gaussian

controller pi(τ) by running it on the robot

3: Minimize
∑

i,tλi,tDKL(pi(xt)πθ(ut|xt)‖pi(xt,ut))

with respect to θ using samples {τ ji }
4: Update pi(ut|xt) using the LQG-like method

5: Increment each of the dual variables λi,t by

αDKL(pi(xt)πθ(ut|xt)‖pi(xt,ut))
6: end for

7: return optimized policy parameters θ

optimization is itself done in alternating fashion, alternating

between the policy and the trajectories. The policy optimiza-

tion corresponds to supervised learning, weighted by the Q-

function of the trajectories, and the trajectory optimization is

performed as described in the preceding section. The policy

KL-divergence term in the trajectory objective requires a

slightly different dynamic programming pass, which is de-

scribed in prior work [21], [1]. The alternating optimization

is done for only a few iterations before each dual variable

update, rather than to convergence, which greatly speeds up

the method. Pseudocode is provided in Algorithm 1.

B. Augmenting Policy Training with Synthetic Samples

We previously discussed a number of improvements that

allow us to reduce the number of samples during training.

However, one effect of using so few samples is that the

training set for the nonlinear policy becomes very small,

causing the policy to overfit to the current samples.

We alleviate this issue by artificially augmenting the

training set for the policy with synthetic samples. Since

the policy is simply trained on pairs of states and actions,

where the states are drawn from the state distribution of each

trajectory distribution, there is no need to get these samples

from the real system. We can form the state marginals p(xt)
as described in Section IV-C, sample the desired number

of states, and compute the mean action at each state under

the linear-Gaussian controller. In this way, we can construct

an unlimited training set. In practice, we generate 50 such

synthetic samples from each trajectory at each time step.

VI. DEFINING OBJECTIVES FOR ROBOTIC

MANIPULATION

As with all policy search methods, we require the desired

task to be defined by a cost function ℓ(xt,ut). In practice,

the cost function both defines the task, and provides general

guidance about the directions in state space that improve task

performance (this is sometimes referred to as cost shaping).

Choosing a good cost is important for minimizing system in-

teraction time, but it is also important to design the cost such

that it does not require manual engineering or tuning for each

behavior. We propose a general approach for constructing

cost functions for manipulation tasks that involve positioning

a grasped object, either in space or in relation to another

object. This task comes up often in industrial and household

robotics, and includes assembly (placing a part into its

intended slot), working with electronic devices (inserting a

plug into a socket), and various other tasks. Note that the

object is usually not positioned in free space, and placing it

into the right configuration often involves a complex dynamic

operation with numerous frictional contacts.

We define our cost in terms of the desired position of

several points on the object. The easiest way to define these

positions is to manually position the object as desired. In our

experiments, we positioned the robot’s gripper over the ob-

ject to determine its location, though any vision system (such

as Kinect-based point cloud registration) could also perform

this step. Note that we do not require a demonstration of how

the robot should perform the task, only of the final position

of the object, which can be positioned by a human user. For

more complex tasks, such as the shoe tree described in the

next section, we can also specify an intermediate waypoint

to go around obstacles. On the bottle cap tasks, we added a

term to encourage the wrist to spin at a set rate, encoding

the prior knowledge that the cap should turn.

At each time step, the cost depends on the distance

between the points on the object pt (where all points are

concatenated into a single vector), and the points at the target

location p⋆, and is given by some penalty rℓ(‖pt − p⋆
t ‖).

The shape of rℓ has a large effect on the final behavior. The

quadratic penalty rℓ(d) = d2 is generally inadequate, since it

does not sufficiently penalize small errors in position, while

the tasks typically require very precise positioning: when

assembling a plastic toy, it is not enough to throw the parts

together, they must properly slot into the correct fittings. We

therefore employ a more complex penalty function given by

the following equation:

rℓ(d) = wd2 + v log(d2 + α).

