The Space Congress® Proceedings

Apr 1st, 8:00 AM

Learning Control Systems -Review and Outlook

King-sun Fu
Purdue University

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

Fu, King-sun, "Learning Control Systems -Review and Outlook" (1969). The Space Congress® Proceedings. 4.
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-10/4

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress ${ }^{\circledR}$
Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

EMBRYRIDDLE
Aeronautical University.
SCHOLARLY COMMONS

LEARNING CONTROL EYSTEMG - REVTBK AND OUTLOOK*

K. S. Fu

Purdue tiniversity
Lafayette, Indiana

Suma.ry

The basic concept of learning control is introduced. The following four leaming sthemes tre briefly reviewed: (1) trainable controllers using linear classifiers, (2) reinforcenent learaing control systems, (3) Bqyesian eatimstion, and (14) stochatic approxination. Potential mplications and problems for further research in leaming control ere outlined.

1. Introduction

In designing an optimal control system, if all the a priori information about the controlled process (plant-enviroment) is known and can be described deterministically, the optimal controller is usually designed by deterministic optimization techniques. If all or a part of the a priorl information can only be deacribed statistically, for example, in terms of probability distribution or density functions, then stochastic or statistical design techriques will be used. H wever, if the a priori information required is unknown of incompletely known, in general, an optimsl desimn can not be achieved. Two different approeches have been taken to solve this class of problems. One approsch is to design a controller besed only upon the amount of information svailable. In that case, the unknow information is either fgnored or is assumed some known values from the designes's best guess. The second approech is to design a controller which is capable of estinating the unknown information during its operation and an optimal control action will be determined on the besis of the estimated information. In the rirst case, a rather conservative desiem criterion (is ofter used; the systems designed are in general inefficient and suboptimal. In the second case, if the estimated inf crmation gradually approaches the true information as time procecia, then the rontroller thus dealemed will appronch to the optimal controller. Here the optinal controller reans that the performance of the controller designed will be as equally good as if in the case that all the a priorl information required is known. Becalse of the gradual improvement of perfomance due to the improvement of the estinated unknown informition, this class of control systens may be called learning control ayatems. The rontroller leams the unknown information during operation and the learned information is, in tum, used as an experience for futwre decisions or cortrols.

From the concept just intrompeed, the problem of learning may be viewed as the problem of estimation or successive approximation of the unknown quantities of 9 functional which represent the controlled process under stwdy. The unknown quantities to be estimated or learmed by the contraller may be either the parameters only or the form

[^0]and parameters which describe a detemninistic or probabilistic function. The relationship between the contral law and this function is usually chom sen by the deslgner (for example, in terms of a preselected optimization criterion). Therefore, as the controller obteins more information about the unkmown function or parameters, the control law will be altered besed on the updated informs. tion in order to improve the syatem's performance. A basic block diagrem for a leaming control system is shown in Figure 1. The dynamics of the flant under the envirommental disturbance Z are assumed unknown or partially kriowis. Therefore, there is a need to design a controlier which will learn (or estimate) the unknown information reguired for an optimal control law. The actual contral action is determined on the basis of the learned (or the estimated) information and is, in general, suboptimal. However, if the learned information converges to the true information as time proceeds; the suboptimal controller is expected to approach to the optimal controller asymptotically, The "Teacher" evaluates the performance of the controller and directa the leaming process periormed by the contraller so the overall system's performance will be gradually 1mproved.

Depending upon whether or not an external mupervision (in the form of a "Teacher") is required, the prosess of learning can be classified into (i) learning with external supervision for training or supervised or off-line learaing) and (ii) learming without extermal aupervision or online learning. In leaming processes with external supervision, the desired enswer, for example, the desired outgut of the system cr the desired optimat control action, is usually considered exactly known. Directed by the known answer (given by in external teacher, say), the controller modifles its control strategy or control parameters to improve the system's performance. [m the other hand, in learning processes without ezternal supervision, the deaired answer is not exactly known. Two approaches are usually employed in designing learting controllers. The first approach is that the learning process is carried out by considering all possible answers (the mixtume approach in Bayesian learmigg). The second approsch is that the controller uses a performance measure to direct the leaming process (performance feedback approach). The learned infomation is considered as an experience of the controller, and the experience will be used to improve the quality of control whenever similer control situations recur. The new information extracted from u recurred control situation is used to update the estirnation or the experience associsted with that control situation. Different experiences are obtained from the information extracted from difierent control situations. Similer control situations may be grouped to form a class of control gitamtions. A major function also performed by some learming controllers is the classifleation of different clesses of centrol situations such that en optimal control law can be graduelly astablished between warious classes of contral aituations and the admissible control actions respectively.

