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A learning control strategy is preferred for the control and guidance of a 
xed-wing unmanned aerial vehicle to deal with lack
of modeling and �ight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural
network (FNN) is used in parallel with a conventional P (proportional) controller. Among the learning algorithms in the literature,
a derivative-free one, sliding mode control (SMC) theory-based learning algorithm, is preferred as it has been proved to be
computationally e�cient in real-time applications. Its proven robustness and 
nite time converging nature make the learning
algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned
aerial vehicles (UAVs).	e parameter update rules and stability conditions of the learning are derived, and the proof of the stability
of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the
applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-
varying wind conditions. 	e simulation results show the e�ciency of the proposed control algorithm, especially in real-time
control systems because of its computational e�ciency.

1. Introduction

Over the past several decades, unmanned aerial vehicles
(UAVs) have proved their potential in several applications
by using their several capabilities, inter alia, continuous and
persistent surveillance, eliminating the need of aircrew, image
processing capabilities by using relatively cheap sensors,
and decreasing the size and weight of the aerial vehicle
when compared to a conventional aircra. UAVs have been
used in a variety of civilian applications; some of which
are disaster rescue [1], agricultural monitoring [2], wildlife
protection [3], infrastructure inspection [4], 3D environment
reconstruction [5], and person following [6].

UAVs can be classi
ed into two groups: rotary wing and

xed wing. While the former has the capability of having
aggressive maneuvers and being able to land and take o�
in small areas, the latter o�ers long �ight endurance due to

its �ight characteristics about their gliding capabilities with
no power. Among the gigantic number of 
xed-wing UAVs
applications, surveillance seems to be the most common
application while bene
tting from advanced computer vision
techniques [7].	emost common path for a 
xed-wing UAV
is a combination of straight lines and circular orbits on a
constant altitude [8].

For having a full autonomy of the aircra, model-based
controllers require a precise dynamic model of the aircra.
	e controller must also be robust to wind and gust dis-
turbances. However, under the time-varying parameters of
an aircra as well as time-varying working conditions and
several stochastic disturbances, a learning control strategy
is preferred in this paper. 	e proposed control algorithm
does not need an accurate model of the aircra. Instead,
the intelligent structure of the controller learns the system
dynamics online throughout the �ight and optimizes its
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performance for any arbitrary trajectory including both
straight lines and circular orbits. For this purpose, the fusion
of fuzzy logic and arti
cial neural networks, namely, FNNs,
is preferred [9–12].

To eliminate all uncertainties in a control system and
design a sophisticated model-based controller based on an
accurate model of the system seems to be convincing. 	e
reason is that, in the absence of model uncertainty, nonlin-
earity, and computational constraints, it is a well-known fact
that linear-quadratic regulator (LQR) and linear-quadratic-
Gaussian (LQG) control laws give reasonably satisfactory
performance. However, eliminating all the uncertainties
seems to be neither realistic nor a novel idea. For instance,
till the beginning of the 20th century, it had been a big dream
to eliminate all the uncertainties and to be able to achieve a
fully predictable world. In 1814, P.S. Laplace formulated the
predictability of the universe as follows:

“Given, for one instant, an intelligence which
could comprehend all the forces by which nature is
animated and the respective situation of the beings
who compose it an intelligence su�ciently vast to
submit these data to analysis it would embrace in
the same formula the movements of the greatest
bodies of the universe and those of the lightest
atom. For it, nothing would be uncertain and the
future, as the past, would be present to its eyes.”
[13]. P. S. Laplace

On the other hand, quantum mechanics and the theory
of relativity, which both appeared in the beginning of the
20th century, showed that our universe is quite random, and
it is almost impossible to model or predict everything. In
other words, our universe, at least on the level of subatomic
particles, is not working like a “giant clock” which was
claimed by P. S. Laplace. Even in a deterministic system, that
is, a chaotic system, inevitable uncertainties in the initial
conditions lead to huge di�erences in the future states of the
system. In a similar manner, estimation and prediction of all
changes during a 
xed-wing UAV �ight cannot be foreseen
and considered in advance. All the aforementioned facts force
us to propose some intelligent control algorithms which have
learning capabilities throughout the operation.

