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Abstract

In this paper we present a framework for the recogni-

tion of collective human activities. A collective activity is

defined or reinforced by the existence of coherent behav-

ior of individuals in time and space. We call such coher-

ent behavior ‘Crowd Context’. Examples of collective ac-

tivities are “queuing in a line” or “talking”. Following

[7], we propose to recognize collective activities using the

crowd context and introduce a new scheme for learning it

automatically. Our scheme is constructed upon a Random

Forest structure which randomly samples variable volume

spatio-temporal regions to pick the most discriminating at-

tributes for classification. Unlike previous approaches, our

algorithm automatically finds the optimal configuration of

spatio-temporal bins, over which to sample the evidence, by

randomization. This enables a methodology for modeling

crowd context. We employ a 3D Markov Random Field to

regularize the classification and localize collective activi-

ties in the scene. We demonstrate the flexibility and scala-

bility of the proposed framework in a number of experiments

and show that our method outperforms state-of-the art ac-

tion classification techniques [7, 19].

1. Introduction

In human interactions, activities have an underlying pur-

pose. This purpose can be to accomplish a goal, or to re-

spond to some stimulus. Both of these parameters are gov-

erned by the environment of the individuals, which dictates

the contextual elements in the scene. Since this environ-

ment is shared by all individuals present in the scene, it is

often the case that the actions of individuals are interdepen-

dent and some coherency between these actions may exist.

We call such activities “collective”. Examples of collective

activities are: Crossing the road, Talking, Waiting, Queu-

ing, Walking, Dancing and Jogging. In this paper, we seek

to recognize such collective activities from videos. We see

our work being relevant to a number of applications such

as surveillance monitoring, autonomous vehicles, indexing

of videos by semantic context and assistive technologies for

Figure 1. We seek to recognize collective activities such as queu-

ing (left picture) or talking (right picture). In isolation, the high-

lighted individuals have very similar appearance and thus it is not

possible to identify whether they are talking (red) or standing in

queue (blue). However, by considering the spatio-temporal distri-

bution of others (i.e, the crowd context) it becomes easier to rec-

ognize that the two individuals are performing different activities

and to identify which activities are being performed. The spatio-

temporal distribution of people, relative to an anchor, is illustrated

in the lower part of the figure, where individuals are bucketized

over a radial support, based on their physical location in the scene.

Such support is discretized in spatio-temporal bins, over which the

distribution of individuals can be measured. A key contribution of

this paper is to automatically find the optimal configuration of such

bins so as to maximize discrimination power.

impaired users in crowded environments.

Consider a collective activity “queuing”: the definition

of the activity itself requires that multiple individuals be

present in the scene and waiting their turn in some struc-

ture. Over time, the individuals may progress forward in

the queue slowly. This queue structure imposes restrictions

on what the spatial distribution of individuals over time may

look like. Although the queuing individuals are also “wait-

ing”, and a few perhaps are also “talking”, the predomi-

nant group activity remains the one of queuing. We refer to

such dominant and coherent behavior over the temporal and
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spatial dimension as crowd context. We argue that crowd

context is a critical ingredient for characterizing collective

activities (Fig.1). Note that if an individual’s action differs

from those of other individuals in the scene, this individual

could be flagged as an outlier since his behavior violates

that of the collective activity. For instance, consider a sce-

nario where an individual is in close proximity to a queue

but not in the queue. This individual, waiting or talking,

instead of queuing would be the anomalous element in the

scene.

Characterizing collective activities by crowd context was

introduced in [7] and further extended in [19], where a de-

scriptor was introduced to capture coherent behavior around

each individual. In this paper we propose to represent crowd

context by adaptively binning the spatio-temporal volume

as well as the attribute (e.g., pose and velocity of individ-

uals) space using a novel random forest (RF) classifica-

tion scheme. We call our scheme a Randomized Spatio-

Temporal Volume (RSTV) classifier. In our framework, the

feature that the trees in a RF operate on, is calculated over a

random spatio-temporal volume. Hence, the proposed ran-

dom forest picks the most discriminating spatio-temporal

volume over which to calculate the feature, and then further

continues to pick the most discriminating separating plane

in order to perform classification as usual in a random forest

[6]. Our adaptive binning strategy: 1) establishes robust-

ness to clutter, 2) is able to incorporate other cues/evidence

gracefully for classification, and 3) exhibits parameter free

learning under a principled probabilistic framework. We

use the Random Forest classifier to associate each individ-

ual with a collective activity label, performing local classi-

fication. We also propose a subsequent step based on a 3D

spatio-temporal Markov Random Field that is leveraged to

exploit the temporal and spatial consistency of activities to

perform global classification.