-0.05 0 0.05
-6

-5

-4

-3

-2The squared distance term encourages

the controller to quickly get the ob-

ject in the vicinity of the target, while

the second term (sometimes called the

Lorentzian ρ-function) has a concave

shape that encourages precise place-

ment at the target position. An illustration of this function

is shown above. The depth of the “funnel” and the width

of its floor are determined by α, while w and v trade off

the two penalties. We set w = 1, v = 1, α = 10−5. The

value of α depends on the desired distance to the target, and

can be chosen by examining the shape of log(d + α).2 In

our trajectory optimization algorithm, the negative curvature

of rℓ encourages the algorithm to converge on the target

more quickly and more precisely at time steps that are

already close to the target. In addition to this penalty, we

quadratically penalize joint velocities and torques to create

smooth, controlled motions. We found that this cost function

worked well for all of the manipulation tasks we evaluated,

and the ease of specifying the target makes it an appealing

option for a user-friendly learning framework.

2An automatic scheme could also be devised by solving for the value of
α that sets the inflection point of log(d+ α) at the desired tolerance.

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

Fig. 2: Tasks in our experiments: (a) stacking large lego blocks on a fixed base, (b) onto a free-standing block, (c) held in both gripper;
(d) threading wooden rings onto a tight-fitting peg; (e) assembling a toy airplane by inserting the wheels into a slot; (f) inserting a shoe
tree into a shoe; (g,h) screwing caps onto pill bottles and (i) onto a water bottle. Videos are included with the supplementary material
and at http://rll.berkeley.edu/icra2015gps/index.htm.

VII. EXPERIMENTAL RESULTS

We conducted a set of experiments using both the linear-

Gaussian training procedure in isolation, and in combination

with guided policy search. In the latter case, the final

nonlinear policy was represented by a neural network with

two hidden layers. We chose tasks that involve complex

dynamics: stacking tight-fitting lego blocks, assembling plas-

tic toys, inserting a shoe tree into a shoe, placing tight-

fitting wooden rings onto pegs, and screwing bottle caps

onto bottles. The lego blocks were tested in three conditions:

attaching a block to a heavy base that is fixed to the table,

attaching a block to another free-standing block (which can

shift due to the forces applied during stacking), and attaching

two blocks that are both held by the robot. These tasks are

especially challenging for standard motion planning methods,

which usually deal only with kinematics. Dynamic methods

(such as model-predictive control) would also find these tasks

difficult, since the physical properties of the objects are not

known in advance and are often difficult to model. Images

of the objects in our experiments are presented in Figure 2.

In all experiments, both the linear-Gaussian controllers and

neural networks directly commanded the torque on each of

the seven joints on the robot’s arm at 20 Hz, and took as

input the current joint angles and velocities, the Cartesian

velocities of two or three points on the manipulated object

(two for radially symmetric objects like the ring, three for all

others), the vector from the target positions of these points to

their current position, and the torque applied at the previous

time step. The object was assumed to be rigidly attached to

the end-effector, so that forward kinematics could be used to

compute the object’s current position.

A. Linear-Gaussian Controllers

We first trained controllers for each of the manipulation

tasks using only the linear-Gaussian method in Section IV.

While this approach has limited ability to generalize to

different initial states, certain manipulation scenarios are less

vulnerable to this limitation. For example, when the objects

being manipulated are already grasped by the robot, they

can be positioned in the suitable initial state automatically,

allowing even these simple controllers to succeed. Further-

more, although the controllers are linear-Gaussian, since

the dynamics are learned, feedback can be performed on

any observation signal, not just the state of the robot. As

described in the previous paragraph, we include the position

linear-Gaussian controller learning curves

samples

d
is

ta
n

c
e

 (
c
m

)

5 10 15 20 25 30 35 40
0

2

4

6

8

10

toy airplane

shoe tree

pill bottle

water bottle

lego block (fixed)

lego block (free)

lego block (hand)

ring on peg

Fig. 3: Distance to specified target point per iteration during training
of linear-Gaussian controllers. The actual target location may differ
due to perturbations. Error bars indicate one standard deviation.
Note that the samples per iteration vary slightly due to adaptive
sample count selection.

of points on the object (assumed to be in the frame of the

end-effector) to improve robustness to small variations.

In Figure 3, we show learning curves for each of the tasks.

The curves are shown in terms of the number of samples,

which changes between iterations due to the adaptive sam-

pling rule in Section IV-C. Note that the number of samples

required to learn a successful controller is in the range of

20-25, substantially lower than many previously proposed

policy search methods in the literature [8], [11], [16], [3].