Fuzzy logic theory and probability theory are the most
widely used approaches to deal with the aforementioned
inevitable phenomena: uncertainty. Although the concept of
fuzzy logic and the concept of probability seem to be similar,
they are quite di�erent. While probability makes guesses
about a certain reality, fuzzy logic does not make probability
statements but represents membership in vaguely de
ned
sets. For instance, if 0.5 is de
ned as a probability value for
the oldness of a person, it can be said that there is a chance
that he/she can be old. It is not knownwhether he/she is old or
young.However in fuzzy logic, if 0.5 is de
ned as the degree of
membership in the set of young and old people, we have some
knowledge about his/him and he/she is positioned in the
middle of young and old people. Since fuzzy logic contained
vagueness, it was not appreciated by researchers when it was
proposed for the 
rst time in 1960s. However, since the 1970s,

this approach to set theory has been widely applied to control
systems.

While the most signi
cant feature of a fuzzy logic con-
troller is its capability to inject expert knowledge into the
controller design, the well-known capability of an arti
cial
neural network is to be able to learn from input-output
data. 	e fusion of fuzzy logic controllers and arti
cial
neural networks results in FNNs [14, 15]. In any FNN
architecture, the use of a learning algorithm is a must.
In literature, there are three types of learning algorithms:
derivative-based ones (backpropagation [16], Levenberg-
Marquardt [17, 18], and least square), derivative-free ones
(genetic algorithm, particle swarm optimization [19], and
sliding mode control (SMC) theory-based), and hybrid
algorithms (Levenberg-Marquardt-particle swarm optimiza-
tion [20], backpropagation-Kalman 
lter, gradient descent-
Kalman
lter, and genetic algorithm-Kalman
lter).	emain
problemwith the derivative-based learning algorithms is that
they need the calculation of the partial derivatives of the
outputs of the FNN with respect to the antecedent parame-
ters. Another problem worth mentioning is that derivative-
based algorithms have always a possibility of getting trapped
in local minima. In order to eliminate the aforementioned
disadvantages of the derivative-based methods, derivative-
free methods are proposed. As a derivative-free method, the
disadvantage of the genetic algorithms is that their update
formula is entirely random, and there is no mathematical
guarantee that the cost function will decrease over time.
Moreover, these algorithms are computationally expensive.
On the other hand, as a derivative-free method, SMC based
algorithms are computationally e�cient and they provide
robustness to the control of the system [21]. A detailed survey
on the optimal tuning of FNNs can be found in [22].

Despite the fact that UAVs are being more and more
visible in our daily life, their control is still a challenging
task as they are open loop unstable,multi-inputmulti-output,
and highly nonlinear systems in which there are signi
cant
intercouplings. What is more, they are always subjected to
noise and disturbances because of the uncertainties in their
navigation systems as well as wind and gust conditions.
One way of controlling them is to use model-based control
techniques. However, they need an accurate model of both
the system and disturbances which is a challenging task in
real life. A requirement is the use of sophisticated system
identi
cation methods to obtain the model of the aerial
vehicle which is time-consuming task. 	e detailed steps
and several methods for system identi
cation and parameter
estimation of aerial vehicles are discussed in [23]. What is
more, the working conditions are always changing resulting
in a fact that adaptability is a must. Motivated by the
aforementioned drawbacks of the model-based controllers,
a model free controller, the combination of a P controller
and an FNN, is preferred in this paper. In order to be
able to design a practical controller in real time in which
computational power is always limited, we prefer one of the
fastest learning algorithms in literature which is an SMC
theory-based algorithm.

	is paper presents a novel SMC theory-based learning
algorithm with an adaptive learning rate and the evaluation
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of the algorithm performance for a UAV �ying in changing
wind conditions. 	e paper is organized as follows: Section 2
introduces a fully nonlinear aircra dynamic model in the
presence of wind. In Section 3, the overall control scheme
is described. In Section 4, a fuzzy neural control approach
is introduced. Furthermore, the proposed training method,
based on SMC theory, for the parameters of the FNN is
proposed for the case of Gaussian membership functions. In
Section 5, the proposed method is used to control a 
xed-
wing UAV. Finally, the concluding marks are presented in
Section 6.

2. Mathematical Description of the UAV

	is section brie�y introduces the translational and rotational
equations of motion (EOMs) for a 
xed-wing UAV in the
presence of wind.

