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Abstract

■ Substantial evidence indicates that subjective value is adapted

to the statistics of reward expected within a given temporal con-

text. However, how these contextual expectations are learned is

poorly understood. To examine such learning, we exploited a

recent observation that participants performing a gambling task

adjust their preferences as a function of context. We show that,

in the absence of contextual cues providing reward information,

an average reward expectation was learned from recent past

experience. Learning dependent on contextual cues emerged

when two contexts alternated at a fast rate, whereas both cue-

independent and cue-dependent forms of learning were appar-

ent when two contexts alternated at a slower rate. Motivated by

these behavioral findings, we reanalyzed a previous fMRI data

set to probe the neural substrates of learning contextual reward

expectations. We observed a form of reward prediction error

related to average reward such that, at option presentation, activ-

ity in ventral tegmental area/substantia nigra and ventral striatum

correlated positively and negatively, respectively, with the actual

and predicted value of options. Moreover, an inverse correlation

between activity in ventral tegmental area/substantia nigra (but

not striatum) and predicted option value was greater in partici-

pants showing enhanced choice adaptation to context. The find-

ings help understanding the mechanisms underlying learning of

contextual reward expectation. ■

INTRODUCTION

Substantial evidence indicates that subjective values of

monetary outcomes are context-dependent. That is, in

order for these values to be consistent with the choices

participants make between those outcomes, they must be

adjusted according to the other rewards available either

immediately (Tsetsos et al., 2016; Louie, Glimcher, &

Webb, 2015; Louie, LoFaro, Webb, & Glimcher, 2014;

Louie, Khaw, & Glimcher, 2013; Soltani, De Martino, &

Camerer, 2012; Tsetsos, Chater, & Usher, 2012; Vlaev,

Chater, Stewart, & Brown, 2011; Tsetsos, Usher, & Chater,

2010; Stewart, 2009; Johnson & Busemeyer, 2005; Usher &

McClelland, 2004; Stewart, Chater, Stott, & Reimers, 2003;

Roe, Busemeyer, & Townsend, 2001; Simonson & Tversky,

1992; Huber, Payne, & Puto, 1982; Tversky, 1972) or ex-

pected before the options are presented (Rigoli, Friston,

& Dolan, 2016; Rigoli, Friston, Martinelli, et al., 2016; Rigoli,

Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan, &

Dolan, 2016; Louie et al., 2014, 2015; Ludvig, Madan, &

Spetch, 2014; Kobayashi, de Carvalho, & Schultz, 2010;

Rorie, Gao,McClelland,&Newsome, 2010; Padoa-Schioppa,

2009; Stewart, 2009). We recently investigated the latter

form of effect (Rigoli, Friston, & Dolan, 2016; Rigoli,

Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan, et al.,

2016) in a decision-making task involving blocks of trials

associated with either a low- or high-value context with

overlapping distributions. Here, choice behavior was

consistent with a hypothesis that the subjective value of

identical options was larger in a low-value context com-

pared with a high-value context. This and similar evidence

(Louie et al., 2014, 2015; Ludvig et al., 2014; Stewart, 2009)

suggests that subjective values are partially rescaled to the

reward expected within a given context.

However, in previous studies of temporal adaptation,

participants were explicitly informed before the task

about the distribution of contextual reward. Such designs

enable an analysis of the way that beliefs about contextual

reward impact choice but leave open the question of

how such beliefs are learned. Here, we investigate this

question by analyzing how beliefs about contextual re-

ward are shaped by experience within a context, includ-

ing learning when there are multiple (and cued) contexts

that alternate. One possibility is that participants might

ignore contextual cues and only learn a long-run expected

rate of reward (Niv, Daw, Joel, & Dayan, 2007). This aver-

age reward could then act as a baseline against which the

subjective value of an actual reward is adapted. Alter-

natively, participants might use contextual cues to learn

and maintain separate reward expectations for different

contexts and rely on these during value adaptation. A final

possibility is that reward expectations dependent and

independent of cues are both acquired and exert a com-

bined influence on value adaptation.
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Here, we implemented a study design that enabled us

to probe learning of contextual reward expectation and

its impact on subjective value attribution and choice.

First, in a novel behavioral experiment, we analyzed

how previous reward experience drives learning of con-

textual reward. In a second new behavioral experiment,

we considered the role of multiple alternating contexts

signaled by different cues. We adopted a choice task

similar to a previous study (Rigoli, Friston, & Dolan,

2016), but unlike this previous study, in this instance par-

ticipants were not explicitly instructed about contextual

reward distributions and could only learn these distribu-

tions observationally by playing the task. The results of

these two new experiments provided a motivation for us

to examine the neural substrates of learning contextual

reward expectations by reanalyzing a previously reported

data set (Rigoli, Rutledge, Dayan, et al., 2016) where we

used a similar paradigm in conjunction with acquiring

fMRI data.

It is well established that, when a reward outcome is

presented, neurophysiological and neuroimaging re-

sponses in ventral striatum and ventral tegmental area/

substantia nigra (VTA/SN) reflect a reward prediction

error (RPE) signal (Lak, Stauffer, & Schultz, 2014; Stauffer,

Lak, & Schultz, 2014; Niv, Edlund, Dayan, & O’Doherty,

2012; Park et al., 2012; D’Ardenne, McClure, Nystrom, &

Cohen, 2008; Tobler, Fiorillo, & Schultz, 2005; O’Doherty

et al., 2004; O’Doherty, Dayan, Friston, Critchley, & Dolan,

2003; Schultz, Dayan, & Montague, 1997). This is based on

the observation that response in these regions correlates

positively and negatively with the actual and expected

reward outcome, respectively (Niv et al., 2012; Niv &

Schoenbaum, 2008). However, the question remains as

to whether these regions also show an RPE signal at the

time of presentation of the options rather than the out-

comes. In this regard, at option presentation, research

has shown a correlation between brain activation and

actual option expected value (EV; Lak et al., 2014; Stauffer

et al., 2014; Niv et al., 2012; Park et al., 2012; D’Ardenne

et al., 2008; Tobler et al., 2005; O’Doherty et al., 2003,

2004; Schultz et al., 1997). However, it remains unknown

whether there is also an inverse correlation with the pre-

dicted option EV (which is the other component of an

RPE signal; Niv et al., 2012; Niv & Schoenbaum, 2008).

These findings motivated a proposal that there might

be a distinct effect of outcomes and options on activity in

ventral striatum and VTA/SN, corresponding to signaling

RPE and EV, respectively (Bartra, McGuire, & Kable, 2013).

For example, the possibility that option presentation elicits

EV and not RPE signaling is consistent with the idea that

expectations about options (which is a key component of

the RPE signal) may be fixed or may change over such a

long timescale that they would be undetectable within

the timescale of an fMRI experiment. However, other the-

oretical models (Schultz et al., 1997) imply that the VTA/SN

(and, by extension, ventral striatum) reflects RPE also at

option presentation. This possibility is also consistent with

the idea explored here that the value of options is

adapted to the context learned from experience, as such

context would determine the predicted option EV. Our

fMRI analysis aimed to clarify whether presenting options

elicits RPE or EV signaling in ventral striatum and VTA/SN

and, if RPE is signaled, whether this is related with the

effect of context on choice behavior.

METHODS

Participants

Twenty-four healthy, right-handed adults (13 women,

aged 20–40 years, mean age = 24 years) participated in

the first behavioral experiment. Twenty-eight healthy,

right-handed adults participated in the second behavioral

experiment. We discarded data from three participants in

the second experiment who did not attend properly to

the task, as evidenced by having more than 300 (i.e.,

one half of all) trials with RT shorter than 300 msec (for

the other participants, the maximum number of such trials

was 37). Therefore, the total sample for the second exper-

iment was 25 participants (15 women, aged 20–40 years,

mean age = 25 years). We also reanalyzed data from a pre-

viously reported fMRI study where the experimental sam-

ple included 21 participants (13 women, aged 20–40 years,

mean age = 27 years; for details, see Rigoli, Rutledge,

Dayan, et al., 2016). All studies were approved by the

University College London research ethics committee.

Experimental Paradigm and Procedure

Participants were tested at the Wellcome Trust Centre for

Neuroimaging at University College London. Each exper-

iment involved a computer-based decision-making task

lasting approximately 40 min. Before the task, partici-

pants were fully instructed about task rules and the basis

of payment. Crucially, in Experiments 1 and 2, partici-

pants were not informed about the distribution of options

that would be encountered during the task (see below).

Note that this is a key difference from the tasks adopted

in previous studies where participants were instructed

about the distributions (Rigoli, Friston, & Dolan, 2016;

Rigoli, Rutledge, Dayan, et al., 2016). In the fMRI experi-

ment, before each block, information about the reward

distributions was provided (see below).

