
SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning Context-Based Non-local Entropy
Modeling for Image Compression

Mu Li, Kai Zhang, Wangmeng Zuo, Senior Member, IEEE, Radu Timofte, Member, IEEE,
and David Zhang, Fellow, IEEE

Abstract—The entropy of the codes usually serves as the rate
loss in the recent learned lossy image compression methods.
Precise estimation of the probabilistic distribution of the codes
plays a vital role in the performance. However, existing deep
learning based entropy modeling methods generally assume the
latent codes are statistically independent or depend on some
side information or local context, which fails to take the global
similarity within the context into account and thus hinder the
accurate entropy estimation. To address this issue, we propose
a non-local operation for context modeling by employing the
global similarity within the context. Specifically, we first introduce
the proxy similarity functions and spatial masks to handle the
missing reference problem in context modeling. Then, we combine
the local and the global context via a non-local attention block
and employ it in masked convolutional networks for entropy
modeling. The entropy model is further adopted as the rate loss
in a joint rate-distortion optimization to guide the training of
the analysis transform and the synthesis transform network in
transforming coding framework. Considering that the width of
the transforms is essential in training low distortion models, we
finally produce an U-Net block in the transforms to increase
the width with manageable memory consumption and time com-
plexity. Experiments on Kodak and Tecnick datasets demonstrate
the superiority of the proposed context-based non-local attention
block in entropy modeling and the U-Net block in low distortion
compression against the existing image compression standards
and recent deep image compression models.

Index Terms—Non-local, entropy modeling, U-Net block, image
compression.

I. INTRODUCTION

Image compression is a crucial problem in computer science
that has been studied for decades. Many image compression
standards like JPEG [1] have already been used in our daily
life. Nevertheless, the last decade has witnessed a population
of artificial intelligence and social media, which brought new
challenges for sharing and storing huge amounts of high-
definition media. Better image compression methods are still
demanding.

Deep neural networks (DNNs) have proven to be effective
and get extraordinary results in numerous vision tasks such
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as image restoration [2–5], image quality assessment [6, 7],
and image classification [8, 9], which throws light on learning
better lossy image compression methods. Deep neural net-
works are natural transforms. As a result, nearly all of the
recent attempts on image compression with DNNs follow the
transforming coding framework and are optimized for a rate-
distortion trade-off. A transforming coding framework usually
consists of three components, i.e., transform, quantization and
entropy coding. To be specific, transform maps the input
images to code representations; quantization transforms the
representation into discrete counterparts; entropy coding com-
presses the quantized codes into the bitstream in a lossless
manner.

Previous transforms [10] are linear, invertible and fixed
for all bit rates. Distortion only arises from the quantization.
As for the recent deep lossy image compression methods,
transforms are modeled by learning non-linear and powerful
DNNs. With the quantization operation and the structure of the
network, the learned transforms are generally non-invertible,
which tends to encourage discarding the perceptual negligible
information for better visual quality at low bit rates. However,
the performance is usually limited at high bit rates where the
distortion is required to be as small as possible. Empirically,
the width of the transforms, i.e., the number of feature maps
at each layer, is effective in reducing the information losing
brought by the transforms. Many deep image compression
methods [11–13] suggest adopting wider transforms at high bit
rates. For a deep network, the growing of width will inevitably
increase the computational complexity and GPU memory
consumption. We suggest adopting an U-Net like block in
the transforms which could help reduce the time complexity
and memory usage in the transforms. With the paired down-
sampling, up-sampling operations and skip connection, the U-
Net like architecture can not only speed up the transforms but
also combine the information in different scales and facilitate
the information propagation.

The learned image compression methods are usually mod-
eled as a rate-distortion optimization problem where entropy
modeling of the codes plays an important role. According
to Shannon’s source coding theorem [14], given a sequence
of codes y = {y0, . . . , yM}, the optimal code length of y
should be d− log2 P (y)e with the codebook constructed by
binary symbols. Thus, building accurate discrete probability
distribution functions for the codes is essential in deter-
mining the compression rate. Most entropy coding schemes
directly assume the codes in y are independent and follow
the same marginal distribution, resulting in a code length of
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d−
∑M
i=0 log2 P (yi)e. Generally, a better approximation could

be given with the chain rule when considering the context.

P (y) ≈
M∏
i=0

P (yi|y0, . . . , yi−1), (1)

where the context of yi is defined as all the codes coded
before it in y. One typical application of the context in en-
tropy modeling is the context-based adaptive binary arithmetic
coding (CABAC) [15] used in H.264/AVC, which gets a clear
performance improvement over previous image compression
standards by considering only two nearest codes in the context.
However, the traditional context-based entropy modeling based
on histograms fails to cover more codes. To employ more
codes in the context and the shared computation of fully
convolutional network, a set of masked convolutional networks
including PixelCNN [13], MCN [16], and CCN [17] are pro-
posed for entropy modeling in recent lossy image compression
methods. Nevertheless, all the entropy models based on CNNs
have a limited receptive filed and only consider the local
context within the receptive field in entropy modeling. Global
information and content similarity in the context are ignored.