We point out that the spatial and temporal arrangement

solely cannot capture all relevant information for activity

classification and it may be well suited to be included as

a second layer of abstraction in classification systems such

as [28]. Furthermore, it is apparent that collective activ-

ity classification can be performed even more accurately

given atomic actions (a well studied problem) of each in-

dividual. However, in this paper we chose to use only the

spatio-temporal distribution of individuals as well as their

pose, and no other cues for one reason: to illustrate the

vast amount of information implicitly encoded in collective

spatial distributions, which we believe is a vital cue that

has not been exploited effectively by the vision community.

We validate the framework experimentally by comparison

to [7, 19] using the dataset of [7].

To summarize, our contributions include: 1) A new rep-

resentation for capturing crowd context, 2) the use of Ran-

dom Forest to partition the feature space, 3) the usage of

a MRF to regularize collective activities in time and space.

This methodology can also be employed to capture the con-

textual information in other recognition domains such as

scene or object-human interaction classification. 4) Vali-

dation using a challenging dataset composed of real world

and Internet videos.

2. Related Works

Human activity classification has been a key interest in

the computer vision community. As a critical ingredient

for successful activity classification, researches have devel-

oped methods for identifying [13] and tracking [26, 27, 11]

humans under different conditions as well as accurately es-

timating their pose [14, 5]. Activity classification can be

regarded as either identification of atomic actions e.g. [16],

or recognition of an ensemble of atomic actions that collec-

tively define an activity, such as talking. In this paper we

consider the latter. A summary of recent and past litera-

ture on action and activity recognition is presented in [29].

Among these, of particular interest are those based on vol-

umetric and contour based representations[3, 30], spatial-

temporal filtering[31], distributions of parts [10, 12, 24, 25]

sub-volume matching[17] and tensor-based representations

[18]. Several of these methods have specific strengths

such as modeling self occlusion, being robust to clutter

and effectively capturing motion cues. With exception of

[16, 21, 32, 23, 26], the focus has remained on recognition

of human activities in isolation, independent of the activity

of others in the scene. [19] introduced a contextual descrip-

tor which encodes not only the appearance of the person

of interest, but the others’ appearance information as well.

However, the author did not incorporate spatio-temporal re-

lationship among people, which is a critical cue for the col-

lective activity recognition. Inspired by [7], in this paper

we consider the crowd context in establishing the activ-

ity being performed by each individual in the crowd. Un-

like [16, 21], we propose a framework that performs activ-

ity recognition by considering the most discriminative cues

relevant from the crowd context, which are automatically

determined through randomization by a modified Random

Forest classifier [6].

3. Framework Overview

This section gives a brief overview of our framework.

The essential component of the framework implements the

intuition that an individual’s behavior is to some extent dic-

tated by the surroundings and can hence be best inferred

by considering the relative motion and location of others

in the scene (crowd context). To that end, we assume that

the trajectories of humans in 3D space as well as human

poses are available (Sec.4). We call this the evidence that is

used for learning our classification scheme. We then iden-
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tify the portions of the evidence that are most discrimina-

tive in activity classification; this is achieved by randomly

sampling hyper-volumes from the evidence space (Sec.5).

Finally we perform classification by analyzing the charac-

teristics of the detected individuals over these discrimina-

tive regions (Sec.5.3). We demonstrate the ability of our

model to successfully categorize collective activities in a

number of experiments, as well as to identify individuals in

the scene performing incoherent activities (Sec.6).