Experiment 1

On each trial, participants chose between a sure mone-

tary amount, which changed trial by trial (600 trials over-

all), and a gamble whose prospects were always either

zero or double the sure amount, each with equal (50–50)

probability (Figure 1A; during instructions, participants

were informed about this probability). This ensured that

both options always had equal (objective) EV. Trial EV

was randomly drawn from a uniform distribution (with
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50p steps) in the £1–£6 range. The certain and risky

options were presented pseudorandomly on two sides of

a screen; participants chose the left or right option by

pressing the corresponding button of a keypad. Imme-

diately after a choice was made, the chosen option was

underlined for 300 msec and the outcome of the choice

was then displayed for one second. Participants had 3 sec

to make their choices; otherwise, the statement “too late”

appeared, and they received a zero outcome amount.

The outcomes of the gamble were pseudorandomized.

At the end of the experiment, one trial outcome was

randomly selected and added to an initial participation

payment of £5. Compared with using the sum of payoffs

across all trials, using a single trial for payment minimizes

the influence of past outcomes and allowed us to use

choices characterized by larger monetary amounts.

Because participants do not know ahead of time which

trial will be selected, they should work equally hard on

each. This is a method of payment routinely used in ex-

perimental economics.

This task was used because it has some similarity to the

one we used in previous studies (Rigoli, Rutledge, Chew,

et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016). These

studies showed that adaptation to context predisposes

participants who prefer to gamble for large EVs to gamble

more when EVs are larger relative to contextual expecta-

tions and participants who prefer to gamble for small EVs

to gamble more when EVs are smaller relative to con-

textual expectations. Crucially, in our previous studies,

contextual expectations were induced descriptively using

explicit instructions, whereas here we investigated whether

contextual expectations (and the ensuing adaptation

effects on choice) arise observationally from option EVs

presented on previous trials.

Experiment 2

On each trial, a monetary amount, changing trial by trial

(600 trials overall), was presented in the center of the

screen, and participants had to choose whether to accept

half of it for sure (pressing a left button) or select a gam-

ble whose outcomes were either zero or the amount pre-

sented on the screen (i.e., double the sure amount), each

with equal (50–50) probability (Figure 1B; during instruc-

tions, participants were informed about this probability).

As in Experiment 1, this ensured that on every trial the

sure option and the gamble always had the same EV. A

trial started with an intertrial interval lasting 1.5 sec where

the two options (i.e., half and gambling) were displayed

on the bottom of the screen (on the left and right side,

respectively). Next, the trial amount was displayed. Imme-

diately after a response, the chosen option was underlined

for 300 msec, and this was followed by the outcome of the

choice, which was shown for 1 sec. Participants had 3 sec to

make their choices; otherwise, the statement “too late”

appeared, and they received a zero outcome amount.

The task was organized in short blocks, each com-

prising five trials. Each block was associated with one of

Figure 1. (A) Experimental

paradigm for Experiment 1.

Participants repeatedly made

choices between a sure

monetary reward (on the

left in the example) and a

gamble (on the right in the

example) associated with a

50% probability of either double

the sure reward or zero. After

a decision was performed, the

chosen option was underlined,

and 300 msec later the trial

outcome was shown for 1 sec.

The intertrial interval (ITI) was

1.5 sec. At the end of the

experiment, a single randomly

chosen outcome was paid out to

participants. (B) Experimental

paradigm for Experiment 2. On

each trial, a monetary reward was

presented (£10 in the example),

and participants had to choose

between half of the amount for

sure (by pressing the left button) and a 50–50 gamble associated with either the full amount or a zero outcome. A trial started with an ITI lasting

1.5 sec where the two options (i.e., half and gambling) were displayed on the bottom of the screen (on the left and right side, respectively). Next,

the trial amount was displayed. Right after a response was performed, the chosen option was underlined for 300 msec, followed by the outcome of the

choice, shown for 1 sec. The task was organized in short blocks, each comprising five trials. Each block was associated with one of two contexts that

determined the possible EVs within the block. These EVs were £1, £3, and £5 for the low-value context and £3, £5, and £7 for the high-value context.

Contexts were signaled by the color of the text on the screen, with low-value context associated with green and high-value context with orange for half of

the participants and vice versa for the other half. At the end of the experiment, a single randomly chosen outcome was paid out to participants.
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two contexts (low value and high value) that determined

the possible EVs within the block. These EVs were £1,

£3, and £5 for the low-value context and £3, £5, and

£7 for the high-value context. Contexts were signaled

by the color of the text (green or orange) on the screen,

with low-value context associated with green and high-

value context with orange for half of the participants and

vice versa for the other half. Before a new block started,

the statement “New set” appeared for 2 sec. Crucially,

during instructions, participants were not told that colors

indicated two different reward distributions. The order

of blocks, trial amounts, and outcomes were pseudo-

randomized. At the end of the experiment, one trial was

randomly selected among those received, and the out-

come that accrued was added to an initial participation

payment of £5.

This task was used because it has some similarity to the

one we used in a previous study that was successful in

eliciting contextual adaptation with contexts that alter-

nated (Rigoli, Friston, & Dolan, 2016). Crucially, in our

previous study, contextual expectations were induced

descriptively using explicit instructions, whereas here

we investigated whether contextual expectations (and

the ensuing adaptation effects on choice) arise observa-

tionally from experience with cues and/or with option

EVs presented on previous trials.

fMRI Experiment

The task was performed inside the scanner (560 trials

overall). The design was similar to the task used in Exper-

iment 1, except for two differences (for details, see Rigoli,

Rutledge, Dayan, et al., 2016). First, immediately after the

choice was made, the chosen option was not underlined,

but the unchosen option disappeared for 300 msec. Sec-

ond, trials were arranged in four blocks (140 trials each).

In each block, the sure amount was randomly drawn

from a uniform distribution (with 10p steps) within a

£1–£5 range (for two blocks: low-value context) or within

the £2–£6 range (for the two other blocks: high-value

context). Blocks were interleaved with 10-sec breaks.

During the interblock interval, a panel showed the re-

ward range associated with the upcoming block. Block

order was counterbalanced across participants. At the

end of the experiment, one trial was randomly selected

among those received, and the outcome that accrued

was added to an initial participation payment of £17. Inside

the scanner, participants performed the task in two sepa-

rate sessions, followed by a 12-min structural scan. After

scanning, participants were debriefed and informed

about their total remuneration.

Please note that the tasks used in Experiments 1 and 2

and the fMRI experiment are different in certain details.

For example, the first experiment and the fMRI experi-

ment require choosing a sure monetary amount or a

gamble between double the amount or zero, whereas in

the second experiment, a monetary amount is presented

and participants are asked to choose half of the amount

or a gamble between the full amount and zero. However,

please note that the differences among experiments do

not affect our analyses and results, as our research ques-

tions were not based on comparisons between the exper-

iments (see below).

Behavioral Analysis

In all experiments, for analyses we discarded trials

where RTs were slower than 3 sec (because it was our

time limit followed by the statement “too late”) and fas-

ter than 300 msec (as this is a standard cutoff for deci-

sion tasks; e.g., Ratcliff, Thapar, & McKoon, 2001),

resulting in the following average number of trials ana-

lyzed per participant: 549 in Experiment 1, 535 in Exper-

iment 2, and 556 in the fMRI experiment. A two-tailed

p < .05 was employed as significance threshold in all

behavioral analyses.

Our main hypothesis was that contextual reward ex-

pectations are learned from previous trials and drive

choice adaptation. Learning implies that the expected

contextual reward at trial t is lower/higher when a

low/high EV is presented at trial t − 1. Following previ-

ous data (Rigoli, Rutledge, Chew, et al., 2016; Rigoli,

Rutledge, Dayan, et al., 2016), adaptation to context im-

plies that participants who prefer to gamble for large

EVs (at trial t) gamble more when EVs are larger relative

to contextual expectations, whereas participants who

prefer to gamble for small EVs gamble more when EVs

are smaller relative to contextual expectations. To assess

these predictions, for each participant, we built a logistic

regression model of choice (i.e., with dependent mea-

sure being choice of the gamble or of the sure option),

which included the EV at trial t and the EV at trial t − 1

as regressors. Our hypothesis that there would be adap-

tation to the context (where context is defined simply by

the previous trial) predicted an inverse correlation be-

tween the effect of EV at trial t and the effect of EV at

trial t − 1 on gambling percentage. This would indicate

that participants who gambled more with larger EVs at

trial t would also gamble more with smaller EVs at trial

t − 1, and participants who gambled more with smaller

EVs at trial t would also gamble more with larger EVs at

trial t − 1.

To probe the computational mechanisms underlying

choice behavior, we used computational modeling and

performed two distinct analyses. First, we analyzed the

influence of the EV at trial t (recall that the sure option

and the gamble had equivalent EV) together with the in-

fluence of EV at previous trials. To do this, we fitted an

exponential decay model to the gambling data, which

prescribed that the probability of gambling depends on

a sigmoidal function of an intercept parameter β0 plus

a weight parameter β1 multiplied by the EV at trial t, plus

the sum of j weight parameter β2, each multiplied by

the EV at trial t − j and by an exponential decay factor

Rigoli et al. 53



dependent on a parameter λ (which was bounded be-

tween 0 and 5 during estimation):

P gamblingð Þ ¼ σ β0 þ β1Rt þ β2

X

4

j¼1

e−λ j−1ð ÞRt−j

 !