2.1. Translational Dynamics. Let (��, ��, ℎ�) denote the iner-
tial coordinates of the UAV’s center of mass and let(�, �, �, �) be the drag, thrust, li, and side forces, respec-
tively. Denote by (	1� , 	2� , 	3�) the aerodynamic bank, climb,
and track angles, respectively, and let (
1, 
2, 
3) be the wind
perturbation vector (full expressions for these perturbations
can be found in [24]). 	e wind is characterized by the sum
of a mean speed ��� (acting in a horizontal plane along
a heading angle ��) and gust components (�� , V�� , ���).
	en, for a 
xed-wing UAV of mass �, the translational
EOMs are given by

�̇� = ���	2��	3� + ������ + ��� (1)

̇�� = ���	2��	3� + ������ + V
�
�� (2)

ℎ̇� = ���	2� − ���� (3)

��̇� = −� + ������� − ���	2� + 
1 (4)

��� ̇	3��	2� = ��	1� + ��	1�
− � (�������	1� − ����	1�) + 
2 (5)

��� ̇	2� = −��	1� + ��	1� − ���	2�
+ � (�������	1� + ����	1�) + 
3, (6)

where � is the gravitational acceleration,�� is the air velocity,
and �� and �� denote the aerodynamic angle of attack and
sideslip angle, respectively. A superscript refers to the frame
used within the formulations, and the abbreviations �(⋅) =
sin(⋅), �(⋅) = cos(⋅), and �(⋅) = tan(⋅) are used throughout the
paper. Note that �� and �� are expressed as

�� = �−1����� ,
�� = �−1 V���� ,

(7)

where (�, V�, ��) is the vector of linear velocities which is
given, in body frame, as

[[[
[
��
V
�
����
]]]
]
= ��T�� [[[

[
c	2�c	3�
c	2�s	3�−s	2�

]]]
]
, (8)

where T�� denotes the rotation matrix from the Earth-
xed
inertial frame to the UAV-
xed body frame, which is given
by

T�� = [[
[

� �� � �� −� 
�!� �� − �!�� �!� �� + �!�� �!� 
�!� �� + �!�� �!� �� − �!�� �!� 

]]
]
. (9)

2.2. Rotational Dynamics. Let (��, ��, "�) denote the UAV-

xed longitudinal, lateral, and directional axes, respectively.
Assume that (��, ��, "�) are principal axes and ��-"� is the
symmetry plane so that the inertia tensor is given by

I = [[
[

#� 0 −#�	0 #
 0
−#�	 0 #	

]]
]
, (10)

where (#�, #
, #	) denote the principal moments of inertia
and #�	 is the product of inertia. Let (!,  , �) denote the
roll, pitch, and yaw angles, respectively, and let ($�, %�, &�) be
the aerodynamic angular velocity vector.	en, the rotational
equations of motion can be expressed as

[[[
[

̇!̇
 
�̇
]]]
]
= [[[[
[

1 �!� �!� 
0 �! −�!
0 �!� �!� 

]]]]
]
[[[
[
$��%��&��
]]]
]

+ [[[
[

$�� ��� + %�� ��� −$���� + %���!$����� + %����� + &��
]]]
]

[[[
[
$̇��̇%��̇&��
]]]
]
= I

−1 [[[
[

L − %��ℎ�	 + &��ℎ�
 − 
4
M + �"�� − &��ℎ�� + $��ℎ�	 − 
5

N − $��ℎ�
 + %��ℎ�� − 
6
]]]
]

+ I
−1
[[[[
[

− (#	 − #
) %��&�� + #�	$��%��
(#	 − #�) $��&�� − #�	 ($��2 − &��2)− (#
 − #�) $��%�� − #�	%��&��

]]]]
]
,

(11)

where (L,M,N) is themoment vector (the vector of rolling,
pitching, and yawingmoments, resp.); ($�, %�, &�) is thewind
angular velocity vector; "�� is the distance between the point
of application of the thrust and theUAV’s center ofmass along
the "� axis; (ℎ��, ℎ�
, ℎ�	) is the angular momentum vector of

all rotors about the UAV-
xed ��, ��, "� axes; and (
4, 
5, 
6)
is the wind perturbation vector (see [24]). 	roughout the
paper, 321 Euler angle sequence is used, so that | | < 4/2.
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2.3. Forces and Moments Expressions. 	e following expres-
sions of forces and moments are used in this paper:

� = 67 [90 + 9���]
� = 67 [9�0 + ;19 + ;292]
M = 67� [9�0 + 9���� + 9���?� + �2��9��%��]
� = 67 [9���� + 9��	?� + A2�� (9�
$�� + 9�	&��)]
L = 67A [9���� + 9���?� + 9��	?�

+ A2�� (9�
$�� + 9�	&��)]
N = 67A [9���� + 9���?� + 9��	?�

+ A2�� (9�
$�� + 9�	&��)]
� = ;�B�� C,

(12)

where 6 = B�2� /2 is the dynamic pressure; (B, 7, �, A) denote
the air density, the wing surface, the mean aerodynamic
chord, and the wing span, respectively; ;� is a constant;(?�, ?�, ?�) denote the aileron, elevator, and rudder de�ec-
tions, respectively; and C ∈ (0, 1] represents the throttle
position.

3. The Proposed Control Structure

3.1. Kinematic Controller. 	e kinematic model is given by
(1)–(3), from which an inverse kinematic model can be
obtained which allows to calculate the reference air velocity,
air-path and air-track angles. It is written as follows:

�� = √(�̇� − ������)2 + ( ̇�� − ������)2 + ̇ℎ�2
	2� = �−1 ℎ̇���
	3� = �−1 ̇�� − �������̇� − ������ .

(13)

	erefore, assuming the existence of a suitable state estimator
scheme that estimates the mean wind vector, the kinematic

control law to be applied to the UAV for trajectory tracking
control is written as

��ref = √�̇�2
ref

+ ̇��2
ref

+ ℎ̇�2
ref

	2�ref = �−1 ℎ̇�ref��ref
	3�ref = �−1 ̇��

ref�̇�
ref

,
(14)

where

�̇�
ref

= �̇�� − ���s�� + ;�� th (;��G�)
̇��
ref

= ̇��� − ���c�� + ;�� th (;��G
)
ℎ̇�
ref

= ℎ̇�� + ;�ℎ th (;�ℎGℎ)
(15)

and th is the hyperbolic tangent; G� = �� − ���, G
 =�� − ���, and Gℎ = ℎ� − ℎ�� are the position errors in the
inertial �, �, and ℎ axes, respectively; the parameters ;�� ,;�� , and ;�ℎ are controller gains and ;�� , ;�� , and ;�ℎ are
saturation constants; and (���, ���, ℎ��) stands for the desired
inertial coordinates. 	e parameters ��ref , 	2�ref and 	3�ref are
the generated references for the controllers.

	e following reference value is de
ned (i.e., coordinated
turn conditions):

	1�ref = �−1 (�� ̇	3�ref ) . (16)

De
ning the trim angle of attack as

��� = 2��/B�2�ref 7 − 909� . (17)

the generated references for the roll, pitch, and yaw angles can
be linearly approximated by

!ref = 	1�ref
 ref = ��� + 	2�ref
�ref = 	3�ref − �

(18)

3.2. Proportional Controller Design. 	e proportional (P)
controller can be implemented as follows:

C = −;�G�
?� = −;�G�
?� = −;�G�
?� = −;�G�,

(19)

where G� = �� − ��ref , G� = ! − !ref , G� =  −  ref , andG� = � − �ref are the air velocity, roll, pitch, and yaw errors,
respectively; and the parameters ;�, ;�, ;�, and ;� are the
gains of the P controller.
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Figure 1: Block diagram of the proposed adaptive FNN control structure.

4. Fuzzy Neural Control Approach

Even if Mamdani-type fuzzy logic controllers were 
rstly
proposed in the literature, a Takagi Sugeno Kang (TSK)
fuzzy structure is preferred in this paper bene
tting from its
capability to be adapted over time. In the proposed method,
as shown in Figure 1, P controllerswork in parallel with FNNs.
	e task of the conventional P controllers is to provide some
time for the FNN to learn the systemdynamics onlinewithout
going into the unstable working region. On the other hand,
there is no need for the conventional P controllers to be tuned
precisely.