Total learning time was about ten minutes for each task, of

which only 3-4 minutes involved system interaction (the rest

included resetting to the initial state and computation time,

neither of which were optimized).

The supplementary video3 shows each of the controllers

performing their task. A few interesting strategies can be

observed. In the toy airplane task, the round peg on the

wheels is inserted first, and the motion of the peg against

the slot is used to align the gear base for the final insertion.

Note how the wheels are first pulled out of the slot, and

then inserted back in at the right angle. For the ring task,

the controller spends extra time positioning the ring on top

of the peg before applying downward pressure, in order to

correct misalignments. Friction between the wooden ring and

the peg is very high, so the alignment must be good. The

shoe tree task used an extra waypoint supplied by the user

to avoid placing the shoe tree on top of the shoe, but careful

control is still required after the waypoint to slide the front

of the shoe tree into the shoe without snagging on the sides.

3See http://rll.berkeley.edu/icra2015gps/index.htm

http://rll.berkeley.edu/icra2015gps/index.htm
http://rll.berkeley.edu/icra2015gps/index.htm

lego block test perturbation

training perturbation 0 cm 1 cm 2 cm 3 cm

0 cm 5/5 5/5 3/5 2/5
1 cm 5/5 5/5 3/5 2/5
2 cm 5/5 5/5 5/5 3/5
kinematic baseline 5/5 0/5 0/5 0/5

ring on peg test perturbation

training perturbation 0 cm 1 cm 2 cm 3 cm

0 cm 5/5 5/5 0/5 0/5
1 cm 5/5 5/5 3/5 0/5
2 cm 5/5 5/5 3/5 0/5
kinematic baseline 5/5 3/5 0/5 0/5

TABLE I: Success rates of linear-Gaussian controllers under target
object perturbation. Training with larger perturbations improved
robustness at test time.

For the bottle task, we tested a controller trained on one pill

bottle on a different pill bottle (see Figure 2), and found that

the controller could still successfully complete the task.

To systematically evaluate the robustness of the con-

trollers, we conducted experiments on the lego block and

ring tasks where the target object (the lower block and the

peg) was perturbed at each trial during training, and then

tested with varying amounts of perturbation. For each task,

controllers were trained with Gaussian perturbations with

standard deviations of 0, 1, and 2 cm in the position of the

target object. For the lego block, the perturbation was applied

to the corners, resulting in a rotation. A different perturbation

was sampled at every trial, and the controller was unaware

of the noise, always assuming the object to be at the original

position. These controllers were then tested on perturbations

with a radius of 0, 1, 2, and 3 cm. Note that with a radius of 2
cm, the peg would be placed about one ring-width away from

the expected position, as shown in the supplementary video.

The results are shown in Table I. All controllers were robust

to perturbations of 1 cm, and would often succeed at 2 cm.

Robustness increased slightly when more noise was injected

during training, but even controllers trained without noise

exhibited considerable resilience to noise. This may be due

to the linear-Gaussian controllers themselves injecting noise

during sampling, thus improving tolerance to perturbation in

future iterations.

For comparison, we evaluated a kinematic baseline for

each perturbation level, which planned a straight path in

task space from a point 5 cm above the target to the

expected (unperturbed) target location. As shown in Table I,

this baseline was only able to place the lego block in

the absence of perturbations. The rounded top of the peg

provided a slightly easier condition for the baseline, with

occasional successes at higher perturbation levels. However,

our controllers outperformed the baseline by a wide margin.

B. Neural Network Controllers

To demonstrate generalization, we trained two neural

network policies using the guided policy search procedure

described in Section V. The first policy was trained on the

lego block placement task, with four different target positions

located at the corners of a rectangular base of lego blocks.

This policy could then be used to place the block at any

position on this base. The second policy was trained on the

neural network policy learning curves

samples

d
is

ta
n

c
e

 (
c
m

)

20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

lego block (fixed)

ring on peg

Fig. 4: Distance to target per iteration during neural network
training. The samples are divided across four training trajectories.
Distance is measured for the individual trajectories only, since
the neural network is not run on the robot during training. For
performance of the final trained neural network, see Table II.

ring task to place the ring on the peg at a range of locations.