(1)

Our second modeling analysis consisted in using a

computational model that included a learning compo-

nent, an adaptation component, and a choice compo-

nent. The learning component establishes that, on

every trial, participants update a belief about the expected

(i.e., average) EV of options �r (i.e., contextual reward).

A first possibility is that this belief update is based on a delta

rule with a learning rate η, which remains constant

throughout the whole task (Rescorla & Wagner, 1972).

If the EV presented at trial t is Rt (remember that the

two options available have equivalent EV), then the EV of

options expected at trial t + 1 is

�rtþ1 ¼ �rt þ η Rt−�rtð Þ (2)

A second possibility is that the contextual reward

expectation is updated following a decreasing learning

rate. This can be derived from a Bayesian learning

scheme (Bishop, 2006) in which the long-run mean is as-

sumed to be fixed across time (note that a constant learn-

ing rate implemented in the model above can be derived

from a Bayesian scheme too, in this case assuming a long-

run mean, which changes with a constant rate). A de-

creasing learning rate emerges if we assume, at every trial

t, a Gaussian prior distribution with mean �rt and precision

(i.e., inverse variance) πt and a new observation (of the

EV of options) Rt associated with precision πR. The pos-

terior (which will correspond to the prior for the next

trial) reward expectation corresponds to a prediction

error (Rt − �rt) multiplied by a learning rate ηt:

�rtþ1 ¼ �rt þ ηt Rt−�rtð Þ (3)

where the learning rate ηt varies on every trial and depends

on the two precisions πR and πt:

ηt ¼
πR

πt þ πR
(4)

The posterior precision (which will correspond to the

prior precision of the next trial) is equal to:

πtþ1 ¼ πt þ πR (5)

Assuming (as we did in our models with decreasing

learning rate) a prior precision at the first trial equal to

zero (i.e., π1 = 0), Equations 4 and 5 imply that ηt = 1/t

and hence ηt+1< ηt. For instance, the learning rate will be

smaller than 0.05 after 20 trials only (formally: ηt>20 <

0.05). Note that, in models with decreasing learning rate,

the learning rate is not a free parameter. In addition, π1 =

0 and Equation 4 imply that the learning rates across trials

are independent of the value assigned to πR (hence, πR
is not a free parameter either, and we set πR = 1 in our

models).

In Experiment 2 and in the fMRI experiment, where

two contexts (signaled by distinct cues) alternate, we

analyzed models that considered separate cue-related

average reward expectations �rt;k (k = 1 and k = 2 for

the low- and high-value contexts, respectively; trials for

cue k are indexed by tk). Note that these models assume

one separate succession of trials per cue and not that

learning is restarted every time a cue appears again. As

above, learning could be realized either through a con-

stant or a decreasing learning rate. In addition, for these

experiments, we considered models where both a cue-

independent �rt and a cue-dependent �rt;k average reward

representation were learned in parallel, and both influ-

enced adaptation of incentive value.

The adaptation component of the models is derived

from our previous work on value normalization (Rigoli,

Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan,

et al., 2016). Here we extend this by comparing sub-

tractive versus divisive forms of normalization. The adap-

tation component prescribes that the objective EV of

options is transformed into a subjective value by being

rescaled to the prevailing average reward. If the objective

EV of options at trial t is Rt, then the corresponding

subjective value will be

Vt Rtð Þ ¼ Rt−τ�rt (6)

In models where �rt;k (instead of �rt) is learned, Equation 6

corresponds to Vt(Rt) = Rt − τ�rt;k. The context parameter

τ implements (subtractive) normalization of the objective

EV to a degree that is proportional to the average reward �r.

We compared this formulation based on subtractive nor-

malization with a model implementing divisive normali-

zation (as suggested, for instance, by some recent neural

accounts; Louie et al., 2013, 2014) where Rt is divided by

the context parameter τ and the average reward �r:

Vt Rtð Þ ¼ Rt= 1þ τ�rtð Þ (7)

In Experiment 2 and in the fMRI experiment, where

two contexts alternate, we considered models where

adaptation was implemented with respect to both a cue-

independent belief about average reward �rt and the

average reward expected for the current cue �rt;k:

Vt Rtð Þ ¼ Rt− τ
�rt þ �rt;k

2

� �

(8)

The context parameter τ implements (subtractive) nor-

malization associated with both the cue-independent

average reward �rt and the average reward �rt;k expected

for the current cue k. As above, we also considered a

formulation implementing divisive normalization where

Vt Rtð Þ ¼ Rt= 1þ τ
�rt þ �rt;k

2

� �� �

(9)

For some of the models that consider both �rt and �rt;k,

we implemented separate context parameters, rendering
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Equations 8 and 9 Vt(Rt) = Rt− (τ1�rt + τ2�rt;k) and Vt(Rt) =

Rt/(1 + τ1�rt + τ2�rt;k), respectively.

Finally, the choice component determines the proba-

bility of gambling as determined by a sigmoidal function:

P gamblingð Þ ¼ σ αVt Rtð Þ þ μð Þ

¼ 1= 1þ exp −αVt Rtð Þ−μð Þð Þ ð10Þ

where α is a value-function parameter, which determines

whether gambling is more likely with larger (α > 0) or

smaller (α < 0) subjective value V(R), and μ represents

a gambling bias parameter. This implementation of the

choice component is motivated by the fact that, in our

task and with a linear mapping from objective to subjec-

tive values assumed in our models, the sure option and

the gamble have equivalent EV, implying that the trial EV

is the only variable changing trial-by-trial. This entails that

a logistic regression model is sufficient to capture a wide

range of mechanistic models of choice (e.g., those based

on risk-return accounts; see Rigoli, Rutledge, Chew, et al.,

2016; Rigoli, Rutledge, Dayan, et al., 2016, for details).

The free parameters of the model are the value function

parameter α, the gambling bias parameter μ, the context

parameter τ, and the learning rate η. The effects postu-

lated by the model (assuming subtractive normalization)

in determining gambling probability as a function of dif-

ferent trial EV and different parameter sets are represented

in Figure 2A–B. This shows that (i) for positive and nega-

tive value function parameter α, the propensity to gamble

for larger EVs increases and decreases, respectively; (ii)

larger gambling bias parameter μ increases the overall

propensity to gamble; (iii) the context parameter τ deter-

mines whether, as the estimated average reward �r in-

creases, the subjective values attributed to EVs increase

(τ < 0) or, as predicted by a value normalization hypothe-

sis, decrease (τ > 0) and in so doing exert an impact on

gambling propensity; and (iv) the learning rate η deter-

mines the extent to which �r is revised with new experience.

The free parameters were fit to choice data using the

fminsearchbnd function of the Optimization toolbox in

Matlab (see Supplementary Figures S1, S2, and S3 for

distributions of parameters). The learning rate η was con-

strained between 0 and 1, which are the natural bound-

aries for this parameter. Starting values for parameter

estimation was 0 for all parameters. The full models

and nested models (where one or more parameters were

fixed to 0) were fitted to choice data. For each model, the

negative log-likelihood of choice data given the best fit-

ting parameters was computed participant by participant

and summed across participants, and the sum of negative

log-likelihood was used to compute the Bayesian Infor-

mation Criterion (BIC) scores (Daw, 2011). These were

considered for model comparison, which assigns a higher

posterior likelihood to a generative model with smaller

BIC.

The value of �rt and �rt;k at the start of the task was set to

the true overall average EV across trials (in Experiment 1:

£3.5; in Experiment 2: £4; in fMRI experiment: £3.5). To

Figure 2. (A) Plots of the

gambling probability as a

function of trial EV (remember

that the two options always had

equivalent EV) for agents with

specific parameters simulated

with the computational model

of behavior. Effect of varying

the value function parameter α

(from −0.2 to 0.2 with increases

in 0.05 steps, represented along

a bright-to-dark gradient) and

the gambling bias parameter μ

(green and red lines implement

μ = £0.5 and μ = −£0.5,

respectively). It is evident that

α determines the tendency to

gamble for large or small EVs

whereas μ is analogous to an

intercept parameter reflecting

the tendency to gamble for a

hypothetical EV of zero. Here,

the context parameter τ is set to

zero. (B) Effect of varying the

value function parameter α

and the context parameter τ

is considered. Red lines

represent agents with a positive value function coefficient α (equal to 0.15), and green lines represent agents with a negative alpha (equal to −0.15).