4.1. e Structure of Fuzzy Neural Network. Figure 2 shows
the internal structure of the proposed FNN.Even if the related

gure shows the structure for � inputs, only two inputs are
used in this study, namely, �1(�) = G(�) and �2(�) = ̇G(�). As
a membership function (MF), Gaussian MFs are preferred.
	e fuzzi
ed inputs are indicated as J1�(�1) and J2�(�2) forK = 1, . . . , # and L = 1, . . . , M.

	e fuzzy if-then rule N�� of a zero-order TSK model can
be de
ned as follows in which the consequent parameters
consist of only crisp numbers:

N��: If �1 is O1�, �2 is O2�, then P� = Q��. (20)

For the calculation of the 
ring strength, a product-T-
norm of the MFs is preferred as follows:

R�� = J1� (�1) J2� (�2) . (21)

...

...

...

...

x1

x2

xm

Wij

fij

n
∑

Figure 2: Structure of the proposed FNN.

	eGaussianMFsJ1�(�1) andJ2�(�2) of the inputs�1 and�2 in (21) are represented by the following equation:

J1� (�1) = exp[[−
(�1 − �1�)2S21� ]

]
J2� (�2) = exp

[[
[
−(�2 − �2�)2S22�

]]
]
,

(22)
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where the tunable parameters �, S > 0 are the parameters of
the MFs of the TSK FNNmodel.

Hence, (21) can be modi
ed as follows:

R�� = exp
[[
[
−(�1 − �1�)2S21� − (�2 − �2�)2S22�

]]
]
. (23)

	e output of the proposed FNN can be calculated as the
weighted average of the output of each rule:

P� (�) = �∑
�=1

�∑
�=1

Q��R��, (24)

whereR�� is the normalized value of the output signal of the
neuron KL from the hidden layer of the network:

R�� = R��∑�
�=1 ∑�

�=1R��
. (25)

	e control signal P of the system is calculated as the
di�erence between the conventional P controller and the
FNN:

P = P� − P�. (26)

In order to ease the notation and make some of the
equations vectorial, the following de
nitions are made.R(�) = [R11(�) R12(�) ⋅ ⋅ ⋅R21(�) ⋅ ⋅ ⋅R��(�) ⋅ ⋅ ⋅R��(�)] 
is vector of the normalized output signals of the neurons

from the second hidden layer; S1 = [S11 ⋅ ⋅ ⋅ S1� ⋅ ⋅ ⋅ S1�] , S2 =[S21 ⋅ ⋅ ⋅ S2� ⋅ ⋅ ⋅ S2�] , �1 = [�11 ⋅ ⋅ ⋅ �1� ⋅ ⋅ ⋅ �1�] , and �2 =[�21 ⋅ ⋅ ⋅ �2� ⋅ ⋅ ⋅ �2�] are vectors of the tuning parametersS and � of the Gaussian MFs relevant to the fuzz-
i
cation of the signals supplied to the 
rst and
second input of the FNN, respectively; Q(�) =[Q11(�) Q12(�) ⋅ ⋅ ⋅ Q21(�) Q22(�) ⋅ ⋅ ⋅ Q��(�) ⋅ ⋅ ⋅ Q��(�)] is vector
of the time variable weight coe�cients of the connections
between the neurons from the second hidden layer and the
output neuron of the FNN.

	e following assumptions have been used in this paper.
	e presence of the classical control system in the control

scheme which adopted (Figure 1) the global asymptotic sta-
bility of the feedback system in compact space is guaranteed
and we have WWWW�1 (�)WWWW ≤ Y�,WWWW�2 (�)WWWW ≤ Y�,WWWW�̇1 (�)WWWW ≤ Y ̇�,WWWW�̇2 (�)WWWW ≤ Y ̇�

∀�,

(27)

where Y� and Y ̇� are known upper bounds of the states of the
system and their time derivatives, respectively.

	e adaptation laws for the parameters of the MFs are
made bounded which guarantees that

\\\\S1\\\\ ≤ Y",\\\\S2\\\\ ≤ Y",\\\\�1\\\\ ≤ Y�,\\\\�2\\\\ ≤ Y�,
(28)

where Y" and Y� are known bounds considered for the
parameters of MFs.

It is also assumed that the time-varying parameters of the
consequent part of the TSK FNN are bounded; that is,

WWWWWQ��WWWWW ≤ Y# ∀�, (29)

where Y# is the known positive constant upper bound of the
parameters Q��.