4. Evidence Extraction

In this section, we explore the methods used to extract

the evidence from videos, which is later used for learning

and classification. In order to obtain view-point invariant

representation of the collective activity, it is desirable to

obtain 3D trajectories (x, z) of each individual (see Fig.2).

We employed the 3D trajectories produced by [7] which are

available online[1]. On top of the provided trajectories, we

extract HoG descriptors [9] to obtain appearance informa-

tion of individuals. In order to classify the pose of indi-

vidual (left, front, right and back), we incorporate a 4-class

linear SVM with the given HoG descriptors.

In order to classify the collective activity of a person of

interest (anchor), our algorithm computes the relative mo-

tion of others around the anchor. The relative motion in-

cludes i) the location (x, z) of others in the coordinate sys-

tem centered on the anchor and oriented along the anchor’s

facing direction (pose), ii) the velocity difference between

anchor and others, and iii) the pose difference between the

anchor and the others (e.g., if the anchor is facing left and

an individual is facing right, the relative pose to anchor

is defined as facing the opposite direction). These rela-

tive motion features contain a number of desired properties

to describe a collective activity: 1) invariance under view-

point change (e.g., camera rotation) 2) consistency within

the same category of collective activity. By computing these

elements for every person in a certain time window, we can

obtain a view-point invariant representation of the contex-

tual distribution of people around the anchor person. This

information is passed to the RF classifier in order to obtain

the collective activity label for the anchor. Please see next

section for more details. Note that unlike [7], our model

does not explicitely compute a descriptor for each individ-

ual, but the classification algorithm will automatically iden-

tify the optimal spatio-temporal structure.

5. The RSTV Model

This section introduces the intuition behind the use of

RSTV, its implementation using a Random Forest classifier

[Sec. 5.2 ], as well as the algorithm employed in learning

constituent decision trees in the RF and the classification

process [Sec. 5.3]. We further outline the motivation behind
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Figure 2. a) Overview of tracking performed in scene coordinates. The

algorithm [7] returns a (x,z) trajectory. b) Example view from camera. c)

Bird’s eye reconstruction of scene in b). Color code is used to indicate

different trajectory(tracks) IDs over a time window.

our system and improvement over state-of-the-art activity

classifiers [Sec. 5.1].

5.1. STV and RSTV

We employ a concept similar to [7], which suggests that

successful classification of a collective activity is dependent

on considering the spatial distribution of people in the sur-

rounding crowd as well as the temporal evolution of this

distribution (crowd context). We start from the intuition

that such spatial/temporal distributions can be captured by

counting the number of people with a certain pose and ve-

locity in fixed regions of the scene, relative to an anchor

person whose activity we would like to classify. We call

this representation a Spatio-Temporal Volume representa-

tion (STV) (Fig. 3). Our framework extends this intuition

and considers variable spatial regions of the scene with a

variable temporal support. The full feature space contains

all the evidence extracted from the videos: the location of

each individual in 3D coordinates as well as the velocity &

pose of each individual per video frame. We interpret our

representation as a soft binning scheme where the size and

locations of bins are estimated by a random forest so as to

obtain the most discriminative regions in the feature space.

Over these regions, we analyze the density of individuals

(Sec.4), which can be used for classification. Figure 3 illus-

trates the (binned) Spatio-Temporal Volume (STV)[7] and

our Randomized Spatio-Temporal Volume (RSTV). RSTV

is a generalization of the STV in that the rigid binning re-

striction imposed in the STV is removed. In the RSTV

model, portions of the continuous spatio-temporal volume

are sampled at random and the discriminative regions for

classification of a certain activity are retained. RSTV pro-

vides increasing discrimination power due to increased flex-

ibility (Fig. 3 and Fig. 6). Note that due to this shift toward

increasing degrees of freedom, the model complexity and

learning time also increase. Nevertheless, testing time does

not increase significantly.

There are several reasons behind the proposed frame-

work. 1) As described in Sec.5.3, the framework automati-

cally determines the discriminative features in the whole ev-

idence space for classification. Indeed while STV proposes
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Figure 3. (a) A slice along the cylindrical STV(b) over the temporal axis,

which was introduced in [7]. Each slice is associated with a frame from

the video. The slice is rotated such that it is oriented in the same direction

as the anchor’s pose (blue arrow; the anchor is also indicated in blue).