Agents with different τ are plotted in which τ increases in £0.5 steps from −£2 to £2 along a bright-to-dark gradient. (C) Experiment 1: relationship

between the effect of EV at current trial t and effect of EV at previous trial t − 1 on gambling probability (r(24) = −.44, p = .033). (D) Same analysis

performed on data simulated with the computational model (r(24) = −.605, p = .002).
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ensure that this did not bias our analyses, for each exper-

iment we considered the winning model (see Results)

and compared it with an equivalent model, except that

the values of �rt and/or �rt;k at the start of the task were

set as free parameters. For all experiments, these more

complex models showed a larger BIC (Experiment 1:

13,310 vs. 13,381; Experiment 2: 14,330 vs. 14,415; fMRI

experiment: 12,711 vs. 12,789), indicating that models

with the values of �rt and/or �rt;k at the start of the task

set as free parameters were overparameterized.

fMRI Scanning and Analysis

Details of the methods employed for the fMRI experi-

ment have previously been reported (see also Rigoli,

Rutledge, Dayan, et al., 2016). Visual stimuli were back-

projected onto a translucent screen positioned behind

the bore of the magnet and viewed via an angled mirror.

BOLD contrast functional images were acquired with

echo-planar T2*-weighted (EPI) imaging using a Siemens

(Berlin, Germany) Trio 3-T MR system with a 32-channel

head coil. To maximize the signal in our ROIs, a partial

volume of the ventral part of the brain was recorded.

Each image volume consisted of 25 interleaved 3-mm-

thick sagittal slices (in-plane resolution = 3 × 3 mm, time

to echo = 30 msec, repetition time = 1.75 sec). The first

six volumes acquired were discarded to allow for T1

equilibration effects. T1-weighted structural images were

acquired at a 1 × 1 × 1 mm resolution. fMRI data were

analyzed using Statistical Parametric Mapping Version 8

(Wellcome Trust Centre for Neuroimaging). Data pre-

processing included spatial realignment, unwarping using

individual field maps, slice-timing correction, normali-

zation, and smoothing. Specifically, functional volumes

were realigned to the mean volume, were spatially normal-

ized to the standard Montreal Neurological Institute tem-

plate with a 3 × 3 × 3 voxel size, and were smoothed

with 8-mm Gaussian kernel. Such kernel was used follow-

ing previous studies from our lab, which used the same

kernel to maximize the statistical power in midbrain re-

gions (Rigoli, Chew, Dayan, & Dolan, 2016a; Rigoli, Friston,

& Dolan, 2016; Rigoli, Rutledge, Dayan, et al., 2016). High-

pass filtering with a cutoff of 128 sec and AR(1) model

were applied.

For our analyses, neural activity was estimated with

two general linear models (GLMs). Both GLMs were asso-

ciated with a canonical hemodynamic function and in-

cluded six nuisance motion regressors. The first GLM

included a stick function regressor at option presentation

modulated by a conventional RPE signal, corresponding

to the actual EV of options minus the predicted EV of

options. The predicted EV of options corresponds to the

expected contextual reward �rt estimated with the com-

putational model of choice behavior selected by model

comparison (see below). This was estimated trial-by-trial

using an equal learning rate η = 0.51 (i.e., the average

within the sample) for all participants. The use of a single

learning rate for all participants was motivated by con-

siderations in favor of this approach compared with using

participant-specific estimates in model-based fMRI (Wilson

& Niv, 2015). To ascertain that our findings were not

biased by the use of the same learning rate for all partici-

pants, we rerun the fMRI analyses below using individual

learning rates and obtained the same findings (results

not shown).

It has been pointed out that the separate components

of the RPE (in our study, actual and predicted option EV)

are correlated with the RPE, and so an area that is only

reporting actual EV might falsely be seen as reporting a

full RPE. Therefore, a better way to address our question

(Niv et al., 2012; Niv & Schoenbaum, 2008) is to test for

two findings: first, a negative correlation with the pre-

dicted EV and, second, a positive correlation with the

actual EV. We followed this approach estimating a second

GLM, which included a stick function regressor at option

presentation modulated by two separate variables, one

corresponding to the actual EV of options and the other

to the predicted EV of options. These two parametric

modulators were only mildly correlated (max Pearson co-

efficient across participants r = .2) and were included

symmetrically in the GLM model, allowing us to estimate

their impact on neural activation in an unbiased way.

The GLMs also included a stick function regressor at

outcome presentation modulated by an outcome predic-

tion error corresponding to the difference between the

choice outcome and the actual EV of options. The outcome

prediction error was equivalent to zero for choices of

sure options and was either positive (for reward outcomes)

or negative (for zero outcomes) for choices of gambles.

Note that, at the behavioral level, the predicted EV of

options could potentially depend on a cue-dependent

component (associated with explicit instructions) and a

cue-independent component (derived from learning).

Being our focus on learning, we aimed at isolating the

contribution of the latter. To this aim, we exploited the

fact that each block was associated with a single contex-

tual cue (including 140 trials), implying that the cue-

dependent component was constant within a blockwhereas

the cue-independent component varied. We estimated

the GLMs separately for each of the four blocks, a proce-

dure which allowed us to isolate the contribution of the

cue-independent component related with learning.

Contrasts of interest were computed participant by

participant and used for second-level one-sample t tests

and regressions across participants. Substantial literature

motivated us to restrict statistical testing to a priori ROIs:

VTA/SN and ventral striatum (Lak et al., 2014; Stauffer

et al., 2014; Niv et al., 2012; Park et al., 2012; D’Ardenne

et al., 2008; Tobler et al., 2005; O’Doherty et al., 2003,

2004; Schultz et al., 1997). For VTA/SN, we used bilateral

anatomical masks manually defined using the software

MRIcro and the mean structural image for the group,

similar to the approach used in Guitart-Masip et al. (2011).

For ventral striatum, we used an 8-mm sphere centered
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on coordinates from a recent meta-analysis on incentive

value processing (left striatum: −12, 12, −6; right stria-

tum: 12, 10, −6; Bartra et al., 2013). For hypothesis

testing, we adopted voxel-wise small volume correction

(SVC) with a p < .05 family-wise error as significance

threshold.

RESULTS

Experiment 1

The goal of this experiment was to assess whether par-

ticipants learn contextual reward expectation from pre-

vious experience and, if so, at what rate. The average

gambling percentage did not differ from 50% across par-

ticipants (mean = 46%, SD = 22%; t(23) = −0.95, p =

.35). The lack of risk aversion is consistent with prior

reports using a similar task (Rigoli, Friston, & Dolan,

2016; Rigoli, Friston, Martinelli, et al., 2016; Rigoli, Rutledge,

Chew, et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016)

and may reflect the use of small monetary payoffs (Prelec

& Loewenstein, 1991). By design, the sure option and the

gamble had always equivalent EV and the EV at trial t was

uncorrelated with the EV at trial t − 1 (t(23) = 1; p = .5).

For each participant, we built a logistic regression model

of choice (i.e., with dependent measure being choice of

the gamble or of the sure option) which included the EV

at trial t and the EV at trial t − 1 as regressors. Across

participants, the slope coefficient associated with EV at

trial t did not differ from zero (mean = 0.11, SD = 0.95;

t(23) = 0.54, p = .59), whereas the slope coefficient asso-

ciated with EV at trial t − 1 was significantly less than zero

(mean = −0.04, SD = 0.01; t(23) = −2.28, p = .032),

indicating participants gambled more with smaller EVs at

trial t − 1. To investigate whether choice was influenced

more by the EV at trial t or by the EV at trial t − 1, we

computed the absolute value of the slope parameter

associated with the first and second variable in the logistic

regression. The absolute value of the slope coefficient

associated with EV at trial t was larger than the absolute

value of the slope coefficient associated with EV at trial

t − 1 (t(23) = 3.62, p = .002), indicating that the EV at

trial t exerted a greater influence than the EV at trial t − 1

on choice.

Our main hypothesis was that contextual reward ex-

pectations are learned from previous trials and drive

choice adaptation. Such learning implies that the ex-

pected contextual reward at trial t is lower/higher when

a low/high EV is presented at trial t − 1. We derived our

predictions about choice adaptation from previous data

(Rigoli, Rutledge, Chew, et al., 2016; Rigoli, Rutledge,

Dayan, et al., 2016), which show that, consistent with

adaptation to context, participants who prefer to gamble

for large EVs (at trial t) gamble more when EVs are larger

relative to contextual expectations, whereas participants

who prefer to gamble for small EVs gamble more when

EVs are smaller relative to contextual expectations. These

considerations led us to predict a relationship between

the effect of EV at trial t and the effect of EV at trial t − 1

on gambling percentage. Consistent with this prediction,

we observed an inverse correlation across individuals be-

tween the slope coefficient associated with EV at trial t

and the slope coefficient associated with EV at trial t − 1

(r(24) = −.44, p = .033; Figure 2C; this result is still

significant when using a Kendall correlation, which is less

affected by extreme values; t(24) = −0.29, p = .047). This

indicates that participants who gambled more with larger

EVs at trial t also gambled more with smaller EVs at trial

t − 1, and participants who gambled more with smaller

EVs at trial t also gambled more with larger EVs at trial

t − 1.