Figure 4 shows learning curves for both tasks. Training

neural network policies requires roughly the same number

of samples per trajectory as the standard linear-Gaussian

method (the graph shows total samples over all trajectories).

The additional computation time during training was about

50 minutes, due to the additional cost of optimizing the

network. This time could be reduced with a more optimized

implementation.

x x x1 2 n

h h h1 2 k

h h h1 2 p

u u u1 2 m

(1) (1) (1)

(2) (2) (2)

Our neural network policies consisted of

two hidden layers with 40 units each, with

soft rectifying nonlinearities between the

first two layers, of the form a = log(z + 1),
and linear connections to the output, as

shown on the right. Unlike in our previous

work [30], we found that a deeper two-layer

architecture was necessary to capture the

complexity of the manipulation behaviors.

Generalization results for the policies are shown in Ta-

ble II, and videos are presented in the supplementary mate-

rial. On the lego block task, most of the failures were at the

training points, which were at the corners of the rectangular

target region. The test points in the interior were somewhat

easier to reach, and therefore succeeded more consistently.

On the ring task, the pose of the arm differed significantly

between the four training positions, which initially caused

the policy to overfit to these positions, effectively learning a

classifier for each of the four targets and ignoring the precise

target position. To alleviate this issue, we added noise to

the position of the peg during each trial by moving the left

gripper which held the peg. This caused the linear-Gaussian

controllers to track the target position, and the neural network

was able to observe that the target correlated more strongly

with success than any particular configuration of joint angles.

This allowed it to generalize to all of the test positions.

lego block training positions test positions

position #1 #2 #3 #4 #1 #2 #3 #4 #5
success rate 5/5 4/5 5/5 3/5 5/5 5/5 5/5 5/5 5/5

ring on peg training positions test positions

position #1 #2 #3 #4 #1 #2 #3 #4 #5
success rate 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 5/5

TABLE II: Success rates of neural network policies.

VIII. DISCUSSION

We presented a method for learning robotic manipulation

skills using linear-Gaussian controllers, as well as a tech-

nique for training arbitrary nonlinear policies from multiple

such controllers using guided policy search. This method

can learn linear-Gaussian controllers very quickly with a

modest number of real-world trials, can acquire controllers

for complex tasks that involve contact and require intricate

feedbacks, and can produce controllers that are robust to

small perturbations. The nonlinear neural network policies

trained with guided policy search can generalize to even

larger changes in the task, such as new target locations.

In addition to demonstrating the method on a real robotic

platform, we introduced several improvements to guided

policy search to make it more practical for robotic applica-

tions. We proposed an adaptive step size scheme that speeds

up learning, a simple heuristic for adaptively adjusting the

number of samples at each iteration, and a way to augment

the policy training set with synthetic samples taken from the

estimated state-action marginals, which makes it practical to

train large neural networks with very few real-world samples.

Our method improves on prior policy search algorithms by

learning general-purpose representations with minimal prior

knowledge, and by requiring a small amount of interaction

time. A central idea in our method is to more tightly control

the environment at training time. For example, we might

want to handle an arbitrary target for block stacking, but at

training time, the same four targets are presented to the robot

repeatedly, allowing seperate linear-Gaussian controllers to

be learned for each one, and then unified into a single policy.

An additional advantage of guided policy search that was

not explored in detail in this work is the ability to provide the

policy with a different set of inputs from those available to

the linear-Gaussian controllers. For example, the target for an

insertion task might be known at training time, but unknown

at test time, with only noisy sensors available to the policy.

We explored this setting in simulation in our previous work,

learning policies that search for the target by “feeling” the

surface [1]. Applying this idea to real-world robotics prob-

lems could allow the training of policies that simultaneously

perform both perception and control. Learning perception

and control jointly could produce policies that compensate

for deficiencies in perception with more robust strategies, for

example by probing the target before insertion, or dragging

the object across the surface to search for the insertion point.

Acknowledgements This research was funded in part by

DARPA through Young Faculty Award #D13AP00046 and

by the Army Research Office through the MAST program.