To explore global information, we introduce a context-based
non-local operation for entropy modeling. In image denoising,
non-local means [18] predicts the target pixel with a weighted
sum on the whole image, where the weights are produced
by the content similarity between the target pixel and the
others. Inspired by the non-local means, we regress a target
code, yr(p, q), with a weighted sum over all the codes in
the r-th channel within the context. Here, yr(p, q) is a code
from the 3D code block y at the position (p, q) in the r-
th channel. However, due to the definition of context, the
target code itself is unknown in the calculation of the weights.
Without the reference, it is unable to evaluate the similarity and
produce the weights. We call this challenge missing reference
problem. Considering that yr(p, q) and the codes from the
vector ξr(p, q) = {y0(p, q), . . . , yr−1(p, q)} are produced by
the same image patch, there should be a close relationship
between them. We alternatively evaluate the similarity between
the target code yr(p, q) and yr(u, v) as a weighted L2 distance
between ξr(p, q) and ξr(u, v). An attention block is introduced
to combine the local representations produced by CCNs and
the global representations from the non-local operation for
context-based entropy modeling.

The context-based non-local attention block is further
adopted in CCNs to estimate the entropy of the lossy image
compression method. In detail, the probability of each code is
modeled on a mixture of Gaussian (MoG) distribution whose
parameters are predicted by the non-local CCNs. We jointly
optimize transforms, i.e., analysis transform and synthesis
transform built on U-Net blocks and the context-based non-
local entropy model with respect to the trade-off of rate-
distortion performance in an end-to-end manner. Experiments
on the Kodak and Tecnick datasets show that the proposed
method can outperform state-of-art lossy image compression
standards.

II. RELATED WORK

A. DNN-Based Lossy Image Compression Methods

Recent DNN-based lossy image compression methods are
optimized for the rate-distortion trade-off, where the rate loss
is usually modeled as the entropy of the codes. Previous meth-
ods [11, 19–21] only adopt DNNs for transforms and suppose
that all the codes are i.i.d. and follow the same probability dis-
tribution function (PDF) for easy entropy models. With a lack
of accurate estimation of the entropy, the performance of such
methods is limited. Arguably speaking, the code representa-
tions generated from the image via a highly nonlinear analysis
transform still exhibit strong statistical redundancies [12].
Therefore, several attempts have been made by estimating the
conditional PDFs of the codes based on extra information,
i.e., context [13, 16, 17, 22, 23] and hyperprior [12, 13].
Specially, for context-based entropy modeling, DNN-based
entropy models such as RNN [24], LSTM [25] are shown to be
powerful in modeling the context of sequential data in natural
language processing. PixelRNN [26] and PixelCNN [27] are
further proposed for modeling long-range dependency among
pixels and employ much larger context for processing image
data. Taking both of the context and effeciency into account, a
set of masked convolutional networks, such as PixelCNN [13],
MCN [16], and CCN [17], are proposed for modeling the
entropy of the codes in lossy image compression. In the
following, we will give an overview of some representative
DNN-based lossy image compression methods.

Toderici et al. [28] proposed an RNN to compress 32× 32
images in a progressive manner. They later extended the
job to full-size images and introduced a BinaryRNN for
context-based entropy modeling [22]. Johnston et al. [29]
further introduced content-adaptive bit allocation, warm-start
training tricks, and perceptual losses to boost the compression
performance in terms of MS-SSIM.

Ballé et al. [19] proposed to learn shallow transforms with a
GDN activation function in an end-to-end manner and model
the entropy with a shared linear piece-wise PDF. In their
following work [12], each code is supposed to follow a zero-
mean Gaussian distribution with the deviation estimated from
a side information network depending on the hierarchical
hyperprior. Minnen et al. [13] combined the hierarchical
hyperprior with context-based auto-regressive prior to boosting
the compression performance.

Theis et al. [20] proposed a strait-forward relaxation of
the quantization operations and exploited the Gaussian scale
mixture for entropy modeling. Rippel et al. [11] proposed a
pyramid-based network structure for analysis and synthesis
transforms and an adaptive code length regularization for
real-time image compression. And a generative adversarial
loss [30] was introduced to generate visually better decoded
images at low bit rates. Later, Agustsson et al. [21] proposed
a soft-to-hard quantization scheme with a parametric softmax
function.

Li et al. [23] learned an importance map as the side
information for content variant rate controlling and exploited
a simple CNN for context-based entropy modeling. Mentzer
et al. [16] further proposed a mask convolutional network
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Fig. 1. Illustration of context-based non-local entropy modeling. (a) indicates the non-local similarity among the codes generated by the analysis transform.
(b) shows the global context of a target code in 3D code block y with a raster scanning order. (c) gives the local context used in CNN-based entropy modeling.
(d) illustrates the non-local similarity in the context.

for context-based entropy modeling and alternatively opti-
mized the entropy model, transforms, and the importance
map. Limited by the raster coding order, the context-based
models should be decoded in serial coding order and thus
are computational inefficiency. The heavy computational bur-
den makes them not practical in many real applications. To
speed up the entropy modeling and employ large context,
context-based convolutional networks (CCNs) [17] introduce
a specially defined coding order and group context for entropy
modeling in both lossy and lossless image compression. With
a given code dividing scheme, the CCNs can perform parallel
computation within a group in decoding and largely speed up
the decoding speed.