To consider the influence of previous EVs further, we

fitted to gambling data an exponential decay model (see

Methods and Equation 1). Consistent with an influence

exerted by previous trials, we found an inverse correla-

tion between the weight parameters β1 and β2 (Supple-

mentary Figure S4; r(24) = −.52, p = .009). The

median decay parameter λ was equal to 1.54, which

implies that a weight β2 at trial t − 1 will become β2/

4.5 at trial t − 2. To compare the impact on choice of

the EV at trial t against the overall impact of EVs at pre-

vious trials, we considered the absolute value of β1 and

of
X4

j¼1
β2e

−λ j−1ð Þ and found no difference between

these two quantities (t(23) = 1.08, p = .29).

Next, we compared different generative models of

choice behavior (see Methods). According to BIC scores

(see Table 1), in the selected model (i) an average re-

ward was learned from previous trials and exerted value

adaptation, (ii) a constant (and not decreasing) learning

rate was implemented, and (iii) normalization was sub-

tractive (and not divisive). Consistent with adaptation to

context, the context parameter τ of the selected model

(which is multiplied by the average reward, and the

total is subtracted to the EV) was significantly larger

than zero (Supplementary Figure S1; t(23) = 3.23, p =

.004). The median learning rate η of the selected model

was 0.68.

We used the full model and participant-specific param-

eter estimates of that model to generate simulated

choice behavioral data and perform behavioral analyses

on the ensuing data. The model replicated the main sta-

tistical result from the raw data, namely the correlation

between the effect on choice (i.e., the slope coefficient

of logistic regression of choice) of EV at trial t and of

EV at trial t − 1 (r(24) = −.605, p = .002; Figure 2D),

an effect not replicated using a model with a decreasing

learning rate (r(24) = −.08, p = .726).

Overall, these results show that reward expectations

about options can be learned from recent experience

and that subjective values are adapted to these expecta-

tions with an impact on choice behavior. In addition, data

suggest that this form of learning is based on a constant

learning rate (and not a quickly decaying learning rate)

and that adaptation is subtractive (and not divisive).
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Table 1. Model Comparison Analysis for the Three Experiments

Model Free Param Neg LL BIC N Sub

Experiment 1

Random – 9132 18264 0

Slope only α 7314 14779 0

Intercept only μ 7601 15353 3

Slope and intercept μ, α 6509 13321 4

Subtractive; �rt; constant η μ, α, η, τ 6352 13310*** 17

Subtractive; �rt; decreasing η μ, α, τ 6499 13452 0

Divisive; �rt; constant η μ, α, η, τ 6409 13424 0

Divisive; �rt; decreasing η μ, α, τ 6500 13454 0

Experiment 2

Random – 9283 18567 0

Slope only α 7869 15895 0

Intercept only μ 7903 15965 7

Slope and intercept μ, α 7016 14345 3

Subtractive; �rt; constant η μ, α, η, τ 6990 14607 0

Subtractive; �rt; decreasing η μ, α, τ 6999 14468 0

Subtractive; �rt;k; constant η μ, α, η, τ 6919 14465 0

Subtractive; �rt;k; decreasing η μ, α, τ 6930 14330*** 16

Subtractive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6927 14482 0

Subtractive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6938 14346 2

Subtractive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6908 14444 0

Subtractive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6910 14448 0

Subtractive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6924 14633 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6915 14457 0

Subtractive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6912 14609 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6915 14616 0

Divisive; �rt; constant η μ, α, η, τ 6988 14603 0

Divisive; �rt; decreasing η μ, α, τ 6994 14460 0

Divisive; �rt;k; constant η μ, α, η, τ 6940 14509 0

Divisive; �rt;k; decreasing η μ, α, τ 6936 14342 0

Divisive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6966 14559 0

Divisive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6951 14373 0

Divisive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6929 14484 0

Divisive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6950 14528 0

Divisive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6952 14687 0

Divisive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6900 14427 0

Divisive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6909 14603 0

Divisive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6911 14607 0
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Experiment 2

The second experiment assessed whether learning an

average reward expectation takes account of an alter-

nation of context, which is signaled by distinct cues.

In principle, two forms of learning can be considered:

(i) first, participants might learn the reward available at

previous trials independent of any cue, similar to Exper-

iment 1, and (ii) second, participants might differentiate

between contexts and learn an average reward repre-

sentation specific for each cue.

We first investigated learning by ignoring changes in

cues. We analyzed the relationship between the EV at trial

t and the EV at trial t − 1 as in Experiment 1. The average

gambling percentage did not differ from 50% across

Table 1. (continued )

Model Free Param Neg LL BIC N Sub

fMRI Experiment

Random – 8122 16245 0

Slope only α 7091 14316 0

Intercept only μ 7033 14198 5

Slope and intercept μ, α 6279 12824 3

Subtractive; �rt; constant η μ, α, η, τ 6130 12792 0

Subtractive; �rt; decreasing η μ, α, τ 6229 12857 0

Subtractive; �rt;k; constant η μ, α, η, τ 6127 12785 0

Subtractive; �rt;k; decreasing η μ, α, τ 6199 12796 0

Subtractive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6105 12742 0

Subtractive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6177 12753 0

Subtractive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6090 12711*** 13

Subtractive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6099 12730 0

Subtractive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6099 12864 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6116 12762 0

Subtractive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6098 12861 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6088 12841 0

Divisive; �rt; constant η μ, α, η, τ 6157 12846 0

Divisive; �rt; decreasing η μ, α, τ 6237 12872 0

Divisive; �rt;k; constant η μ, α, η, τ 6154 12840 0

Divisive; �rt;k; decreasing η μ, α, τ 6208 12815 0

Divisive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6155 12843 0

Divisive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6192 12782 0

Divisive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6154 12839 0

Divisive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6170 12871 0

Divisive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6143 12950 0

Divisive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6157 12846 0

Divisive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6140 12943 0

Divisive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6114 12893 0

For models considered (organized in rows), columns report (from left to right) (i) model description, indicating whether divisive or subtractive
normalization is implemented, whether adaptation involves �rt , �rt;k , or both (and in the latter case whether a single or multiple context parameter
τ is implemented), and whether learning involves a constant of decreasing learning rate η; (ii) negative log-likelihood (Neg LL), estimated separately
for each individual’s choice data (excluding trials with RTs slower than 3 sec and faster than 300 msec) and summed across subjects; (iii) free
parameters (Free Param); (iv) BIC (models with the lowest BIC are marked with asterisks); and (v) number of subjects (N Sub) for which the model
shows the lowest BIC.
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participants (mean = 55, SD = 21; t(24) = 1.24, p = .23).

By design, the EV of options at trial t was correlated weak-

ly with the EV at trial t− 1 (max Pearson coefficient across

participants r = .19). We built a logistic regression model

of choice (having choice of the gamble or of the sure

option as dependent measure), which included the EVs

at trial t and trial t− 1 as regressors. The slope coefficient

associated with EV at trial t was not significantly different

from zero (mean =−0.02, SD= 0.54; t(24) =−0.21, p=

.83), whereas the slope coefficient associated with EV at

trial t − 1 was significantly smaller than zero (mean =

−0.07, SD = 0.17; t(24) = −3.09, p = .005), indicating

that participants overall gambled more with smaller EVs

at trial t − 1. To investigate whether choice was influ-

enced more by the EV at trial t or by the EV at trial t − 1,

we computed the absolute value of the slopes associated

with the EV at trial t and with the EV at trial t − 1 in the

logistic regression. The absolute value of the slope coeffi-

cient associated with EV at trial t was larger than the abso-

lute value of the slope coefficient associated with EV at

trial t − 1 (t(24) = 3.57, p = .002), indicating that the

EV at trial t exerted a greater influence than the EV at trial

t − 1 on choice. We performed a similar analysis as for

Experiment 1, which showed an inverse correlation be-

tween the slope coefficients associated with EV at trial t

and the slope coefficients associated with EV at trial t − 1

(r(25) = −.46, p = .021; Figure 3A). This indicates that

participants who gambled more with larger EVs at trial t

also gambled more with smaller EVs at trial t − 1, and

participants who gambled more with smaller EVs at trial t

also gambled more with larger EVs at trial t − 1.

We next considered the hypothesis that the two alter-

nating cues have an impact on learning and value adap-

tation independent of previous trials. To address this

question, we analyzed the second half of the task when

knowledge of context contingencies is likely to be more

secure. Here, we focused only on the very first trial of

each block, and among these trials, we considered those

associated with £3 and £5 EV, as these are common to

both the high- and low-value contexts. We predicted that,

for these trials, participants would exhibit different pref-

erences dependent on the context condition. Consistent

with this prediction, we found a correlation between the

effect on gambling of EV at trial t (i.e., the slope of a lo-

gistic regression model having EV at trial t as regressor)

and the difference in gambling between low- and high-

value contexts for EVs common to both contexts (r(25) =

.46, p = .020). In other words, participants who overall

gambled more with larger EVs also gambled more when

the common EVs were relatively larger in the context of

the new block, whereas participants who overall gambled

more with smaller EVs also gambled more when com-

mon EVs were relatively smaller in the context associated

with the new block. Here, the focus on first trials of

Figure 3. (A) Experiment 2:

relationship between the

effect of EV at current trial t

and effect of EV at previous

trial t − 1 on gambling

probability (r(25) = −.46,

p = .021). (B) Same analysis

performed on data simulated

with the computational model

(r(25) = −.48, p = .016).