From (23) and (25) it follows that 0 < R�� < 1. Further-
more, it can be easily seen from (25) that ∑�

�=1∑�
�=1R�� = 1.

Constraints (27) to (29) for the state variables of the
system and their derivatives and the parameters of the zero-
order TSK FNNmake P and ̇P bounded:

|P (�)| ≤ Y$,
| ̇P (�)| ≤ Y ̇$

∀�,
(30)

where Y$ and Y ̇$ are known positive constant upper bounds
for P and ̇P, respectively.
4.2. e Sliding Mode Learning Algorithm. Using the SMC
theory principles [26] the zero value of the learning error
coordinate P�(�) can be de
ned as time-varying sliding
surface; that is,

7� (P�, P) = P� (�) = P� (�) + P (�) = 0 (31)

which is the required condition for the training of the
FNN. If this condition is satis
ed, the FNN becomes a
nonlinear regulator to learn the inverse dynamic of the
system and obtains the desired performance of the sys-
tem. 	is in turn guarantees the tracking of the reference
signal.

	e sliding surface for the nonlinear systemunder control7%(G) is de
ned as 7%(G) = G.
De
nition 1. A sliding motion will appear on the sliding
manifold 7�(P�, P) = P�(�) = 0 aer a time �ℎ, if the condition7�(�) ̇7�(�) = P�(�) ̇P�(�) < 0 is satis
ed for all � in some
nontrivial semiopen subinterval of time of the form [�, �ℎ) ⊂(−∞, �ℎ).
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4.2.1. e Parameter Update Rules for the FNN.

�eorem 1. If the adaptation law for the parameters of the
considered FNN is chosen, respectively, as

̇�1� = �̇1 (32)

̇�2� = �̇2 (33)

Ṡ1� = − (S1�)3(�1 − �1�)2� sgn (P�) (34)

Ṡ2� = − (S2�)3
(�2 − �2�)2 � sgn (P�) (35)

̇Q�� = − R��

R R� sgn (P�) (36)

�̇ = 	 WWWWP�WWWW − 	]�, (37)

where � is the adaptive learning rate and has a positive
value.

en, given an arbitrary initial condition P�(0), the learning
error P�(�)will converge to a small neighborhood of zero during
a 
nite time �ℎ.
Proof. See Appendix.

�eorem 2. If the adaptation strategy for the adjustable
parameters of the FNN is chosen as in (32)–(37), then the
negative de
niteness of the time derivative of the Lyapunov
function in (A.15) is ensured.

Proof. See Appendix.

Remark 1. 	e obtained result means that, assuming the
SMC task is achievable, using P� as a learning error for the
FNN together with the adaptation laws (32)–(37) enforces the
desired reaching mode followed by a sliding regime for the
system under control.

Remark 2. 	e reason behind using continuous time instead
of using discrete time is that the stability proof in discrete
time is very challenging. 	at is why we have decided
to use the continuous time. 	is selection does not play
a very critical role as we keep the sampling frequency
of the system very high. 	erefore, the system behaves
like a continuous time system in its implementation. 	e
explained framework is preferred by many researchers in
literature.

5. Simulation Studies

	e physical parameters used in the simulations can be
found in Table 1, which correspond to the actual values of

Table 1: Parameters for the Lambda UAV landing at sea level [25].

Parameter ValueB 1.225 kg/m3

� 92.10 kg#
 137.43 kg⋅m2

#�	 3.05 kg⋅m2

A 4.29m90 0.79399�0 0.0290;2 0.03639�� −1.10109�� −15.4000
9��	 0.2865
9�	 0.26019��� 0.2608
9�
 −0.5538
9�� 0.0600
9��	 −0.0943
9�	 −0.1650� 9.81m/s2#� 83.75 kg⋅m2

#	 210.99 kg⋅m2

7 1.96m2

� 0.46m9� 5.8200;1 09�0 09��� −0.8449
9�� −0.4372
9�
 −0.0016
9�� −0.0145
9��	 0.0022
9�	 0.08769��� −0.0137
9�
 −0.0360
the Lambda Unmanned Research Vehicle [25]. We set the
saturation limits as WWWW?�WWWW ≤ 30�,WWWW?�WWWW ≤ 30�,WWWW?�WWWW ≤ 30�,