Previous deep context-based entropy models only focus on
local context in the receptive field of CNNs and usually ignore
the non-local similarity in the global context. To tackle this
issue, we take the non-local similarity within the global context
into account and combine it with the local representation for
entropy modeling.

B. Non-local Methods for Image Processing

Non-local methods were first proposed for employing the
global similarity among the pixels in image denoising. Later,
DNN-based image processing methods embed it into DNNs to
employ the global information and boost the performance in
different tasks. Buades et al. [18] explored the self-similarity
among pixels and proposed the non-local means based on a
content weighted non-local averaging of all pixels in the image
for image denoising. Wang et al. [31] formulated the non-
local operation as a uniform block and adopt it in DNNs to
combine local and non-local information for object detection.

Liu et al. [32] proposed a non-local recurrent network which
incorporates non-local operations into a recurrent network for
image restoration. Zhang et al. [33] exploited the non-local
operation to building attention masks to capture long-range
dependency between pixels and pay more attention to the chal-
lenging parts for high-quality image restoration. In this paper,
we tackle the missing reference problem in context modeling
with the proposed proxy similarity metric and introduce the
non-local operation for the context-based entropy modeling.
And a non-local attention block is introduced to combine local
and global context for more accurate entropy estimation.

III. CONTEXT-BASED ENTROPY MODELING

Modeling the entropy of the code from its context is an auto-
regression problem where the probability distribution functions
(PDFs) of a code is regressed from the context of it. Let y ∈
RM×H×W denote a 3D code block generated by the analysis
transform, where M , H , and W separately are the channel,
height, and width of the code block. yr(p, q) is a code at the
position (p, q) in r-th channel. With a given coding order, the
context of a target yr(p, q) among a code block y is defined as
all the codes scanned before it, i.e., CTX(yr(p, q),y). Fig. 1
(b) gives an example of the context of the target code in red
with a raster scanning order.

Thanks to the CNN’s efficiency in processing 2D and 3D
media data, previous context-based entropy modeling usually
adopts masked CNNs to predict the PDFs of the codes. As
shown in Fig. 1 (c), limited by the structure, CNNs only
focus on the local context surrounding the target code in the
receptive field. The content similarity and global context are
generally ignored. To exploit the global information and the
content similarity between the target code and its context, we
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introduce the non-local operation for context-based entropy
modeling.

Non-local operation is usually defined as a weighted sum
over the whole image, where the distance between a target
pixel and other pixels is employed to produce the weights.
Similar pixels play a more important role in estimating the
target. As for the code block, we calculate the non-local
representation of a target code yr(p, q) by summarizing all
the codes in r-th channel of the context with content-related
weights. However, it is hard to determine the weights when
the target code itself is unavailable for computation in the
context. Given a vector ξr(p, q) = {y0(p, q), . . . , yr−1(p, q)},
ξr(p, q) and yr(p, q) are produced by the same image patch.
It is reasonable to evaluate the similarity between yr(p, q) and
yr(u, v) with the distance between the two vectors, ξr(p, q)
and ξr(u, v). As shown in Fig. 1(d), by finding similar code
vectors, we predict the non-local representation of the target
code in red with the similar codes in blue. Fig. 1 (a) shows
that similar patches produce similar code vectors. As proved
in many image restoration methods that employ similar data
patches such as BM3D [34], there are many similar patches
in a single image. Correspondingly, there should be many
similar codes and code vectors in the code block produced by
the image. Consequently, the introduced non-local operation
should contribute to more accurate estimation of the entropy.

In this paper, we introduce a non-local attention block that
combines the information from the local and global context
for entropy modeling. Context-based convolutional networks
(CCNs) [17] are adopted to modeling the local context for
their efficiency and effectiveness. In the following, we will
first give a short description of the CCNs and then introduce
the context-based non-local operation.

A. CCNs in Modeling Local Context

Given the code block y ∈ RM×H×W , the output of the t-th
CCN layer is a 4D tensor v(t) ∈ RM×H×W×Nt with Nt fea-
ture blocks. Each feature block has the same size as the code
block. The feature v(t)i,r (p, q) in r-th channel and i-th feature
block at spatial location (p, q) is a representation of yr(p, q)
and only convey information from the CTX(yi(p, q),y).

To speed up the efficiency and break up the serial decoding
process, the CCNs divide the codes into K =M+H+W −2
non-overlap groups and parallel process each group, where
GPk(y) = {yr(p, q)|r + p + q = k} denotes the k-th group.
Then, the group context is defined as PTX(yr(p, q),y) =
{yr′(p′, q′)|r′ + p′ + q′ < k}. With the group context, codes
within each group share the same context and thus can be
processed in parallel. Without a clear performance drop in the
entropy modeling, the special group context could dramatically
accelerate the decoding efficiency.