(C) Experiment 2: analysis of

effect of context. Relationship

between the effect on gambling

of EV at trial t (i.e., the slope

of a logistic regression

model having EV at trial t as

regressor) and the difference

in gambling between low- and

high-value contexts for EVs

common to both contexts

(associated with £3 and £5 EV;

r(25) = .46, p = .020), only

considering first trials of blocks

and the second half of the task.

Since the slope of the logistic

regression is estimated from the

second half of the task only,

note that it is different from the

one estimated from the whole

task (shown in A). (D) Same

analysis performed on data

simulated with the computational

model (r(25) = .49, p = .01).
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blocks is crucial, because for these trials, the EVs present-

ed previously are orthogonal to the current context condi-

tion, allowing us to show a context effect independent

of previous trials.

To probe further the mechanisms underlying learning

and context sensitivity, we compared different generative

models of choice behavior (see Methods). According to

BIC scores (see Table 1), in the selected model (i) a cue-

dependent average reward was learned and exerted value

adaptation, whereas a cue-independent average reward

was not implemented; (ii) a decreasing (and not con-

stant) learning rate characterized learning; and (iii) nor-

malization was subtractive (and not divisive). In the

selected model, the context parameter τ is multiplied by

a cue-dependent reward representation (in turn acquired

following a decreasing learning rate), and the total is sub-

tracted to the option EV. Consistent with adaptation to

context, the context parameter τ of the selected model was

significantly larger than zero (Supplementary Figure S2;

t(24) = 2.11, p = .045).

We used the selected model and participant-specific

parameter estimates from that model to generate simu-

lated choice behavioral data and perform behavioral anal-

yses on the ensuing data. The selected model replicated

the correlation between the effect on choice (i.e., the

slope coefficient of logistic regression model of choice)

of EV at trial t and of EV at trial t − 1 (r(25) = −.48, p =

.016; Figure 3B), an effect not replicated with a model

without the context parameter τ (r(25) = −.17, p = .42).

The selected model also replicated the correlation be-

tween the effect on choice of EV at trial t and the differ-

ence in gambling for low- minus high-value context for

EVs common to both contexts, when considering first

trials of blocks (and focusing on the second half of the

task; r(25) = .58, p = .002; Figure 3D). This correlation

was not replicated with a model implementing an aver-

age reward independent of context and a constant learn-

ing rate (r(25) = .17, p = .41). These results indicate

that, when multiple contexts alternate, value and choice

adaptation can be driven by a representation of the two

context averages, without learning based on previous re-

ward experience independent of cues. In addition, data

suggest that learning of contextual reward representations

is based on a decreasing learning rate and that adaptation

is subtractive.

fMRI Experiment

The results of both experiments motivated us to reana-

lyze data from an fMRI experiment involving a similar task

(Rigoli, Rutledge, Dayan, et al., 2016). The paradigm was

similar to the task used in Experiment 2, since both com-

prise two different contexts characterized by distinct re-

ward distributions. However, the fMRI blocks were

longer (around 10 min rather than the 30 sec of Experi-

ment 2). We asked whether the presence of longer blocks

is uninfluential on the contextual learning processes in-

volved or whether it implies the recruitment of different

processes. Critically, the characteristics of the context were

presented to the participants explicitly before the start—so

learning would formally have been unnecessary. In addi-

tion, the use of simultaneous fMRI recording allowed us

to study the neural substrates of learning average reward

representations.

The average gambling percentage did not differ from

50% across participants (mean = 51.5, SD = 21.27; t(20) =

0.32, p = .75). By design, the EV at trial t was only mildly

correlated with the EV at trial t − 1 (max Pearson coeffi-

cient across participants r= .13). We built a logistic regres-

sion model of choice (having choice of the gamble or

of the sure option as dependent measure), which included

the EV at trial t and the EV at trial t − 1 as regressors. The

slope coefficient associated with EV at trial t did not differ

from zero (mean = 0.19, SD= 1.07; t(20) = 0.81, p= .43),

nor did the slope coefficient associated with EV at trial t− 1

(mean = −0.05, SD = 0.20; t(20) = −1.128, p = .27). To

investigate whether choice was influenced more by the EV

at trial t or by the EV at trial t − 1, we computed the abso-

lute value of the slopes associated with the EV at trial t and

with the EV at trial t − 1 in the logistic regression. The

absolute value of the slope coefficient associated with EV

at trial t was larger than the absolute value of the slope

coefficient associated with EV at trial t − 1 (t(20) = 3.63,

p = .002), indicating that the EV at trial t exerted a greater

influence than the EV at trial t − 1 on choice.

As for the previous experiments, we analyzed the effects

of previous EVs ignoring cues and found an inverse cor-

relation between the slope coefficient associated with

EV at trial t and the slope coefficient associated with EV

at trial t − 1 (r(21) = −.64, p = .002; Figure 4C). This

indicates that participants who gambled more with larger

EVs at trial t also gambled more with smaller EVs at trial

t − 1, and participants who gambled more with smaller

EVs at trial t also gambled more with larger EVs at trial

t − 1. To consider the influence of previous EVs further,

we fitted to gambling data an exponential decay model

(see Methods; Equation 1). Consistent with an influence

of previous trials, we found an inverse correlation between

the weight parameters β1 (linked with the influence of EV

at trial t) and β2 (linked with the exponentially decaying

influence of EV at trials before t; Supplementary Figure S4;

r(21) = −.82, p < .001). The median decay parameter λ

was equal to 0.31, which implies that a weight β2 at trial

t − 1 will become β2/1.4 at trial t − 2. We compared the

decay parameter λ found here with the decay parameter

λ found in Experiment 1, and the former was significantly

smaller than the latter (t(43) = 2.66, p = .011), indicating

that previous trials beyond t − 1 exerted a greater impact

in the fMRI experiment compared with Experiment 1. To

compare the impact on choice of the EV at trial t against

the overall impact of EVs at previous trials, we consid-

ered the absolute value of β1 and of
X4

j¼1
β2e

−λ j−1ð Þ and

found no difference between the two quantities (t(20) =

0.64, p = .53).
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In our previous study (Rigoli, Rutledge, Dayan, et al.,

2016), we assessed whether the two cues exert an influ-

ence on choice consistent with value adaptation. For

each participant, we computed the gambling proportion

with EVs common to both contexts (i.e., associated with

the £2–£5 range) for the low- minus high-value context

and found that this difference correlated with the effect

of EV on gambling (as estimated with the logistic regres-

sion above; r(21) = .56, p = .008; Figure 4A). This is con-

sistent with the idea that the two cues were considered

during value computation and choice, though it is also

compatible with an influence of previous reward experi-

ence independent of cues. Because the fMRI experiment

involved four blocks alone, the task did not allow us to

isolate effects on the very first trial of each block, as we

did for Experiment 2, an analysis that could potentially

have provided evidence of an independent role of cues.

To clarify further the relative impact of cue-dependent

and cue-independent learning, we compared different

generative models of choice behavior (see Methods).

According to BIC scores (see Table 1), in the selected

model (i) both a cue-independent and a cue-dependent

average reward were learned and exerted value adapta-

tion, (ii) a constant (and not decreasing) learning rate

characterized learning of an average reward independent

of cue, (iii) a decreasing (and not constant) learning rate

characterized learning of an average reward associated

with contextual cues, (iv) normalization was subtractive

(and not divisive), and (v) a single context parameter

was implemented for both a cue-independent and a

cue-dependent average reward. Consistent with adapta-

tion to context, the context parameter τ of the selected

model was significantly larger than zero (Supplementary

Figure S3; t(20) = 4.02, p < .001). The median learning

rate η of the selected model was 0.37 (η > 0.1 for 16 par-

ticipants). Notably, the model selected in the fMRI exper-

iment is different from themodel selected in Experiment 2;

possible reasons explaining why this difference was ob-

served are discussed below.

We used the selected model and participant-specific

parameter estimates from that model to generate simu-

lated choice behavioral data and perform behavioral anal-

yses on the ensuing data. The selected model replicated

the correlation between the gambling proportion with

EVs common to both contexts (i.e., associated with £3

and £5) for the low- minus high-value context and the

effect of EV on gambling (as estimated with the logistic

regression above; r(21) = .66, p < .001; Figure 4B). This

correlation was not replicated when using a model with-

out the context parameter τ (r(21) = −.14, p = .53). The

full model also replicated the correlation between the

effect on choice (i.e., the slope coefficient of logistic

regression model of choice) of EV at trial t and of EV at

trial t − 1 (r(21) = −.75, p < .001; Figure 4D), an effect

not replicated with a model without the context parameter

τ (r(21) = −.05, p = .82).