Since the problem of classifying different clesses of control situations is important in the design of a leaming controller, the general problem of pattern classification is briefly fntroduced in this section. Suppose that a set of mes.surements or observations is taken to represent an unknown pattern or a control situation. These meesurements (called features) are designated as $x^{1}, x^{2}, \ldots, x^{k}$, and can be representied by a $k-d i-$ mensional vector X in the (reature) space Ω. Let the m possible phttern classes (or m classes of control situations) be $\omega_{1}, \omega_{8}, \cdots, \omega_{m}$. The function of a pattern classifler is to assign (or to make a decision ebout) the correct class membership to each given feature vector X. The operation can be interpreted as a partition of the k dimensional space Ω into m mutually exclusive regions (or a mapping from the epace of to the decision apece). The partitioning boundery or decision surface can be expressed in terms of "dism criminant functions". Associater with each wa diseriminent function $d_{i}(x), i=1, \ldots, \pi$ is sélected such that if X is from class w_{1} then

$$
\begin{equation*}
d_{i}(x)>d_{g}(x) \text { for all } d \neq i \tag{1}
\end{equation*}
$$

The decision surface between the class w_{1} and the class ω_{j} is represented by the equation

$$
\begin{equation*}
d_{i}(x)=d_{j}(x) \tag{2}
\end{equation*}
$$

There are meny ways for selecting $a_{i}(x)$. Severel important discriminant functions are discussed in the following ${ }^{1}$

1) Linear discriminant function - The discriminant function $d_{1}(x)$ is selected as a_{1} linear function of feature measurements x^{1},

$$
d_{i}(x)=\sum_{r=1}^{k} w_{i x^{n}} x^{r}+w_{i, k+1}, i=1, \ldots, m
$$

The decision surface represented by the equation

$$
\begin{gathered}
a_{i}(x)-d_{j}(x)=\sum_{r=1}^{k}\left(w_{i r}-w_{j r}\right) x_{T}+ \\
\left(w_{1, k+1}-w_{j, k+1}\right\}=0
\end{gathered}
$$

is also a linear function of $x^{r_{s}}$ or, in other words, a hyperplane in the space? x^{*} Let

$$
w_{r}=w_{i r}{ }^{-w} j r^{\prime} r=1, \ldots, k+1
$$

then (4) becomes

$$
\begin{equation*}
\sum_{r=1}^{i} W_{r} x^{r}+w_{k+1}=0 \tag{5}
\end{equation*}
$$

For $m=2$, a two-class linear classifier can be easily jmplemented by a threshold logic device showa in Figure 2 . If the input feature X is from ω_{1}, i.e., $X \sim \omega_{1}$, then the
output of the threchold logic device will be +1 sínce

$$
d_{1}(x)-d_{z}(x)=\sum_{x=1}^{k} w_{x} x^{r}-w_{k+1}>0
$$

On the other hand, if

then the output will be -1 and $\mathrm{X} \sim \omega_{2}$. For $m>2$, several threshold logic devicez connected in parallel can be used for classification purposes. The various combinations of +1 and -1 at the cutputs of each threshold logic device will give different classifications. Tr general, using F eure 2, on m-closs classifier cen be implemented as shom in Figure 3.
2) Folyncuial discriminant function - The aiscriminant function is selectec as an n-th order ($n>1$) polynomial of $x^{1}, x^{2}, \ldots, x^{k}$. In particular, if $n=2$,

$$
\begin{equation*}
a_{i}(x)=\gtrless_{r=1}^{k} w_{r r}\left(x^{T}\right)^{2}+\sum_{r=1}^{k-1} \sum_{q=r+1}^{k} w_{r q} x^{r} x^{q}+ \tag{6}
\end{equation*}
$$

$$
\sum_{x=1}^{k} w_{r} x^{r}+w_{[1+1}
$$

$$
x=1
$$

where $N=k+\frac{k(k-1)}{2}+k=\frac{k(k+3)}{2}$
let $A=\left[a_{i j}\right]$

$$
\begin{aligned}
& \text { where } s_{j j}=w_{j j}, j=1, \ldots, k \\
& a_{j q}=\frac{1}{2} w_{j q}, j, q=1, \ldots, k, j \neq q
\end{aligned}
$$

and let B be a column vector with element $b_{j}=w_{j}, j=1, \ldots, k$. Then, (6) can be written in vector matrix form

$$
\begin{equation*}
a_{1}(X)=X^{T} A X+X^{T} B+C \tag{7}
\end{equation*}
$$

where X^{T} is the trenspose of X and $C=w_{N-1}$. The decision surface between ω_{1} and μ_{j} is in general a hyper-hyperboloid. In sane special cases, the decision surface may be hypersphere or hyper-elipaic.
3) Statistical discriminant function - The discriminant functions selected in the first two cases are cossumed functions of the deterministic vector variable X. However, if the noise contaminating the feature measurements and the variations af all patterns in each class are considered, X is usualiy assumed to be vector-valued random variable. In such a case, one may select a discriminant function of the following form