The CCNs are built on mask convolution layers which are
defined as

v
(t)
i,r (p, q) =

Nt∑
j=1

M∑
s=1

(
u
(t)
j,s ∗

(
m(t)
r,s � w

(t)
i,j,r,s

))
(p, q) + b

(t)
i ,

(2)

Target code

Non-local similar
code vectors

Context plane for
non-local operation

p

q

r
3D context of the code

Fig. 2. Illustration of the non-local similarity of the codes within the group
context of CCNs for entropy modeling. The red block is the target code. And
the green region is the group context for the CCNs. Content similar codes
in blue are located by the proxy similarity metric gd and then employed to
predict the target code. The yellow plane indicates the available codes in the
non-local operation. Zoom in for better visual quality and details.

where {i, j} and {r, s} are indexes for the feature block and
channel dimensions, respectively. u(t) and v(t) are the input
and output of the t-th convolution layer. v(t−1) is activated by
a nonlinear element-wise function to produce u(t). w(t)

i,j,r,s is
the weight to connect feature maps u(t)j,s and v(t)i,r , and b(t)i is the
bias term. Given w(t)

i,j,r,s = {w
(t)
i,j,r,s(u, v)| − ks ≤ u, v ≤ ks}

where ks is kernel size, the corresponding mask for the input
layer is defined as

m(0)
r,s(u, v) =

{
1, if s+ u+ v < r

0, otherwise.
(3)

For the t-th hidden layer, the mask is modified to include the
codes in the same group

m(t)
r,s(u, v) =

{
1, if s+ u+ v ≤ r
0, otherwise.

(4)

B. Context-based Non-local Operation

Different channels in the code block are generated by
different convolutional filters. Only the codes in the same
channel are produced by the same transform and thus should
follow the same distribution. We only consider the codes in the
same channel in the non-local operation. Besides, the context
should be considered. For the target code yr(p, q), masks ml

are introduced to exclude the codes outside of the context. Fol-
lowing the group context PTX(yr(p, q),y) in CCNs, we set
the mask ml(p, q, u, v) to be 1 if yr(u, v) ∈ PTX(yr(p, q),y),
i.e., v+v < p+q. Otherwise, ml(p, q, u, v) = 0. Fig. 2 shows
the codes used in the non-local operation with a yellow plane
where the masks are 1s.

Evaluating the similarity between the target and the others
is necessary for non-local operation. Due to the target code
is not in the context, it is unable to calculate the distance
between the target and others directly. Instead, we propose a
proxy similarity function by considering the available codes in
the same position but the other channels. The similarity metric
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gd(yr(p, q), yr(u, v)) between the code yr(p, q) and yr(u, v)
is defined as,

gd(yr(p, q), yr(u, v)) =

r−1∑
j=0

wdr,j‖yj(p, q)− yj(u, v)‖2. (5)

Here, wdr,j is the weight to balance the contribution of the
proxy codes in different channels. wdr,j is set to be 1/(r + 1)
in initialization and dynamically optimized with the training
of the whole framework. gd is a proxy based on the available
codes. When considering more codes in different channels, the
result will be more accurate and close to the real similarity.

The context-based non-local operation is defined as,

gnlc(yr(p, q)) =
∑
u,v

wsr(p, q, u, v)yr(u, v), (6)

where the weight wsr(p, q, u, v) is defined as,

wsr(p, q, u, v) =
ml(p, q, u, v)e−gd(yr(p,q),yr(u,v))∑

u′,v′ m
l(p, q, u′, v′)e−gd(yr(p,q),yr(u′,v′))

.

(7)
An attention block is introduced to combine the non-local
representation of the target code with the local representation
produced by CCNs. Given the constraint of context and the
proxy similarity function, the non-local representation of a
target code may be predicted by the dissimilar codes and thus
hinders the performance. To indicate whether the target code
is estimated by content similar codes and reduce the contri-
bution of non-local representation in those bad estimations, a
confidence indicator is introduced as the weighed similarity
among the proxy codes.

gc(yr(p, q)) =
∑
u,v

wsr(p, q, u, v)gd(yr(p, q), yr(u, v)). (8)

We combine the confidence indicators and local represen-
tation to generate the attention weight. And the Hadamard
product of the attention weights and non-local representation
is then concatenated with the local representation to produce
output of the attention block. Fig. 3(b) gives the structure of
the block.

IV. CONTEXT-BASED NON-LOCAL ENTROPY MODELING
FOR LOSSY IMAGE COMPRESSION

A lossy image compression method usually involves trans-
forms based on DNNs and is optimized for a joint rate-
distortion objective function. Fig. 3 gives the framework of
our lossy image compression method which consists of the
analysis transform ga, quantizer gq , synthesis transform gs and
the context-based non-local entropy model ge. The analysis
transform maps a color image x to the code representation z,
which is further discretized by gq to produce the code block
y. The synthesis transform gs takes y as input to produce a
color image x̂ as the reconstruction of x. In this section, we
will first describe the transforms, quantization function and the
objective function and then introduce a post entropy model to
simplify the entropy coding.

A. Network Structure for Transforms

Deep neural networks usually are non-invertible. As a result,
transformations based on DNNs will lose some information
in mapping the input image to the code representation. Such
information loss could be ignored for models at low bit rates
when the distortion between the input and the decoded image
is large enough. However, with the decrease of the distortion,
the information loss brought by DNNs will start to hinder the
performance. To reduce the information loss, some learned
image compression methods [11–13] suggest adopting a wider
network at high bit rates. Consequently, the time complexity
and memory consumption also increase rapidly. A network
structure taking both the computational efficiency and the
width into account is needed.