The number of people in the scene (in black), with a certain pose and

location, both relative to that of the anchor, is histogrammed over several

bins. (c) Our proposed RSTV is a generalization of STV and significantly

increases the flexibility by allowing variable number of regions as well as

variable sized regions. This allows to capture discriminative information

about collective activities while also developing robustness to clutter.

a rigid and arbitrary decomposition of the feature space, fo-

cused on segmentation over space and time, in RSTV the

binning space is partitioned so as to maximize discrimina-

tion power. We do so by using our new algorithm based

on the random forest decomposition scheme. The algo-

rithm seeks the optimal number, shape and size of the bins

given the training set. 2) Unlike [7], there are no parame-

ters that must be learned or selected empirically (e.g. sup-

port distance, number of bins). 3) It enables robustness to

clutter. Indeed, unlike STV our RSTV does not operate

given fixed parameters such as radial support and number

of spatial bins, but explores the possible space of all param-

eters; thus the density feature, using which classification is

performed, is only calculated over regions relevant to each

different activity. Hence we ensure that the classification

evidence is pertinent to each activity and avoid clutter that

arises from hard-coded framework parameters that may be

tuned to achieve optimal classification of a few activities,

but not all. Notice that STV concept is similar to the Shape

Context [2] descriptor, which is known to be susceptible

to clutter due to non discriminative inclusion of all points

within the radial support. See Fig.4 for examples of learnt

RSTV regions.

5.2. Random Forest

We propose to use a Random Forest classifier as a key

component for learning the structure of RSTV. A Random

forest, introduced in [6], is a collection of many singular

classifiers known as decision trees. Given a feature, each of

these trees is trained to classify the test input by picking a

set of decision functions. Bosch et al. [4] employ random

forests for classification of feature vectors extracted using a

spatial pyramid decomposition scheme [20, 15]. However

their framework imposes a very rigid binning scheme, spec-

ified by empirically determined parameters. Our framework

generalizes this pyramiding scheme to allow non-rigid bin-

ning which is learned automatically. While [4] provides ex-

cellent results because the binning takes place in a 2D fea-

ture space (location in the image), a rigid decomposition of

our evidence space (x,z,velocity,pose) would be much less

obvious and adequate in our case.

In RSTV, the decision trees are binary and learned top-

down. At each branching point in a decision tree, the whole

feature space is considered: The algorithm firstly random-

izes over different volumes of the feature space and sec-

ondly randomizes over different decision thresholds given

the feature subspace. In our application, the final clas-

sification feature is a scalar count of the number of peo-

ple that lie within the selected subspace/hyper-volume i.e.

N(S, F, P, V ). Specifically, presence of a person in a

hyper-volume (S, F, P, V ) of the feature space indicates

that the person is located in some spatial region S (spec-

ified by the center position (x, z), radial and angular size

(△r, △θ)), over a time period of F frames with a pose

P ∈ (Front,Back, Left, Right) , with a range of ve-

locity V , where jointly (S, F, P, V ) uniquely identify a

sub volume. Hence, at each forking node n in the tree, a

hyper-volume rn is selected, the number of people observed

within this hyper volume is counted, and upon comparison

of this count to a scalar decision threshold, either the left or

the right subtree is evaluated. In theory branching on one

dimension of the hyper-volume (such as N(F ) or N(V ))
in each node of the tree, as is common, would learn the

same information as a tree that branches on the whole fea-

ture space: N(S, F, P, V ). However, the latter produces

a tree of much smaller depth and drastically improves the

computational efficiency in testing. At each node of the

decision tree, the algorithm picks a discriminating hyper-

volume of the feature space and a decision boundary for

the feature (number of people) evaluated over the selected

hyper-volume. The best hyper-volume and threshold pair

can be determined by computing information gain: Eq.1

Regular random forests [6], presented with a fixed di-

mensional feature vector, pick a decision boundary along

one (or multiple) dimension of the vector. By contrast,

our feature is in essence of infinite dimensionality since we

evaluate the count of people that exist in a certain spatio-

temporal region and there exist an uncountably many num-

ber of such regions with overlaps. We achieve a computa-

tionally feasible implementation through random sampling

of the continuous domains.