$$
\begin{equation*}
d_{i}(x)=P\left(\omega_{i}\right) p\left(x / \omega_{1}\right), i=1, \ldots, m \tag{8}
\end{equation*}
$$

where $P\left(\omega_{i}\right)$ is the a priori probability of class ω_{i}, and $p\left(X / \omega_{i}\right)$ is a multi-variate conditional density furction of X given $X \sim w_{1}$. The decision rule for classifying pattern classes using (8) as the discrimanant function corresponds to the Bayes' decision rule with zerc-one loss function in the statistical decision theory ${ }^{2}$, A block dlagrnm for this type of pattern classifier is shown in Figure 4.

If the cost of taking feature measurements is to be considered or the features measured are sequential in nature one is led
to use a sequential decision epproach 3,4 . In tinis case, the feature measurements are taken in sequence. After each measurement, the classifler makes a decision either to terminate the process and make a terminal decision sbout the class membership or to take an additional measurenent. The ersor probability (probability of misrecognition) can be prespecified and the number of feeture measurements required for a terminal decision is not fixed but a randon variable. The advantsge of using a sequential decision approseh is that, on the averase, the number of feature measurements is less than that required in a nonsequentisl cese for the same error probsbllity. For example, in a two-class clessirication problem Wald' B sequential probsbility ratio test can be applied3. After each feature meesurement is taker, compare the sequential probability ratio

$$
\begin{equation*}
\lambda_{k}=\frac{p_{k}\left(x / \omega_{1}\right)}{p_{k}\left[x / \omega_{2}\right)}, k=1,2, \ldots \tag{9}
\end{equation*}
$$

with two stopping bounds A and B where $\mathrm{p}_{\mathrm{k}}\left(x / w_{i}\right), \mathrm{i}=1,2$, is the conditional der. sity function of X given $X \sim \omega_{i}$ after k measurements have been taken. The stopping boutds A and B are related to the probability of nisrecognition with the following relationship.

$$
A=\frac{1-\epsilon_{21}}{\epsilon_{12}} \quad B=\frac{\epsilon_{21}}{1-\epsilon_{12}}
$$

Where ϵ_{12} is the probebility of classifying X as in w_{1} when actually $X \sim \omega_{2}$ and ϵ_{21} is the probebility of clascifying ${ }^{2} X$ as in ω_{2}. when actually $X \sim w_{1}$. If $\lambda_{x} \geq A$, then X is clessified us from ω_{1}; if $\chi_{i} \leq B_{2}$ then X is classified es fran w_{2}; and $1 \mathrm{f} \mathrm{B}<\lambda_{\mathrm{K}}<\mathrm{A}$, the clessifier will take an additional feature measurement, and the process is proceeding to the $(\mathrm{k}+1)$-th stage. For $\mathrm{m}>\mathrm{d}$, the generalized sequential probability ratio test may be used for sequential classifieation. If the maximam number of fertures, N. svallable is prespecifled, the sequential classification procedure must be either truncated at the Nth messurenent ${ }^{4}$ or a backward computation procodure such es dynamic programing must be used. If all the information required in (3), (6), (8) or (9) is known a priori, e pattern classifier con be easily implemented. However, in practice, the quantities in these equations are usually incorpletely specified. For example, the ${ }^{W} \mathrm{Ir}^{\prime} \mathrm{s}$ in (3) and (6) and the $\mathrm{p}\left(\mathrm{x} / \mathrm{m}_{\mathrm{i}}\right)^{\prime} \mathrm{s}$
In (8) and (9) are usually unknown a priori on only partially known. Under such circumatences, it is important to introduce a learning process to pattern classitiers such that the unknown information can be estimated (leazned) "on-line" from the actual input pattern samples.

3. Treinable Controllers

The linear classifier shown in Figure 2 has been used as a trainable controller to realize a switghing surface for time-optimal control systems ${ }^{6}, 7$. Jising terminologies in pattern classification, the partition of feature space n_{x} is equivalent to the partition of state space, and
the switchine slurface in state space is corresponding to the decision boundary in feature spece. The partitioned regions in state spece (feature space) correspona to varicus control situations (pattern classes). Once the desired switching surface (decibion boundary) is realized, the controller beheves like a pattern classiffer. The output of the time-optimel controller, $u=+1$ or -1 , represents the classified control situretion and also the proper control action in this case. The realization of the switching surface is aceomplished through a training procedure.