U-Net [35, 36] is a light structure originally proposed for
medical image segmentation. With paired down-sampling, up-
sampling operations and skip connections, U-Net is fast and
can utilize representations in different scales. Besides, the skip
connection could facilitate information propagation and ease
the training of the network [37]. As shown in Fig. 3(a), we
adopt the U-Net structure in building the basic block of our
transforms, i.e., UnetBlock, which can keep the width and
reduce the time complexity and memory consumption of the
transforms at the same time. Each UnetBlock consists of 3
down-sampling and 3 up-sampling convolution layers, where
the down-sampling/up-sampling multipliers are determined by
a0, a1 and a2 separately. And skip connections are introduced
to combine the features at each scale. The down-sampling
convolution layer is conducted by the stride convolution, while
the up-sampling convolution layer is modeled as a normal
convolution to increase the channels followed by the depth-
to-space reshaping [22, 38].

The analysis transformation ga is composed of 3 down-
sampling layers with each followed by a UnetBlock. Each
convolution layer is followed by a PReLU activation function.
And an additional convolutional layer with sigmoid nonlinear-
ity is adopted after the last UnetBlock to produce z ∈ (0, 1)
with M channels. The synthesis transformation gs is a mirror
of the analysis transform. And the upsampling operation is the
same as used in UnetBlock. The last convolution layer makes
use of three filters to produce the RGB decoded image. φ
and ψ represent the parameters to be optimized in ga and gs
separately. Please refer to Fig. 3 for more details about the
structure of the transforms.

B. Quantization Function

The quantization function gq maps the output of analy-
sis transform z to L discrete quantization centres in each
channel and generates the quantized code block y. We
parametrize the quantization interval for the r-th channel by
{σr,0, . . . , σr,L−1}. Then, the quantization centres for r-th
channel is represented as,

ωr,i =

i∑
j=0

eσr,j , for i = 0, . . . , L− 1. (9)
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Fig. 3. The architecture of the proposed lossy image compression method, including an analysis transform ga, an adaptive trainable quantizer gq , a context-
based non-local entropy model ge, and a synthesis transform gs. Conv: regular convolution with filter support (kernel height × kernel width) and number
of channels (output×input). UnetBlock: a0, a1 and a2 are the down-sampling multipliers in the U-Net structure. MConv: mask convolution used in CCNs
with filter size (kernel height× kernel width) and number of feature blocks (output×input). Note that the number of channels is fixed in MConv, and is the
same as the input of the entropy model, i.e., y.

In quantization, the code representation zr(p, q) is assigned to
the nearest quantization center in r-th channel.

gq(zr(p, q)) = argmin
ωr,l

‖zr(p, q)− ωr,l‖22. (10)

Here, gq has zero gradients almost everywhere, which blocks
the training via back-propagation. Inspired by the binarized
neural networks [39–41] and the DNN-based compression
framework [20], an identify mapping ĝq(zr(p, q)) = zr(p, q)
is adopted as a continuous proxy for the quantization function
in back-propagation.

We initialize σ as a uniform quantization in (0, 1), which
are then optimized and updated according to the distribution
of z by minimizing the mean squared quantization error,

Lq(σ) =
1

MHW

∑
r,p,q

‖yr(p, q)− zr(p, q))‖22, (11)

C. Modeling the Objective Function

The whole framework is optimized for a joint rate-distortion
objective function, where the distortion loss is directly mod-
eled as the difference between the decoded image x̂ and
the input image x. Two separate metrics, i.e., standard mean
square error (MSE) and the perceptual metric MS-SSIM [42],
are adopted as the distortion loss. The MSE distortion loss

LMSE
D and MS-SSIM distortion loss LMS-SSIM

D are defined
as follows

LMSE
D (x;φ,ψ) =

1

3HIWI
‖x̂− x‖22, (12)

and

LMS-SSIM
D (x;φ,ψ) = 100− 100 MS-SSIM(x̂,x), (13)

where x̂ = gs

(
gq
(
ga(x;φ);σ

)
;ψ
)

. HI and WI are sepa-
rately the height and width of the image x. We denote our
method optimized for LMSE

D as Ours(MSE) and LMS-SSIM
D

as Ours(MS-SSIM).
Each code in y is assumed to follow an MoG distribution

depending on its context. We introduce a context-based non-
local entropy model ge to produce the mixture weight, mean,
and variance of these MoG distributions. As shown in Fig. 3,
the entropy model consists of a non-local attention block,
several CCN residual blocks, and three final CCN layers to
produce the mean, variance, and weight estimates separately.
θ is the parameters for the proposed entropy model.

Given yr(p, q) = ωr,l, the discretized probability of a code
yr(p, q) is defined as,

P (yr(p, q); θ) =

∫ ωl+ωl+1
2

ωl−1+ωl
2

C−1∑
i=0

πiN (α;µi, σ
2
i )dα, (14)
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where C is the number of Gaussian distribution in the mixture;
πi, µi and δ2i are the mixture weight, mean, and variance of
the i-th component, respectively. Specially, ωr,−1 = −∞ and
ωr,L = ∞ for the boundary cases. Then, the entropy of the
codes are adopted as the rate loss.

LR(x;φ,θ) = −
∑

logP (gq
(
ga(xr(p, q);φ);σ

)
,θ). (15)

Finally, we propose a rate-distortion objective function for
the parameters {φ,ψ,θ} over the training set X as

L(φ,ψ,θ) =
∑
x∈X
LD(x;φ,ψ) + λLR(x;φ,θ), (16)

where λ is the trade-off parameter to balance the rate and
distortion in the objective function.