0 ≤ C ≤ 1.
(38)

	e initial conditions are taken as

(��, ��, ℎ�)0 = (0, 25, 150) m,
��0 = 27.44m/s

(!,  , �)0 = (5�, 2�, −5�) .
(39)
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Figure 3: Time responses of the air velocity (��), range (��), inertial lateral displacement (��), and altitude (ℎ�) (blue line) compared with
their reference (red) values.

	e control objective is to track a sinusoidal reference
trajectory at a constant altitude de
ned by

��� = 22.5�m
��� = 30 sin(2430 �) m

ℎ�� = 90 − 2.5 tanh (−5 + 0.05�)
− 2.5 tanh (−15 + 0.05�) m.

(40)

	e P controller (19) is applied with the following control
parameters:

;� = 300,
;� = 0.5,
;� = −10,
;� = −0.5.

(41)

Aer 200 s, the FNNs are turned on. 	e mean wind
velocity has a magnitude of ��� = 5m/s along the inertial
lateral axis (i.e.,�� = 0) for the 
rst 100 s; then its orientation
changes to �� = −180o to change back to �� = 0 aer 300 s.
	e wind gusts have been accordingly incorporated via the
“Dryden Wind Turbulence Model (Continuous)” MATLAB
toolbox.

It can be seen in Figure 3 that the P controller (
rst200 s) results in tracking errors for the variables of interest.
	is is due to the inherent di�culties which arise from the
tuning of this kind of controllers. As the FNN is switched
on, these errors are signi
cantly reduced and the actual
trajectory (blue line) clearly tracks the reference trajectory
(red line) as shown in Figures 3–5. As can be seen from
these 
gures, the tracking is still accurate in the presence
of time-varying wind conditions. 	ese results show that
the control scheme consisting of an FNN working in par-
allel with a P controller gives a better trajectory following
accuracy than the one where only a P controller acts alone.
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Figure 4: 	ree-dimensional representation of the UAV trajectory
(blue line) compared with its reference (red line) trajectory.
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Figure 5: Time responses of the roll (!), pitch ( ) and yaw (�) angles
(blue line) compared with their reference (red) values.

Although the performance of the P controller could be
improved by better tuning, this is a challenging task in
real life. 	us, the proposed control structure, consisting
of an intelligent controller and a conventional controller, is
preferable.

	e control action (i.e., de�ection of the di�erent control
surfaces) is shown as the corresponding contribution of the
P controller (blue line) and the FNN (red line) in Figure 6.
It can be seen that aer the 200th second, the FNN takes
over control, whereas the output of the P controller comes
to approximately zero as is expected in this kind of intelligent
controllers.

Figure 7 shows the Euclidean error between the actual and
desired trajectory. It can be seen that, as the FNN is turned on
aer the 200th second, the accuracy improves. It can also be
seen that even when the wind conditions change (i.e., 100th
second and 300th second for the P controller acting along and
the FNN working in parallel with the P controller, resp.), the
FNN improves the system response.

It is to be noted that although there exist four independent
subsystem controllers in the UAV control system, the FNN
works in parallel with a P controller only for the control of

the thrust, pitch, and yaw, given the good performance of the
roll channel being actuated only by the P controller.

6. Conclusion

In this paper, an SMC theory-based learning algorithm has
been introduced for the control of a 
xed-wing UAV in the
presence of wind. 	e adaptation laws for the parameters of
the FNN are proposed and their learning stability conditions
are investigated for a structure with two inputs, each being
modeled by Gaussian MFs. 	e proposed control structure
consists of a P controller and an FNN which can learn the
inverse dynamics of the plantmodel online rather than a need
for an accurate prede
ned dynamic model of the system.	e
obtained simulation results illustrate that using the proposed
learning laws for the parameters of the FNNmakes it possible
to reach and maintain the prede
ned sliding manifold. It
is further observed that not only is the proposed method
robust but also another prominent feature of it is its ease of
implementation.	e e�ectiveness of the proposed algorithm
has been demonstrated through computer simulations, which
include the tracking of a three-dimensional trajectory by
the UAV in the presence of time-varying wind conditions.
As a future extension to this paper, authors would like to
implement state estimation methods for the available on
board information.