Since the time-optinal switching surface is in general non-linear, the linear clessifler used for the sontrollez is a plece-wise linear approximation of the non-linear switching surface. The state space is flrst quantized, forming elenentary hypercubes (elementary control situations) in which control action is assumed constant. Each hypercube is coded with a lincarly independent code and constitutes a pattern (feeture) vector; its classification is the same as the control action for the hypercube. A linearly independent code is defined here as ome in which the set of pattern vectors representing the zones of a state variable must be linearly independent set. The dimension of the vectors may be increased by the eddition of a +1 element to each vector if necessary to produce linear independence.

Two possible lineerly independent codes are illustrated in Table I for the stete variable x^{i} The quantities α, β, and y are the values of the thrasholds which seperate the different zones of x^{i}. The "single-spot" code is so named because the " 1 " element eppears only once in each pattern representation, while the "multispot" ecole has multiple number of " 1 " elements in the pattern representations. Similar coles can be defined with $-1,+1$ elements instead of 0,1 elements.

Pattern Fepresentstion for x^{1}

zone of x^{1}	"Single-spot" Code	"Multispot" Code	Mhagnented "Multispot Code
$x^{1}>\alpha$	$(0,0,0,1)$	$(1,1,1)$	$(1,1,1,1)$
$\alpha>x^{1}>\beta$	$(0,0,1,0)$	$(1,1,0)$	$(1,1,1,0)$
$\beta>x^{1}>\gamma$	$(0,1,0,0)$	$(1,0,0)$	$(1,1,0,0)$
$\gamma>x^{1}$	$(1,0,0,0)$	$(0,0,0)$	$(1,0,0,0)$

TABLE I

The pattern representations (vectors) of the single-spot code are linearly independent without the addition of a +1 elenent. The multispot pattern vectors ere not linearly independent until they have been augmented with a +1 elenent as shown in Table I. It can be proved that ${ }^{6}$ when the state variables are encoded as deacribed, 8 single linear clessifier as shown in Eigure 5 will approximate to an arbitrary degree of accuracy (by increasing the cutaber of quantum zones) switching surfaces of the form

$$
f\left(x^{1}, x^{2}, \ldots, x^{k}\right)=0
$$

provided thet no cross-product terms are included in the expression.*

Learning capability is accorrplished by the

[^1]adjustable weights $\mathrm{w}_{1}, \mathrm{~W}_{2}, \ldots, w_{\mathrm{w}}$, $\mathrm{w}_{\mathrm{N}+1}$. nefer to Figure 5, the inpuit is the k -dimensional state vector \bar{x} which is transformed into the \mathbb{H}-dimensional vector $\left[\frac{1}{} \frac{1}{2}, v^{2}, \ldots, v^{\mathbb{N}}\right]^{T}$. Let
\[

$$
\begin{equation*}
V=\left[v^{1}, v^{2}, \ldots, v^{N},+1\right]^{T} \tag{10}
\end{equation*}
$$

\]

and $W=\left[w_{1}, w_{2}, \ldots, w_{N}, w_{1+1}\right]^{T}$
The cutput is

$$
\mathbf{v}=\left[\begin{array}{ll}
+1 & \text { if } f(V)>0 \tag{12}\\
-1 & \text { if } f(V)<0
\end{array}\right.
$$

where

$$
\begin{equation*}
I(V)=V^{T} W \tag{13}
\end{equation*}
$$

The switching surface is not known a priosi, but is defined inplieitly by a training set. The training set consists of a finite number of points (control situations) in state space whose optimal control actions u^{*} are kmown. Specifically, those points in the state space lie on the optinel trajectory $\mathrm{X}^{*}(\mathrm{t})$. The points, when transformed into the new space Ω, define a training set $I=\left[V_{j}, 2_{j}^{*}\right\}, j=1, \ldots, L$. If the set T is decomposed into two sets T_{1} and T_{2} where all the elements $V_{\text {, with }} u^{*}=+1$ are in T_{1}, and with $u^{*}=-1$ in I_{2}, then
$V^{T} W>0$ for each $V \in T_{1}$
and

$$
V^{T} W<0 \text { for each } V \in T_{2}
$$

The training set T, which is conaidered as representrative of the population of control situations setually encountered, is used to determine a vector W which will then be used to classify other control situations.