D. Post Processing for Entropy Coding

In entropy coding, a discrete probability table that contains
the probability P (yr(p, q) = ωr,l) for l = 0, . . . , L − 1
is needed. With the current entropy model built on MoG
distributions, we should first produce the parameters for MoG
distributions and then cut the PDF into L intervals and get
the discrete possibility table with an integral on each interval.
Considering the amount of code to be processed is very large,
it will bring further computational burden and slow down the
entropy coding. We simplify this process by training a post
entropy model which takes the codes y as input and directly
output the discrete probability table that the code belongs to
each quantization center. For the network structure, we only
make a small modification on the last layer. Instead of taking
three separate CCN layers to produce the mean, variance, and
weight estimations used in MoGs, we make use of a single
CCN layer followed by a softmax nonlinearity to produce the
possibility table u where ui,r(p, q) represents the possibility
that yr(p, q) = ωr,i. The post entropy network is optimized
by minimizing the expected code length

Lpost(θ) = −Ey

[∑
r,p,q

∑
i

1(yr(p, q) = ωr,i) log2(ui,r(p, q))
]
,

(17)

where 1(·) is an indicator function. We first extract y for x ∈
X with the trained analysis transform ga and then optimize
the post entropy model on the extracted code blocks. Finally,
we implement our own arithmetic coding with the context-
based non-local entropy model to compress y to bitstreams,
and report performance using actual bit rates.

V. EXPERIMENTS

In this section, we test the proposed context-based non-local
entropy model and Unet-block in the lossy image compression.
10, 000 high-quality images are collected from the photo-
sharing website Flickr and down-sampled to further reduce
possibly compression artifacts. We crop 640, 000 color patches
of size 3×256×256 as the training sets. For the post entropy
model, we first extract the code blocks with the analysis
transform from the full-size images and then crop code blocks
with the size of M × 60× 60 for training. We test our models
on two benchmark datasets - Kodak and Tecnick [43], and
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Fig. 4. Rate-distortion curves of different compression methods on the Kodak
dataset. (a) PSNR. (b) MS-SSIM.

then compare them to the recent deep image compression
algorithms and state-of-the-art image compression standards.
The pre-trained models for testing are now available at https:
//github.com/limuhit/Nonlocal-CCN.

A. Experimental Setup

The quantization centers L is set to be 8 and the number of
Gaussian components in MoG C is set to be 3. We follow the
warmup strategy in [17] and jointly optimize the transforms
and entropy model by minimizing the rate-distortion objective
function in Eq. 16 with an Adam solver [44]. Starting from
a learning rate of 10−5, smaller learning rates, i.e., 10−6

and 10−7, are adopted until the loss does not decrease for 5
successive epochs. The post entropy model is also optimized
with Adam solver in the same way. We train 14 models for
seven different bit rates and two distinct distortion metrics,
i.e., MSE and MS-SSIM. For testing, the compression rate is
evaluated by bits per pixel (bpp), which is the total amount of
bits used to compress the image divided by the whole number
of pixels in the image. Two quantitative metrics, i.e., Multi-
Scale Structural Similarity (MS-SSIM) and the Peak Signal-
to-Noise Ratio (PSNR), are considered in evaluating the image
distortion.

B. Quantitative Evaluation

Using MS-SSIM and PSNR as distortion metrics, we com-
pare our methods with existing image compression standards
such as JPEG [1], JPEG2000 [45] and BPG [46] and recent
DNN-based compression models in terms of rate-distortion
curves. DNN-based compression models include Agusts-
son17 [21], Theis17 [20], Toderici17 [22], Rippel17 [11],
Mentzer18 [16], Johnston17 [29], Ballé17 [19], Li18 [23] and
Li19 [17]. Both JPEG (with 4:2:0 chroma subsampling) and
JPEG2000 are based on the optimized implementations in
MATLAB2017. For BPG, we adopt the latest version from
its official website with the default setting. When it comes
to DNN-based compression models, the implementations are
generally not available. For those models, we carefully digital-
ize the rate-distortion curves and report the results from their
respective papers.

https://github.com/limuhit/Nonlocal-CCN
https://github.com/limuhit/Nonlocal-CCN
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Fig. 5. Rate-distortion curves of different compression methods on the
Tecnick dataset. (a) PSNR. (b) MS-SSIM.

Fig. 4 shows the rate-distortion curves on the Kodak dataset.
The results for PSNR of Rippel17 [11] and Mentzer18 [16]
are missing as they do not report the PSNR curve in the
paper. We find that both Ours(MSE) and Ours(MS-SSIM)
outperform all competing methods in terms of PSNR and
MS-SSIM separately. Especially, compared to Li19 [17] with
local context-based entropy modeling, our models with non-
local attention block are much better, which support the
effectiveness of the introduced non-local operation in context
modeling. And at the high bit rate region, our models out-
perform Li19 by a lot, which also indicates the effectiveness
of the proposed UnetBlock in reducing the information loss
in transforms. Fig. 5 shows the rate-distortion curves on
the Tecnick dataset, where similar trends as Koadak dataset
for both PSNR and MS-SSIM can be observed. We fail to
compare with Rippel17 [11], Theis17 [20], Agustsson17 [21]
and Mentzer18 [16] on Tecnick dataset due to the unavailable
results in the papers.