Overall, we found that cue-dependent and cue-

independent forms of learning could coexist with both

affecting value and choice adaptation. These mapped into

two distinct learning processes, with cue-dependent

learning driven by a decreasing learning rate and cue-

independent learning mediated via a constant learning

rate. In addition, cue-dependent and cue-independent

average rewards appeared to exert equal effects on value

Figure 4. (A) fMRI experiment:

relationship between the

effect of EV at current trial t

and effect of EV at previous

trial t − 1 on gambling

probability (r(21) = −.65,

p < .002). (B) Same analysis

performed on data simulated

with the computational model

(r(21) = −.75, p < .001). (C)

fMRI experiment: relationship

between the effect of EV at

current trial t and the number of

gambling trials when comparing

low-value context (LVC) and

high-value context (HVC) for

EVs common to both context

(r(21) = .56, p = .008). (D)

Same analysis performed

on data simulated with the

computational model

(r(21) = .66, p < .001).
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adaptation, which, as in previous experiments, was sub-

tractive rather than divisive.

Finally, we reanalyzed fMRI data acquired during task

performance. It is well established that, at outcome de-

livery, a response in ventral striatum and VTA/SN cor-

relates positively and negatively with the actual and

predicted reward, respectively, whereas in the same re-

gions, at option presentation, a correlation with actual

option EV is reported (Lak et al., 2014; Stauffer et al.,

2014; Niv et al., 2012; Park et al., 2012; D’Ardenne et al.,

2008; Tobler et al., 2005; O’Doherty et al., 2003, 2004;

Schultz et al., 1997). These findings motivated a proposal

of a distinct role of these regions at outcome delivery and

option presentation, corresponding to signaling RPE and

EV, respectively (Bartra et al., 2013). However, other theo-

retical models (Schultz et al., 1997) imply that dopa-

minergic regions reflect RPE also at option presentation.

The difference between the two hypotheses is that the

latter (Schultz et al., 1997), but not the former (Bartra

et al., 2013), predicts that at option presentation neural

activity inversely correlates with the predicted option EV,

corresponding to the contextual average reward. How-

ever, this prediction has never been formally tested, and

here we provide such test.

Neural response was first modeled using a GLM that

included, at option presentation, a stick function regres-

sor modulated by the actual EV of options minus the pre-

dicted EV of options (the latter corresponds to the average

reward �rt learned from previous trials as prescribed by the

computational model of choice behavior—see Methods).

This parametric modulator, which represents a con-

ventional RPE signal, correlated with activation in VTA/SN

(3,−13,−14; Z= 3.16, p= .032 SVC) and ventral striatum

(left:−12, 11,−2; Z= 3.99, p= .002 SVC; right: 9, 11,−2;

Z = 4.48, p < .001 SVC).

Next, as a more stringent test, neural response was

modeled using a second GLM, which included, at option

presentation, a stick function regressor associated with

two separate parametric modulators, one for the actual

EV of options and the other for the predicted EV of op-

tions. A correlation with actual EV of options (Figure 5A–B)

was observed in VTA/SN (9, −13, −17; Z = 3.25, p = .028

SVC) and ventral striatum (left: −12, 8, −2; Z = 3.73, p =

.005 SVC; right: 9, 8,−2; Z= 4.25, p= .001 SVC), together

with an inverse correlation with the average reward �rt
(Figure 6A–B; VTA/SN: 12, −19, −11; Z = 3.26, p = .011

SVC; left ventral striatum: −12, 8, 1; Z = 3.14, p = .026

SVC; right ventral striatum: 18, 14, −2; Z = 2.98, p =

.039 SVC). These results are consistent with an encoding

of RPE signal after option presentation.

Encoding of a context-related RPE in VTA/SN and ven-

tral striatum may represent a neural substrate mediating

choice adaptation to context. If this was the case, we

would predict a stronger neural sensitivity to contextual

reward expectations in participants showing an increased

influence of context on choice behavior (captured by the

context parameter τ in our behavioral model). Consistent

with this prediction, we observed an inverse correlation

between the effect of predicted EV of options on neural

response and the individual context parameter τ (esti-

mated with the selected model of choice behavior) in

VTA/SN (Figure 6C; 6, −19, −8; Z = 2.90, p = .027

SVC), but not in ventral striatum.

Overall, these findings indicate that activity in VTA/SN

and ventral striatum increases with actual EV of options

and decreases with the EV of options predicted based

on recent trials, consistent with reflecting an RPE signal rel-

ative to average reward representations. In addition, re-

sponse adaptation in VTA/SN (but not in ventral striatum)

was linked with contextual adaptation in choice behavior.

Figure 5. Activity at option

presentation in our ROIs for

a positive correlation with the

actual EV of options. For display

purposes, we show activity

for voxels where the statistic

is significant when using

p < .005 uncorrected. (A)

Activity shown for VTA /SN

(9, −13, −17; Z = 3.25,

p = .028 SVC; Montreal

Neurological Institute

coordinate space is used).

(B) Activity shown for ventral

striatum (left: −12, 8, −2;

Z = 3.73, p = .005 SVC;

right: 9, 8, −2; Z = 4.25,

p = .001 SVC).
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DISCUSSION

Contextual effects on choice depend on adaptation of

incentive values to the average reward expected before

option presentation (Rigoli, Friston, & Dolan, 2016; Rigoli,

Friston, Martinelli, et al., 2016; Rigoli, Rutledge, Chew,

et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016; Louie

et al., 2013, 2014, 2015; Summerfield & Tsetsos, 2015;

Cheadle et al., 2014; Ludvig et al., 2014; Summerfield &

Tsetsos, 2012; Carandini & Heeger, 2011; Stewart, 2009;

Stewart, Chater, & Brown, 2006; Stewart et al., 2003). How-

ever, as explicit information about context was provided in

previous studies, how contextual reward expectation is

learned through experience remains poorly understood.

Our study builds upon previous research on how the

brain learns distributions of variables (Diederen, Spencer,

Vestergaard, Fletcher, & Schultz, 2016; Nassar et al., 2012;

Berniker, Voss, & Kording, 2010; Nassar, Wilson, Heasly, &

Gold, 2010; Behrens, Woolrich, Walton, & Rushworth,

2007). However, as far as we are aware, none of the existing

tasks have considered discrete choices (rather than estima-

tion). Thus, we used a task in which a contextual distribu-

tion is learned from experience and adaptation to that

distribution is expressed via discrete choices. We show that

experience can drive learning of contextual reward expec-

tations that in turn impact on value adaptation. This form

of learning can be characterized using a model where,

after an option is presented, the belief about an average

reward is updated according to an RPE (i.e., the actual

minus the predicted option EV) multiplied by a learning

rate. The average reward expectation acquired through

learning in turn elicits subtractive (and not divisive) nor-

malization by setting a reference point to which option

values are rescaled, influencing choice behavior.

In Experiment 1, option EVs were drawn from a single

reward distribution. Consistent with some models (Niv

et al., 2007), participants learned an average reward repre-

sentation from previous trials, which was updated follow-

ing a constant learning rate (Rescorla & Wagner, 1972).

However, contrary to predictions from these models

(Niv et al., 2007), we observed a large learning rate imply-

ing that recent (and not long-run) experience is relevant.

Data from Experiment 2, where two contexts character-

ized by distinct reward distributions alternated at a fast

rate, showed no evidence of cue-independent learning.

Instead, they highlight a cue-dependent learning whereby

different reward representations were acquired in asso-

ciation with contextual cues. This form of learning was

characterized by a decreasing learning rate, implying that

experience early in the task is weighted more than later ex-

perience. This can be formally described with Bayesian

learning assuming fixed reward statistics of the context

Figure 6. Activity at option

presentation in our ROIs for

a negative correlation with

the predicted EV of options

(estimated with the

computational model of choice

behavior, corresponding to the

expected contextual reward).

For display purposes, we show

activity for voxels where the

statistic is significant when

using p < .005 uncorrected.

(A) Activity shown for VTA /SN

(VTA/SN: 12, −19, −11; Z =

3.26, p = .011 SVC). (B) Activity

shown for ventral striatum

(left ventral striatum: −12, 8, 1;

Z = 3.14, p = .026 SVC; right

ventral striatum: 18, 14, −2;

Z = 2.98, p = .039 SVC).

(C) Relationship between the

behavioral context parameter

τ (estimated with the

computational model for

each participant and

indicating the degree of

choice adaptation to the

average reward learned from

previous trials independent

of context) and the beta

weight for the correlation

between VTA/SN activity and

expected contextual reward

(6, −19, −8; Z = 2.90,

p = .027 SVC).
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(Bishop, 2006) and is linked to previous associative learn-

ing theories (Dayan, Kakade, & Montague, 2000; Pearce &

Hall, 1980).

A reanalysis of a previous data set (Rigoli, Rutledge,

Dayan, et al., 2016) shows cue-independent learning

based on recent past reward experience (similar to Exper-

iment 1) combined with learning based on contextual

cues (similar to Experiment 2). Here, value and choice

adaptation were affected by reward representations aris-

ing from both forms of learning. Why the coexistence of

these two learning components emerged here, but not

in Experiment 2, remains to be fully understood. One

important difference between the two tasks is in block

length, with Experiment 2 having short (30-sec) blocks

and the fMRI experiment long (10-min) blocks. Further-

more, explicit information regarding contextual reward

distribution was provided in the fMRI experiment, entail-

ing that participants did not need to learn the distribution.