During the training process, the trainable controller, (PLgure 5) makes changes in its weights besed only on the training pattern vector presently being "shown" to it, together with the desired output of that pattern vector. The training pattern vectors Are presented to the controller sequentially several times until all pattern vectors (representing control situations) in the treining set are belng correctly classifled, or until the nurber of clasaifieation errors has reached some steady-state value. The welght change after each incorrect clessification is av. Two types of training algorithms, least-mean-square-error and error-correction, may be epplied. they are surmarized below:
(A) Least-nean-square-error training procenture - The value of α is

$$
\begin{equation*}
\alpha=\frac{|\beta \in|}{V^{T} V} \tag{15}
\end{equation*}
$$

Where $G=\left(d-V^{T} W\right)$ is defined us the antiog error, is the desired output, and β is a groportionality constent. When the procedure is used and β is small $(\beta \ll 1)$, the controliler tends to minimize the nean-square error
where V represents the $j-t h$ trainimg pattern vector and ${ }^{j} d_{j}$ the desired bingry output for V_{j}. The lesst-mean-square-error trainlng proceâure will give a unique solution welght vector. However, it will not neceasarily minimize the number of elassification arrors aven with linearly separable
setts T_{1} and T_{2}, i, e, with T_{1} and T_{7}, which can be correctly classifled by means of 白 linear awitohing surface.
(B) Error-correction training procedure In this case the weight vector is modified when the binary cutput of the controller disagrees with the desired binary output. Thst is, for any VET $V \mathrm{P}_{\mathrm{W}}>0_{\text {, }}$ if the output is erroneous (i.e., $\mathrm{V}^{\mathrm{L}} \mathrm{i}<0$) or undefined (i.e., $V_{T} T_{W}=0$), then let the new welght vector be

$$
\begin{equation*}
W=v+\sigma \tag{16}
\end{equation*}
$$

On the other hand, for $Y \in P_{2}$, if $V^{T} W \geq 0$, then let

$$
\begin{equation*}
w^{\prime}=w-w \tag{17}
\end{equation*}
$$

Before training, W may be preset to ary convenient values. Three rules for choosing α are suggested?
(i) Fixed increment rule - is is any fixed positive number.
(ii) Aosolute correction rule -
$\alpha=$ the srallest integer greater than

$$
\begin{equation*}
\frac{\left|v^{T} W\right|}{v^{T} V} \tag{18}
\end{equation*}
$$

(ii1) Fractional correction rule -

$$
\begin{equation*}
\alpha=\lambda \frac{\left|V^{T} W\right|}{V^{T} V}, 0<\lambda \leq 2 \tag{19}
\end{equation*}
$$

The error-correction tralning proceGure will find a solution weisht vector when T_{1} and T_{2} are lincarly separable. It will not necesserily minimize the number of binary classification errors when T_{1} and T_{2} are not linearly separable; 喑thouth it generally does produce close to the minimum number of classification errors.

4. Reinforcement Iearring Control Systems

Paychologists consider that any systematic change in a system's performance with e certain specified goal is leaming. Various kinds of re. sponse must be aistinguished first in order to describe the performance change of a system. In general, rutually exclusive and exheustive clasees of responses $\omega_{1}, \ldots, \omega_{m}$ are considered. Ict $P\left(w_{i}\right)$ be the probability of occurenee of the i-th class of responses. We conaider the performance change beinf, expressed by the change or reinforcement of the set of probabllities $\left\{P\left(w_{p}\right)\right\}$. Mathematically, the reinforcement of $\left\{P\left(w_{1},\right\}\right\}$ can be deseribed as the following relationstipip, 11 .

$$
E_{n+1}\left(w_{i} / x\right)=\Omega P_{n}\left(w_{i} / x\right)+(1-1, x) n_{n}\left(x ; w_{1}\right)
$$

where $P_{n}\left(w_{i} / X\right)$ is the probability of w_{i} at instant n given the input X beinf observed, $0<x<1,0 \leq \lambda_{n}\left(X ; w_{1}\right) \leq 1$ and $\sum_{i=1}^{\infty} \lambda_{n}\left(X_{i} ; w_{1}\right)=1$. Because of the relationship between $P_{n+1}\left(w_{1} / X\right)$ end $p_{n}\left(\omega_{1} / \mathrm{x}\right)$ betng lineor, $(P O)$ is often cailed e Linear reinfornement learning algoritmm. It. can be easily shown that, if $\lambda_{p}\left(X_{i w_{i}}\right)=\lambda\left(\omega_{i}\right)$, then

$$
\begin{equation*}
P_{n}\left(\omega_{i} / X\right)=\gamma^{\eta} P_{0}\left(\omega_{i}\right)+(1-i) \lambda\left(\omega_{i}\right) \tag{?1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{n}\left(w_{i} / \gamma\right)=\lambda\left(w_{i}\right) \tag{32}
\end{equation*}
$$