REFERENCES

[1] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural

Information Processing Systems (NIPS), 2014.
[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in

robotics: A survey,” International Journal of Robotic Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[3] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-2, pp.
1–142, 2013.

[4] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in International Conference on Robotics and

Automation (IROS), 2004.
[5] R. Tedrake, T. Zhang, and H. Seung, “Stochastic policy gradient rein-

forcement learning on a simple 3d biped,” in International Conference

on Intelligent Robots and Systems (IROS), 2004.
[6] T. Geng, B. Porr, and F. Wörgötter, “Fast biped walking with a

reflexive controller and realtime policy searching,” in Advances in

Neural Information Processing Systems (NIPS), 2006.
[7] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,

“Learning CPG-based biped locomotion with a policy gradient
method: Application to a humanoid robot,” International Journal of

Robotic Research, vol. 27, no. 2, pp. 213–228, 2008.
[8] J. Peters and S. Schaal, “Reinforcement learning of motor skills with

policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.
[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and

generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA), 2009.

[10] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information

Processing Systems (NIPS), 2003.
[11] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust

robot movements to new situations,” in Robotics: Science and Systems,
2010.

[12] M. Deisenroth, C. Rasmussen, and D. Fox, “Learning to control a
low-cost manipulator using data-efficient reinforcement learning,” in
Robotics: Science and Systems, 2011.

[13] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in International

Conference on Intelligent Robots and Systems (IROS), 2011.
[14] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,

“Skill learning and task outcome prediction for manipulation,” in
International Conference on Robotics and Automation (ICRA), 2011.

[15] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced

Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.
[16] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning

of motor skills in high dimensions,” in International Conference on

Robotics and Automation (ICRA), 2010.
[17] R. Hafner and M. Riedmiller, “Neural reinforcement learning con-

trollers for a real robot application,” in International Conference on

Robotics and Automation (ICRA), 2007.
[18] V. Gullapalli, R. Grupen, and A. Barto, “Learning reactive admittance

control,” in International Conference on Intelligent Robots and Sys-

tems (IROS), 1992.
[19] S. Levine and V. Koltun, “Guided policy search,” in International

Conference on Machine Learning (ICML), 2013.
[20] ——, “Variational policy search via trajectory optimization,” in Ad-

vances in Neural Information Processing Systems (NIPS), 2013.
[21] ——, “Learning complex neural network policies with trajectory opti-

mization,” in International Conference on Machine Learning (ICML),
2014.

[22] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization,” in Robotics: Science and

Systems (RSS), 2014.
[23] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative

learning control,” Control Systems, IEEE, vol. 26, no. 3, 2006.
[24] S. Ross, G. Gordon, and A. Bagnell, “A reduction of imitation learning

and structured prediction to no-regret online learning,” Journal of

Machine Learning Research, vol. 15, pp. 627–635, 2011.
[25] R. Lioutikov, A. Paraschos, G. Neumann, and J. Peters, “Sample-

based information-theoretic stochastic optimal control,” in Interna-

tional Conference on Robotics and Automation (ICRA), 2014.
[26] J. A. Bagnell and J. Schneider, “Covariant policy search,” in Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2003.
[27] J. Peters, K. Mülling, and Y. Altün, “Relative entropy policy search,”

in AAAI Conference on Artificial Intelligence, 2010.
[28] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,

USA: Cambridge University Press, 2004.
[29] S. M. Khansari-Zadeh and A. Billard, “BM: An iterative algorithm

to learn stable non-linear dynamical systems with Gaussian mixture
models,” in International Conference on Robotics and Automation

(ICRA), 2010.
[30] S. Levine, “Exploring deep and recurrent architectures for optimal

control,” in NIPS 2013 Workshop on Deep Learning, 2013.

	Introduction
	Related Work
	Overview
	Trajectory Optimization under Unknown Dynamics
	KL-Divergence Constrained LQG
	Background Dynamics Distributions
	Adaptive Adjustment of Step Size and Sample Count

	General Parameterized Policies
	Guided Policy Search
	Augmenting Policy Training with Synthetic Samples

	Defining Objectives for Robotic Manipulation
	Experimental Results
	Linear-Gaussian Controllers
	Neural Network Controllers

	Discussion
	References