One possibility is that learning from recent reward expe-

rience and attending to fast-changing contextual cues (as

in Experiment 2) are demanding cognitive processes that

compete against each other, leading to reliance on the

latter process alone (which is more informative about up-

coming reward). By contrast, attending to slow-changing

contextual cues or knowing explicitly the contextual

reward distributions (as in the fMRI experiment) might

make fewer demands on cognitive resources, allowing

participants to attend to both contextual cues and past

reward experience. Investigating this hypothesis requires

an assessment of the relative amount of cognitive re-

sources necessary to attend fast- and slow-changing con-

textual cues, respectively.

An important question arising from our findings is on

the link between the learning mechanisms identified

here and cognitive functions such working memory. A

possibility is that cue-dependent learning recruits work-

ing memory, at least when contexts alternate rapidly. This

is supported by our observation that cue-dependent

learning suppresses cue-independent learning when cues

alternate rapidly, suggesting the involvement of high-

demanding cognitive functions including working mem-

ory. Under such conditions, fast and flexible working

memory mechanisms would be most useful. Moreover,

the observation of a decreasing learning rate characterizing

cue-dependent learning may be consistent with the in-

volvement of working memory, whereby during the initial

stage beliefs update quickly and are retrieved flexibly there-

after. Although these aspects support the involvement of

working memory during cue-dependent learning (at least

when cues alternate quickly), we note that another funda-

mental feature of working memory is limited capacity,

which implies a loss of information if the cognitive load

increases. We did not manipulate the cognitive load (as,

for instance, did Collins & Frank, 2012). Research that

assesses the impact of cognitive load on the learningmech-

anism studied here would be necessary to establish the

involvement of working memory.

The coexistence (at least in some conditions) of cue-

dependent and cue-independent learning (with an impact

on value adaptation) leads to questions about their rela-

tionship. One possibility is that a unique brain system is

responsible for computing both representations. Alter-

natively, different brain systems may be involved. For in-

stance, the VTA/SN may mediate learning from recent

reward experience independent of any cue-related informa-

tion, whereas hippocampus may mediate cue-dependent

learning (Rigoli, Friston, & Dolan, 2016; Wimmer &

Shohamy, 2012; Rudy, 2009; Shohamy, Myers, Hopkins,

Sage, & Gluck, 2009; Doeller, King, & Burgess, 2008;

Fanselow, 2000; Holland & Bouton, 1999). This possibility

is indirectly supported by our findings that cue-independent

learning is guided by a constant learning rate whereas cue-

dependent learning is driven by a decaying learning rate.

There is a parallel between the difference in learning rate

found here and differences in neural processing observed

in VTA/SN, striatum, and amygdala on the one hand and

the hippocampus on the other (Rudy, 2009; Marschner,

Kalisch, Vervliet, Vansteenwegen, & Büchel, 2008; Matus-

Amat, Higgins, Barrientos, & Rudy, 2004; Fanselow, 2000;

Holland & Bouton, 1999). Though our task does not imply

any hierarchical order between the two forms of learning

that emerged here, one possibility is that they map to dif-

ferent hierarchical levels in the participants’ model of the

world, as described formally by hierarchical Dirichlet

process and hierarchical reinforcement learning models

(Botvinick, Niv, & Barto, 2009; Barto & Mahadevan, 2003).

Previous research has left open the question of whether

presenting options elicits a response in VTA/SN and ventral

striatum that reflects the average EV of options (Bartra

et al., 2013) or an RPE signal (Schultz et al., 1997). One

important previous study did analyze RPE signaling at the

time of option presentation (Hare, O’Doherty, Camerer,

Schultz, & Rangel, 2008). However, in that study, at the

time of option presentation participants received also a

monetary outcome that was independent of choice, and

that outcome was included in the analysis as a component

of the RPE signal. In other words, in the study of Hare et al.

(2008), the effects of outcome and option are combined, as

they occur simultaneously and are analyzed together. We

sought to examine an unconfounded case in which there

are only options and no outcome. We address this question

showing that, consistent with an RPE signal dependent on

presenting options, activity in ventral striatum and VTA/SN

was characterized by a positive and negative correlation

with actual and predicted option EV, respectively. These re-

sults indicate that activity in the striatum and VTA/SN re-

flects predictions about option EV that correspond to the

contextual reward. This indicates that neural representa-

tions of EV predictions are not fixed but evolve on the basis

of previous experience. In addition, these findings show

that the temporal dynamics of this form of learning in

the brain reflect the dynamics observed in choice behavior,

as both indicate that EV predictions depend on recent—

and not long-run—experience.
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The activity of dopaminergic neurons in VTA/SN and

the release of this neuromodulator in the ventral striatum

play a central role in signaling RPE during learning with

single rewards (Lak et al., 2014; Stauffer et al., 2014;

Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006;

Tobler et al., 2005; Schultz et al., 1997). An influential

model proposes that phasic dopamine responses encode

RPE signals whereas tonic dopamine activity reflects be-

liefs about average reward (Niv et al., 2007). Our data

support the idea that dopaminergic regions process in-

formation about average reward, though they highlight

a phasic (i.e., RPE signaling), rather than tonic, response

associated with average reward (see also Diuk, Tsai,

Wallis, Botvinick, & Niv, 2013). Although fMRI does not

allow us to make neurochemical inferences, one possibil-

ity is that the context-related RPE signal found here is me-

diated by some aspect of dopaminergic functioning. We

emphasize also that our analyses are uninformative re-

garding the role of tonic neural activity (e.g., linked with

dopamine). Further research is necessary to elucidate the

role of the latter in contextual reward representations

formed during choice behavior, though links have been

reported between tonic activity in dopaminergic regions

and representations of average reward in other domains

(Hamid et al., 2016; Rigoli et al., 2016a). Influential views

propose a motivational role for dopamine and average re-

ward in energizing behavior (Niv et al., 2007; Salamone &

Correa, 2002; Dickinson, Smith, & Mirenowicz, 2000;

Berridge & Robinson, 1998). The link between motiva-

tional vigor and average reward in the context of choice

is potentially interesting but remains to be investigated.

In VTA/SN (but not in ventral striatum), the degree of

correlation between average reward and brain activity

was associated with choice adaptation to context. In

other words, for participants whose choice behavior

was affected more by expectations about option EVs,

VTA/SN response was also affected more by reward

expectations, consistent with the possibility that signaling

in VTA/SN might mediate learning and value adaptation

as expressed in behavior. The finding of a correlation

between adaptation in VTA/SN and adaptation in choice

is consistent with previous reports (Rigoli, Friston, &

Dolan, 2016; Rigoli, Rutledge, Dayan, et al., 2016). Here

we extend on these previous findings by showing that the

relationship between VTA/SN and behavioral adaptation

emerges also when average reward expectation is learned

from previous trials.

The current data suggest various directions for future

studies. It is promising to take advantage of the richer

picture of contexts provided by forms of nonparametric

Bayesian generative modeling (Collins & Frank, 2013;

Gershman, Blei, & Niv, 2010; Gershman & Niv, 2010;

Redish, Jensen, Johnson, & Kurth-Nelson, 2007; Courville,

Daw, & Touretzky, 2006; Daw, Courville, & Touretzky,

2006), possibly hierarchically, whereby participants can

generate their own notion of context. Another direction

is inspired by evidence that, in addition to adapting to

the mean of rewards, response in many brain regions

adapts to reward variability (Cox & Kable, 2014; Park

et al., 2012; Bermudez & Schultz, 2010; Kobayashi et al.,

2010; Rorie et al., 2010; Padoa-Schioppa, 2009; Padoa-

Schioppa & Assad, 2008; Tobler et al., 2005). An open

question is whether adaptation to variability characterizes

subjective value and choice and, if so, how representa-

tions of reward variability are learned. A third direction is

to examine the intricate complexities of temporal adap-

tation apparent in sensory systems (Panzeri, Brunel,

Logothetis, & Kayser, 2010; Wark, Fairhall, & Rieke,

2009; Kording, Tenenbaum, & Shadmehr, 2007; Fairhall,

Lewen, Bialek, & van Steveninck, 2001) or the second order

effects of alternating volatilities (Behrens et al., 2007). A

fourth direction would be to consider avoidance of punish-

ments as well as the acquisition of rewards (Rigoli, Chew,

Dayan, & Dolan, 2016b; Rigoli, Pezzulo, & Dolan, 2016;

Rigoli, Pavone, & Pezzulo, 2012).

In summary, we show that experience drives learning

of contextual reward expectations to which subjective

values are adapted. Learning supports the acquisition of

both cue-related and cue-unrelated reward expectations.

We clarify the neural substrates of learning contextual

reward representations highlighting an encoding of

context-related RPE in VTA/SN and ventral striatum, with

activity in the former region linked with choice adapta-

tion to context. These findings are relevant for under-

standing the connection between reward learning and

context sensitivity.
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