It is noted thet; iror $(2 \eta), \quad h\left(w_{i}\right)$ is the limiut-
ine probability of $\mathrm{P}_{\mathrm{n}}\left(\omega_{1} / X\right)$. Hence, $\lambda_{n}\left(X_{i} \omega_{i}\right)$ should be, in general, related to the information or performence evaluated from the imput X at instant n . In learning control system, the input X to the learning controller is usually the output of the plant and ω_{i} mey directly represent the 1-th control action. $i_{n}\left(x ; \omega_{j}\right)$ can be identim ried ss the normalized index of performance associated with the 1-th cless of responses (control actions) of the controller. In some simpler cases, $\lambda_{n}\left(X ; w_{1}\right)$ may be or 1 to indicate whether the performance of the system at instant n, due to the i-th control action, is satisfactory or unsatisfactory. Or $\lambda_{n}\left(\mathrm{X} ; \omega_{i}\right)$ may be 0 or 1 to indicate whether or not the decision (or clessification) wade by the contraller at instant n from the input X is correct. In these cases, it can be proved that $P_{n}\left(\omega_{i} / x\right)$ will converge to its meximum $93 \mathrm{n} \rightarrow$ in the rean and in probability

The linear reinforcenent leaming gigorithm has been applied to control aystems deaims ${ }^{11,15 .}$ In the design of a reinforcement learning controller, the possible classes of response $\omega_{1}(i=1, \ldots, m)$ of the controller are the correspondine admissible control actions and the quality of the control actions for different control situations or the performance of the controller $i s$ evaluated at the cutput of the plant. The controller is designed to learn the best cantrol action at each time instant in the sbsence of: complete informetion about the plant and the environmental disturbance. The learning process is directed by the systen's performanne evaluated at each time instant. Therefore, the controller is able to learn without an external supervision, or say, to learn "on-line". A block diagrem of "on-11ne" learning control systems using reinforcement algorithms is shown in Figure 6.

Whitz and $\mathrm{Fu}^{1 / 4}$ have simulated a class of

 reinforeement learning control systems on a hybrid computer facility (GEDA-TBM 1620). The feature vector X is essentially the same as the state vector of the plant in this case. The index of performance of the system is of the form$$
I P=\sum_{n=1}^{N} n\left(x_{n}^{1}\right)^{2}, x_{n}^{1}-x^{1} \text { at inatant } n!
$$

where I is the sempling period wich mist be long enough to allow for a sigoificant change in X for a typical control action the The set of admissible control actions $\left\{u^{1}, u^{2}, \ldots, v^{\text {min }}\right\}$ is given. The controller first classifles any input X into a class of control situations and then learns the best control action for esch class of control situations through a linear reinforesment algorithm. The performance eyaluated at each time instant in (sometimes called instanteneous performance evaluation or subgori) is chosen as

$$
\begin{equation*}
\operatorname{IES}(n)=X_{n}^{T} G X_{n} \tag{24}
\end{equation*}
$$

where G is a diafonal matrix whose elements may be either preassigned of determined throuth a leaming process.

The classification of control aiturtions in the state space (a lso the feature space in this ease) is performed by constructing adaptive sanm ple sets. As scon as a meesurement of X is ta.. ken, compare the presently measured vector X with the existing vectors having been taken. If the Euclidean distance between X end any existing vector is less than a prespeciffed distance D,
they belong to the same control situation. Otherwise, it is considered as a new control situation and a nev sample set is established with the vector X es its center and D es the radius. If a messured X falls within distance D of two or more existing vectors it is considered a nember of the closed set. The sample set canstruction produces what might be called a type of generallzation since it makes use of the fact that points in the neighborhood of a given point in the state spece will usually have similar characteristics and will require similar control actions. The distance D can be veried during the process. The sample sets (control situations) eatablished in the state space must be partitioned into m classes such that a best control action can be determined for each cless of control situations. This is accomplished by applying the linear reinforcment learning algorithn.

$$
\text { Let } p_{n}\left(u^{i} / s_{j}\right) \text { be the probability that } u^{i}
$$

$1 s$ the best control ection for the control situetion S_{f} (or the j-th semple set.) at instent nT. Initiaily, essuming no a priori knowledge, all $P_{o}\left(u^{1} / s_{i}\right)=\frac{1}{\mathrm{I}}, P\left(u^{1} / g_{j}\right)$ will then be modified eccording to the following reinforcement algorither:

$$
\begin{equation*}
P_{n+1}\left(u^{1} / s_{j}\right)=\alpha F_{n}\left(u^{1} / s_{j}\right)+(1-\alpha) \lambda_{n}\left(S_{j}, u^{1}\right) \tag{2ं}
\end{equation*}
$$