5.3. Learning RSTV using RF & Classification

The source of the evidence that is used for classification

is the set of tracks T that contain the estimated trajectories,

in 3D coordinates, of individuals in the scene. In learn-

ing the RF classifier, we begin by growing numerous ran-

dom decision trees to populate the forest. At each forking

node n in the tree we pick a discriminative hyper-volume

rn from the feature space as well as a decision threshold dn
for the count of people present in a set of tracks T evalu-
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ated over the selected hyper-volume, denoted by f(T, rn).
This threshold partitions the input into two subsets Il and

Ir. In order to find such a discriminative hyper-volume

rn, the algorithm randomizes over hyper-volumes to au-

tomatically determine a sub-optimal solution (Note: sub-

optimality is important and is discussed further under Im-

plementaion Considerations). We say a hyper-volume is

more discriminating than another if it is better able to sep-

arate the training data into 2 sets such that the variance of

the activity labels is low within sets and high across sets.

This measure is formalized through the notion of informa-

tion gain ∆E in each trial :

∆E = −
|Il|

|I|
E(Il)−

|Ir|

|I|
E(Ir), E(I) = −

C∑

i=1

pilog2(pi)

(1)

Here Il and Ir are the partition of set I divided by given

feature, C is the number of collective activity classes, pi
is the proportion of collective activity class i in set I , and

|I| is the size of the set I . The learning is performed given

a learning set Itrain where Itrain contains a collection

of tracks T of the individuals over some time range with

activity labels. Each track contains the location l, velocity

v and pose p of individuals present in the scene over the

time range for which T is calculated. Hence, T contains {l,
v, p} for all individuals in the scene. Given such an input

I , each decision tree should provide the probability that

each track in T originates from a person performing some

activity - visualizations of learnt RSTV regions are shown

in Fig. 4. The procedure for learning rn and dn for each

node n in a growing tree is outlined below:

Learning Algorithm
For each Kth tree:

• Get a random subset Ik of I

• Learn a tree using Ik

– For each node n, try m pairs of random (rmn , dmn )

– Select the best (rn, dn) which gives highest informa-

tion gain.

– Put training data {T |f(T, rn) < dn} into Il and

{T |f(T, rn) ≥ dn} into Ir .

– Pass Il Ir to left and right child node respectively.

– Recurse until there is only one class of activity.

Classification using learned RSTV: For classifica-

tion, a test set of tracks is passed down each tree in the

forest. At each intersection in the tree, the number of

people in the learned regions is evaluated and, if this

number is larger than the decision threshold, the input is

passed to the right subtree, otherwise it is passed to the left

subtree. Once a leaf node is reached, the learned posterior

(a) Waiting (b) Talking
Figure 4. Example of learned RSTV regions. a) & b) each illustrate a set

of RSTV regions learned automatically by a single tree. Colors indicate

different pose of neighboring individuals. Each RSTV is oriented such

that the anchor individual is facing in the z direction. The color red indi-

cates a pose identical to that of the anchor. Hence a) indicates that while

waiting, an anchor is surrounded on the left and right by people facing the

same direction. The RSTV also captures the presence of individuals stand-

ing behind the anchor, who are also facing the same direction (the dataset

includes several layers of individuals waiting at a bus stop). RSTV in b)

illustrates that during talking the anchor and neighbor face each other and

are in very close proximity. The color blue indicates a pose opposite to that

of the anchor, while green denotes a side pose. Furthermore the RSTV cap-

tures multiple people talking, forming a ring around the anchor. Note that

each RSTV needs only capture some coherent portion of evidence since

there exist many trees in the RF. x and z have units of meters while time is

measured in frames. This figure is best viewed in color

for that leaf node is picked up. The posteriors reached in

all the decision trees are combined to generate the overall

average posterior for class label given the test input.