C. Visual Quality Evaluation

We further compare the decoded images by our method
against Li19, JPEG2K, and BPG in visual quality and show
the sample decoded images and the uncompressed images on
the Kodak dataset in Fig. 6 and Tecnick dataset in Fig. 7,
respectively. For images at low bit rate, the methods optimized
with MS-SSIM are visually much better due to that MS-SSIM
takes structural similarity in different scale into account and
are more consistent with the human visual system. When it
comes to the images at a high bit rate, the methods optimized
with MSE are better at keeping small scale details. Thus,
we compare Ours(MS-SSIM) with Li19(MS-SSIM) at low
bit rates as shown in Fig. 7 and compare Ours(MSE) with
Li19(MSE) at higher bit rates in Fig 6. In Fig. 7, JPEG2K
and BPG exhibit artifacts (such as blocking, ringing, blurring,
and aliasing) that are common to all handcrafted transform
coding methods. Li19(MS-SSIM) is effective at suppressing
most of the artifacts bus still surfers from blurring in some
parts of the image. In contrast, our method optimized for MS-
SSIM is more able to keep the details and has less visible
distortions. In Fig. 4, the whole visual quality is nearly the
same. But when zooming into details, similar to BPG, our

TABLE I
RUNNING TIME IN SECONDS, GPU MEMORY IN GBS AND DISTORTION

EVALUATED WITH PSNR OF THREE NETWORK STRUCTURES.

Network Structure Running Time
(seconds)

GPU Memory
(GB)

Distortion
(dB)

DenseBlock [17] 0.025 0.86 35.54
ResidualBlock 0.136 2.65 36.34

UnetBlock 0.048 1.52 36.29

TABLE II
ENTROPY CODING FOR CODES OPTIMIZED BY MSE AND MS-SSIM. THE
RESULTS ARE EVALUATED BY BITS PER CODE. ya,i (yb,i) REPRESENTS
THE CODE OF THE i-TH MODEL OPTIMIZED FOR THE MSE(MS-SSIM).

Entropy coding for codes optimized by MSE

Code set ya,0 ya,1 ya,2 ya,3 ya,4 ya,5 ya,6

CCN [17] 1.65 1.56 1.45 1.45 1.43 1.46 1.58
Non-local 1.58 1.42 1.24 1.30 1.28 1.34 1.47

Entropy coding for codes optimized by MS-SSIM

Code set yb,0 yb,1 yb,2 yb,3 yb,4 yb,5 yb,6

CCN [17] 1.86 1.78 1.66 1.60 1.64 1.39 1.55
Non-local 1.84 1.67 1.53 1.54 1.48 1.26 1.43

methods optimized for MSE shows to have better small scale
edges and textures. Li19(MSE) blurring the small edges and
losing important information, such as the text.

D. Ablation Experiments

We conduct thorough ablation experiments to analyze the
impact of individual components, i.e., the UnetBlock, and
context-based non-local entropy modeling, to final compres-
sion performance. For fair comparisons, we use the same set
of parameters and training set for all the competing models.

1) UnetBlock for analysis and synthesis transforms: The
width of the transforms, i.e., the number of feature maps in the
output of each layer, is supposed to have a significant influence
on the performance of low distortion image compression mod-
els. A narrow transform will inevitably lose some information
and thus introduce extra distortion in reconstructing the input
image. To support the effectiveness of increasing the width
in low distortion cases, we introduce a baseline model by
combining the entropy model from Li19 [17] and transforms
based on UnetBlocks. The width for the baseline model and
Li19 are 196 and 64.

We compare the baseline models separately optimized for
two distortion metrics, i.e.MS-SSIM and MSE, to Li19 [17] in
Fig. 8. At a low bit rate region (< 0.4bpp), the baseline model
optimized for MSE, i.e., Baseline(MSE), and Li19(MSE) have
nearly the same performance in both of the MS-SSIM and
MSE. But when the bit rate grows, the Baseline(MSE) has
a significant improvement, which supports the width of the
transforms is important at high bit rate regions where the
distortion is quite small. Similar trends can be observed for
our model optimized with MS-SSIM.

With the same width and depth, Unet is usually fast in
speed and needs less computational resources. To evaluate
the performance of the UnetBlock in transforms, we further
compare the UnetBlock to residual block [47] on a computer
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Compressed images by different compression methods on the Kodak dataset. The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”.
(a) Uncompressed “Motorcycle” image. (b) JPEG2K. 0.673 / 27.75 / 0.962. (c) BPG. 0.712 / 29.65 / 0.973. (d) Li19 [17] optimized for MSE. 0.694 / 28.81 /
0.986. (e) Ours(MSE). 0.670 / 30.53 / 0.984. (f) Uncompressed “House” image. (g) JPEG2K. 0.879 / 31.52 / 0.972. (h) BPG. 0.877 / 32.64 / 0.979. (i) Li19
optimized for MSE. 0.871 / 29.99 / 0.988. (j) Ours(MSE). 0.865 / 33.04 / 0.989.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Compressed images by different compression methods on the Tecnick dataset. The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”.
(a) Uncompressed “Fruit” image. (b) JPEG2K. 0.137 / 24.95 / 0.890. (c) BPG. 0.136 / 25.58 / 0.901. (d) Li19 [17] optimized for MS-SSIM. 0.139 / 25.63 /
0.938. (e) Ours(MS-SSIM). 0.134 / 24.46 / 0.939. (f) Uncompressed “Seafood” image. (g) JPEG2K. 0.137 / 25.52 / 0.882. (h) BPG. 0.135 / 26.42 / 0.905.
(i) Li19 optimized for MS-SSIM. 0.138 / 25.62 / 0.925. (j) Ours(MS-SSIM). 0.133 / 25.03 / 0.932.
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Fig. 8. Rate-distortion curves of different variants of the proposed methods
on the Kodak dataset. (a) PSNR. (b) MS-SSIM.