where $\lambda_{n}\left(s_{j}, u^{1}\right)$ assumes efther 1 or 0 depending upon whether or not the $\overline{F P}(n)$ defined in (24) is reduced by applying u^{1}. a is celled learning parameter. The larger ac is, the slower the probabilities $P\left(u^{1} / s_{j}\right)$ converge, which results in a slower learnimg Tate. In the process of learning, a can be adjusted according to the amount of reduction in IPS due to the control action ui. As the learning process proceede, $\mathrm{P}\left(\mathrm{u}^{1} / \mathrm{S}\right.$) approachea 1 for u^{\ddagger} and each S_{j} with the possible exception of those sample sets (control situetions) located on the decision surfaces (or ceiled switching bomdaries). A control action u^{i} is used for control situstion S_{j} with probability $\mathrm{P}\left(\mathrm{u}^{i} / \mathrm{S}_{j}\right)$ (a pure random atretegy) unless some $P\left(u^{1} / S_{j}\right)$ exceeds a preset threshold. In this case, the $\mathrm{ui}^{\text {i }}$ for which $\mathrm{P}\left(\mathrm{u}^{\mathrm{i}} / \mathrm{S}_{j}\right)$ is meximum is used es the control action for S_{5}.

As learnimg progresses, most of the probabilities $P\left(u^{i} / \mathrm{S}_{\mathrm{j}}\right)$ will appronch either 1 or 0 . If a sample set happens to bo locsted on a decision surfiace then some of the probabilities corresponding to this set will oscillate between 1 and 0 during the learning process since one control action would be the best for pne part of the set, and a different control action would be the best for another part. It is proposed that these sets should be partitioned into subsets with smeller radii to obtain finer quantization. The procedure is to eatablish subsets in those sample sets if, after a certain number of X measurements within a sample set S_{y}, and $P\left(u^{i} / B_{j}\right)$ still lies between two threshold (typical values of the two thresholds mipht be 0.1 and 0.9). A typical example of the sample set construction for a second order plant with two control ections ($\mathrm{ai}=2$), $u^{1}=+1$ and $u^{2}=-1$, is shown in Figure 7 . A sampling period $T=0.5$ sec. was used. A typical leaming curve for the system is shown in Figure 8 . Reasonable performance can be obtained for most stationary systens by applying this subset-pertition eriterion. A second echeme which can be used for boty stationary and nonstationary systems, utilizes the curveture of the approximated
(learned) switching boundary to determine where subsets should be established. The utilizetion of a prior knowledge for more efficient partition and the problem of subgoal selection has recently been studied by Jones 16,17 . The chain encoding scheme described by preemen ${ }^{18}$ is used to determine the curvature of the learned switching boundary. Hegions of the switch1ng boundary with relatively high curveture in one direction sre identified and those sets that are located on the inside of the curve are further divided Into subsets.

5. Bayesian Learning in Control Systems

In the statistical design of an optimal controller uaing dyamic programing ${ }^{19}$ or statistideciaion theory $20-22$, the true knowledge of the probability aistribution of the pient output or of the environmental parameters io required. For example, consider a discrete stochestic plant characterized by the equation

$$
\begin{equation*}
x_{n+1}=E\left(x_{n}, u_{n}\right) \tag{26}
\end{equation*}
$$

where X_{n} is the state vector (a random variable) at instint n, and u_{n} is the control action at instant n. In determining the optimal control action u^{*} to minimize the performance index
$I_{n}=E\left[\sum_{n=1}^{N} F\left(X_{n}{ }^{\prime \prime}{ }_{n-1}\right)\right]$, e recurrence relation-
ship can be cerived using cynamic progremming with the probability density Eurction $p(x)$ known ${ }^{19}$. Simllar to the case mentioned in statiatical pattem classiflcation, if these probebility distribution or density functions are unknown or incompletely known, a controller can be designed to first estimate (to learn) the unknown function, and then to implement the control law on the basis of the eatimated information ${ }^{23}$. If the estimated (learned) tunction epproaches the true function, the control law will appronch the optimal control lew as if all the infometion required has been known. An approach based on the iterative application of Bayes' theorem to estimate the unknom information is introduced in this section ${ }^{23-26}$.