Implementation Considerations: For practical rea-

sons, we consider a maximum radial support of 8 meters

as well as a maximum time period of 2 seconds in

classification. In learning each tree, while searching

for discriminative RSTV regions, it is crucial that the

number of random samples of the decision threshold dn
be minimal. We note that although increasing the number

of iterations does provide a more optimal rn, dn pair, it

also decreases the variation among tree nodes and the trees

themselves. This is due to the fact that, while learning

each node by randomization, we begin to select the same

few discriminative rn, dn over and over, generating similar

trees. It is evident that we would like variation among

the trees in order to improve classification by achieving

generalization.

5.4. Regularizing Classification using MRF

Though the RSTV captures the local crowd context of

a person, the RSTV classification sometimes fails due to

noisy estimation of pose or trajectories. To obtain a more

robust classifier, we imposed spatial and temporal smooth-

ness by applying 3D Markov Random Field (MRF) [22].

The MRF is depicted in Fig. 5 and formulated as:
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Figure 5. Graphical representation for the proposed MRF. Z
j
ti

models the

activity of a person in one time slice (hidden variable), X
j
ti

represents the

trajectories associated to an anchor person. If two people are close enough

(≤2 meter away), the spatial edges are built. For every person, temporal

edges are constructed between nearby nodes. Linked nodes (either spa-

tially or temporally) defines an activity pair.

P (Z|X, p) ∝
∏

t

∏

i

P (Zi
t |X

i
t)
∏

t

∏

(i,j)∈Es

ΦS(Z
i
t , Z

j
t ; p

i
t, p

j
t )

∏

i

∏

t

ΦT (Z
i
t−1, Z

i
t) (2)

where Zi
t is the collective activity label of ith person in time

t, Xi
t is the observation of the person in t, pit is the loca-

tion of person i in t, Es is the set of edges between people

(Fig.5), P (Zi
t |X

i
t) is the probability estimate from Random

Forest for person i in time t, ΦS(Z
i
t , Z

j
t ; p

i
t, p

j
t ) is the spa-

tial pair-wise potential, and ΦT (Z
i
t−1, Z

i
t) is the temporal

potential. We establish temporal edges between temporally

adjacent nodes with same target and spatial edges between

two nodes belonging to different targets if they are close to

each other (< 2 meter). We perform the estimation using

Gibbs Sampling (with 500 iterations for burn-in and 1000

iterations for sampling). We learned 1) the temporal poten-

tial by counting number of activity pairs in adjacent time

and 2) the spatial potential in a non-parametric way by col-

lecting location difference oriented with respect to each per-

son’s pose for all activity pairs. In experiments, we use the

same leave-one-video-out scheme for validation.

6. Experiments

Here, we provide the results of validating our framework

against challenging real world videos.

Dataset: We use the dataset in [7] which is the most

appropriate dataset for evaluating collective activities.

Other activity datasets (e.g, CAVIAR, IXMAS, or UIUC)

are not adequate for our purpose, since they either consider

only the activity of a single person or few number of

people. [7] comprises of two dataset, 5 category collective

activity dataset and 6 category collective activity dataset.