with an Intel(R) Xeon(R) Processor E5-2620 v4, 64 GB of
RAM and a NVIDIA TITAN Xp GPU. We adopt several
residual blocks to replace a single UnetBlock to keep the depth
of the competing transforms. The DenseBlocks in Li19 [17]
concatenate all the output of previous sub-blocks as the
input for the next sub-block. The computational consumption
increases dramatically with the growth of the width of the
input to the block. Limited by the GPU memory, we fail to
compare to transforms based on DenseBlock with a width
of 192. Thus, we only adopt the transforms with a width
of 64 for DenseBlock in comparison. Without the limitation
of the entropy model (λ = ∞), the three competing models
are optimized for the MSE distortion loss. Table I gives the
results of the three structures on running time in seconds,
GPU memory in GB and distortion performance evaluated by
PSNR. The transforms based on the ResidualBlock can not
process the whole image from the Kodak dataset due to the
GPU memory. We only report the performance on 256× 256
patches sampled from the Kodak dataset. The UnetBlock
performs on par with ResidualBlock on distortion performance
and overwhelm the narrow network, i.e., DenseBlock. When
it comes to efficiency, the transforms based on UnetBlock is
much faster and needs less GPU memory than the transforms
based on ResidualBlock. Thus, the UnetBlock is a good trade-
off between the speed and performance.

2) Context-based non-local entropy modeling: The context-
base non-local entropy modeling exploits both of the global
similarity and the local representations of the context for
entropy modeling. We compare it to the entropy model only
makes use of local representations [17]. The same baseline
models are used for comparison. Compared to Ours(MSE) and
Ours(MS-SSIM), the baselines adopt the CCN-based entropy
models which focus on local representations. As shown in
Fig. 8, both Ours(MSE) and Ours(MS-SSIM) outperform the
counterpart baseline models by a large margin, which strongly
supports the effectiveness of the proposed non-local attention
block in context modeling.

To remove the effectiveness of different initialization and
training process, we test the performance of the context-
based non-local entropy models and the CCN-based entropy
models on the extracted codes. ya,0, . . . ,ya,6 denote seven

code sets produced by Ours(MSE) at seven different bit
rates. yb,0, . . . ,yb,6 are produced by Ours(MS-SSIM). The
performance of the two entropy models is evaluated by bits per
code, which is the rate between the total bits used to coding
the code block and the number of codes in the code block.
Table II gives the performance of the two entropy models, the
context-based non-local entropy model is significantly better
than the CCN-based entropy model on the 14 code sets, which
supports the contribution of the introduced non-local attention
block in entropy modeling.

We further visualize the estimated probability for each code
plane by mapping P (yr(p, q)) to an integer in the range
of [0, 255] and shows the code plane as a gray image in
Fig. 9. Fig. 9 (a) gives the uncompressed image; (b)-(i) are
the visualized probability of the CCN-based entropy model
on 8 code planes; (j)-(q) are the corresponding results of the
context-based non-local entropy model. In bottom code planes,
as shown in Fig. 9 (b), (c), (j) and (k), CCN-based entropy
model has similar performance as the proposed non-local
entropy model. This can be illustrated by the proxy similarity
function. The similarity of codes inner one plane is estimated
by the proxy codes in the bottom code planes. With a few
numbers of bottom code planes, the similarity is not accurate
and thus lead to poor non-local estimation. The attention block
tends to focus on the local representations instead of the non-
local estimation. Thus, the competing entropy models share
a similar performance. With the increase of planes in the
bottom, the proxy similarity begins more accurate and the
non-local estimations star to contribute to the performance.
The context-based non-local entropy modeling shows to have
overwhelming performance in the top code planes as described
in Fig. 9 (f), (g), (h), (i), (n), (o), (p) and (q).

VI. CONCLUSION

In this paper, we solved the missing reference problem
in the context modeling with a proxy similarity metric and
introduced the non-local operation for contex-based entropy
modeling. With a non-local attention block to combine the
local and global representations, our non-local entropy models
can provide more precise estimation for the entropy of the
codes. To reduce the information loss and boost the perfor-
mance for low distortion compression, we further designed
an effective and efficient network structure, i.e., UnetBlock,
and adopted it in building the transforms of the proposed
lossy image compression framework. We tested the context-
based non-local entropy model and the UnetBlock in lossy
image compression. Both of our models optimized for MSE
and MS-SSIM got significant improvements over state-of-art
image compression standards and recent DNN-based models.
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