Appendix

Proof ofeorem 1. 	e time derivatives of (22) are as follows:

J̇1� (�1) = −2h1� (h1�)� J1� (�1)
J̇2� (�2) = −2h2� (h2�)� J2� (�2) , (A.1)

where

h1� = (�1 − �1�S1� ) ,
h2� = (�2 − �2�S2� ) .

(A.2)

	e time derivative of (25) can be obtained easily as follows:

R�� = −R��k̇�� +R��

�∑
�=1

�∑
�=1

(R��k̇��) , (A.3)

where

k̇�� = 2 (h1� (h1�)� + h2� (h2�)�) . (A.4)

	e stability analysis of the system is done using the following
Lyapunov function:

�� = 12P2� (�) + 12	 (� − �∗)2 . (A.5)
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Figure 6: Time responses of the thrust (�), aileron (?�), elevator (?�), and rudder (?�) de�ections for the P controller (blue line) and the FNN
(red line).
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Figure 7: Time response of the Euclidean error between the actual and reference trajectory for the P controller acting alone (dashed line)
and the FNN in parallel with the P controller (solid line).
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	e time derivative of �� is given by

�̇� = P� ̇P� = P� ( ̇P� + ̇P) + 1	 �̇ (� − �∗) , (A.6)

where

̇P� = �∑
�=1

�∑
�=1

( ̇Q��R�� + Q��Ṙ��) . (A.7)

By replacing (A.7) to the (A.6), the following equation is
obtained:

�̇� = P� [[
�∑
�=1

�∑
�=1

̇Q��R��

− 2 �∑
�=1

�∑
�=1

R�� (h1� (h1�)� + h2� (h2�)�)Q��
+ 2 �∑

�=1

�∑
�=1

(R��Q�� × �∑
�=1

�∑
�=1

R�� (h1� (h1�)� + h2� (h2�)�))

+ ̇P]] + 1	�̇ (� − �∗) ,

(A.8)

where

ḣ1� = (�̇1 − ̇�1�) S1� − (�1 − �1�) Ṡ1�S1�2
ḣ2� = (�̇2 − ̇�2�) S2� − (�2 − �2�) Ṡ2�S2�2 .

(A.9)

Equation (A.10) can be obtained by using (32)–(35);

h1�ḣ1� = h2�ḣ2� = � sgn (P�) . (A.10)

Considering (A.10) and the fact that ∑�
�=1∑�

�=1 R̃�� = 1, we
have the following equation:

�̇� = P� [[
�∑
�=1

�∑
�=1

̇Q��R�� + ̇P]] + 1	�̇ (� − �∗) , (A.11)

where

̇Q�� = − R��

R R� sgn (P�) . (A.12)

Considering the adaptation law of � as in (37) and the
adaptation law of Q�� as in (A.12), the following equation is
obtained:

�̇� ≤ −�∗2 WWWWP�WWWW + ]4�∗2, (A.13)

where �∗ as Y ̇$ ≤ �∗/2. 	e equation implies that the
Lyapunov function decreases until |P�| < ]�∗/2. So that P�
will stay bounded. Furthermore ] is a design parameter and
it is possible to take this value as small as desired.

	e relation between the sliding function (it is a point
in this investigation) 7% and the zero adaptive learning error
level 7� is as follows:

7� = P� = ;'G = ;%7%. (A.14)

	e tracking performance of the feedback control system
can be analyzed by introducing the following Lyapunov
function candidate:

�% = 1272%. (A.15)

Proof of eorem 2. Evaluating the time derivative of the
Lyapunov function in (A.15) yields

�̇� ≤ −�∗2 WWWWP�WWWW + ]4�∗2 ∀7�, 7% ̸= 0. (A.16)

	is equation implies that�� converges until |P�| < ]�∗/2 and|P�| remains bounded.

Competing Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

	is research was supported by Nanyang Technological
Internal Start-Up Grant and Ministry of Education with the
project titles “Learning Control Algorithms for Unmanned
Aerial Vehicles” and “Model Predictive Control-Moving
Horizon Estimation Framework as Applied to Tilt Rotor
UAVs and Its Experimental Evaluation,” respectively.

References

[1] N. Michael, S. Shen, K. Mohta et al., “Collaborative mapping of
an earthquake-damaged building via ground and aerial robots,”
Journal of Field Robotics, vol. 29, no. 5, pp. 832–841, 2012.
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