The former consists of collective activities, Crossing,

Standing, Queuing, Walking and Talking. The later is an

Average Accuracy: 70.9%

76.4% 5.8% 1.6% 16.2% 0.0%

4.2% 76.7% 14.1% 4.9% 0.1%

0.0% 20.8% 78.7% 0.2% 0.3%

41.6% 11.6% 9.5% 36.8% 0.6%

0.0% 2.7% 8.2% 3.4% 85.7%

C
ro

ss
in

g

W
ai

tin
g

Q
ueu

ei
ng

W
al

ki
ng

Tal
ki

ng

Average Accuracy: 82.0%

76.5% 6.3% 1.6% 0.0% 0.0% 15.6%

4.8% 78.5% 12.8% 0.9% 3.1% 0.0%

0.2% 20.1% 78.5% 0.8% 0.4% 0.0%

2.8% 6.1% 6.5% 84.1% 0.5% 0.0%

11.1% 5.1% 2.9% 0.4% 80.5% 0.1%

5.9% 0.0% 0.0% 0.0% 0.0% 94.1%D
an

ci
ng

Jo
ggin

g

(a) (b)
C
ro

ss
in

g

W
ai

tin
g

Q
ueu

ei
ng

W
al

ki
ng

Tal
ki

ng

C
ro

ss
in

g

W
ai

tin
g

Q
ueu

ei
ng

Tal
ki

ng

D
an

ci
ng

Jo
ggin

g

C
ro

ss
in

g

W
ai

tin
g

Q
ueu

ei
ng

Tal
ki

ng

Figure 6. a) Our final classification accuracy for 5-category dataset in [7]

is 70.9%, as compared to 65.9% in [7]. Classification results are obtained

using RSTV with MRF regularization. b) Our results for the augmented

6-category dataset in [7].

augmented dataset based on the former. It includes two

more categories of Dancing and Jogging and omits the

activity Walking. As suggested in [7], the Walking class is

ill-defined as it is more like a single person activity than a

collective one. We use the trajectory data provided in [1].

Activity Classification Results: We validated the

performance of our framework against the 5-category and

6-category datasets presented in [7]. Fig.6.(a) and (b)

analyzes the performance of our proposed method and

shows that we achieve a significant improvement over [7].

We further study the effect of some of the components

of our framework and compare it with [19]. Results are

shown in Table.1. The first row shows the result of [19]

and the second and third row present the result using STV

equipped with a SVM classifier [7]. The fourth row shows

the result using STV equipped with an RF classifier. This

indicates that using STV with a naive replacement of the

SVM classifier with a Random Forest does not yield an

improvement in the results, indicating that the improvement

stems from our novel segmentation of the feature space and

selection of relevant portions (RSTV). As Table.1 shows,

the MRF yields a much larger improvement if walking is

removed (6 activity dataset). All results presented were

obtained using a leave-one-video-out scheme. Processing a

1 min video takes roughly 30 min on a standard dual-core

desktop. Learning the RSTV takes about 6 min per tree,

depending on the size of the learning base. Example results

are presented in Fig.9.

Localization Results: Anecdotal results for localization of

collective activities and identification of anomalous individ-

ual in the scene by MRF are shown in Fig.8. In order to

perform the segmentation, we apply mean-shift clustering

algorithm [8] over the response of RF classifier.

7. Conclusion

In this paper we demonstrated that capturing crowd
context is essential for performing successful classification
of collective activities. We presented and validated our
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Crossing Waiting Queuing Talking Dancing Jogging

Figure 9. Example results on the 6-category dataset [7]. Top 3 rows show examples of good classification and bottom row shows examples of false

classification. The labels X (magenta), S (blue), Q (cyan), T (orange), D (red), J (green) and NA (white) indicate crossing, waiting, queuing, talking,

dancing, jogging and not assigned, respectively. When there in insufficient evidence to perform classification, the NA label is displayed. The misclassified

results indicate that miss classifications mostly occur between classes with similar structure. This figure is best viewed in color.
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Figure 7. The impact of changing # trees in the forest; 5-category dataset

was used, MRF was not employed.

RSTV framework, which is able to automatically capture
relevant crowd context and perform activity classification
using a random forest. The use of random forest to segment
the feature space is a new concept that is of considerable
interest as it can be applied to numerous problems in
computer vision.

Acknowledgement : This work is supported by a
grant from Ford Motor Company via the Ford-U of M
Innovation Alliance (Award #N011537) and by NSF
AEGER (award #1052762).

Dataset 5 Activities 6 Activities

AC [19] 68.2% -

STV[7] 64.3% -

STV+MC[7] 65.9% -

STV+RF 64.4% -

RSTV 67.2% 71.7%

RSTV+MRF 70.9% 82.0%

Table 1. Average classification results for various methods on dataset from

[7]. The STV+RF row shows the result of a naive combination of STV

with a RF classifier. A comparison with our RSTV results indicates that

indeed it is our discriminative learning method that provides the significant

improvement. Notice that [7] uses an SVM classifier to classify their STV

descriptors.
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