Suppose that the probability density furction $P\left(X / w_{i}\right)$ is to be learned, where $\omega 1$ represents the i-th class of control situations. Let X_{1}, \ldots, X_{n} be the feature measurements with known ctasifications of control aituations (called learning semples), sey, all in ψ_{i}. This is certainly the case of supervised leaming. If the form of $\mathrm{p}\left(\mathrm{X} / \omega_{i}\right)$ is knom but some parameters o are unknown, then the problem is reduced to that of estimating θ for given meesurements X_{1}, \ldots, X_{n}. Since θ is unknown, it can be assumed to be a random variable with a certain a priori distribution. By applying Bayes' theorem, the a posteriori density function of θ is computed from the a priori density function and the information obtained from semple messurements, i.e.,

$$
\begin{align*}
& p\left(\theta / \omega_{i}, x_{1}, \ldots, x_{n}\right)= \\
& \frac{p\left(x_{n} / \omega_{1}, \theta, x_{1}, \ldots, x_{n-1}\right) p\left(\theta / \omega_{1}, x_{1}, \ldots, x_{n-1}\right)}{p\left(x_{n} / \omega_{1}, x_{1}, \ldots, x_{n-1}\right)} \tag{27}
\end{align*}
$$

For example, if $p\left(X / \omega_{i}\right)$ is Gaussian distributed with mean vector M and covariance matrix K, end the unknown perameter θ is the mean vector M. Let the a priori distribution of $\theta, p_{0}\left(\theta / u_{i}\right)$, be also Guassion distributed with initial mean vector M_{0} and initial covarience matrix Io $_{0}$. Then,
after the first saruple measurement X_{1} has been taken

$$
\begin{equation*}
p\left(\theta / \omega_{1}, x_{1}\right)=\frac{p\left(x_{1} / \omega_{i}, \delta\right) p_{o}\left(\theta / \omega_{1}\right)}{p\left(x_{1} / \omega_{1}\right)} \tag{78}
\end{equation*}
$$

It is noted that the assumption of a Gaussian distribution for $p_{0}\left(\rho / \omega_{i}\right)$ will simplify the computation of (28) Since ${ }^{1}$ the product of $p\left(X_{1} /(\omega, \theta)\right.$ $\mathrm{P}_{0}\left(\theta / \mu_{1}\right)$ is aiso a Grussian distribution. By using this property of reproducible distribution of $\mathrm{p}_{0}\left(\theta / \omega_{i}\right)$ and the iterative application of Bayes theorem, efter n learning samples, a recursive expression for estimation $\theta=\mathrm{M}$ is given as 24

$$
\begin{equation*}
M_{n}=K\left(\Phi_{n-1}+K\right)^{-1} M_{n-1}+\Phi_{n-1}\left(\Phi_{n-1}+K\right)^{-1} X_{n} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{n}=K\left(\Phi_{n-1}+K\right)^{-1} \delta_{n-1} \tag{20}
\end{equation*}
$$

In terms of the initial estimates M_{0} and ${ }_{0}$, and (30) becones

$$
\begin{equation*}
\left.K_{n}=\left(n^{-1} K\right)\left(s_{0}+n^{-1} K\right)^{-1} K_{0}+क_{0}\left(\phi_{0}+n^{-1} K\right)^{-1}<K\right\rangle \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{n}-\left(n^{-1} K\right)\left(\Phi_{0}+n^{-1} K\right)^{-1} \Phi_{0} \tag{32}
\end{equation*}
$$

where $\langle X\rangle=\frac{2}{n} \sum_{i=1}^{n} X_{i}$ is the sample mean. Equation (31) shows that the n-th estimate of the meen vector, M, can be interpreted as a weighted average of the a priori mean vector M_{0} and the sample information $\langle X\rangle$. As $n \rightarrow \infty N_{n} \rightarrow\langle X\rangle$ and in $\rightarrow 0$ which means, on the average, the estimate M_{n} will approach the true mepn vector M . Similarly, if the covariance matrix K is unknown or if both M and K are umknown, the Bayesisn learning technique can also be applied ${ }^{25}$.

If the correct elassiffications of the learninc, samples $X_{1}, \ldots . X_{n}$ are not aygilable, a nonsupervised learning technique must be used. In this case, each mec.surement X_{i} msy be considered as from any one of the a clases of control situations. A relatively general approach is to form a mixture density (or distribution) function on the basis of the probability density functions from all possible classifications, i, e..

$$
\begin{equation*}
P(X / \theta, P)={\underset{i=1}{\pi} P\left(\omega_{i}\right) p\left(X / \omega_{1}, \theta\right)}^{m} \tag{33}
\end{equation*}
$$

where g_{i} is the unknown parameter associated with $\mathrm{p}\left(\mathrm{X} / /_{1}\right)$, and $\mathrm{B}=\left\{\theta_{\mathrm{i}} ; \mathrm{i}=1, \ldots, \mathrm{n}\right\}, P=\left\{P\left(\mu_{1}\right)\right.$; $i=1, \ldots, m\}$. Let $\bar{B}=(\theta, p)$ and consider that the sequence of independent mensurements X_{1}, \ldots, x_{n} are taken from the nixture with probability density function $p(x)$. Then a suecessive application of Boyes' theorem given

$$
\begin{align*}
& p\left(B / X_{1}, \ldots, x_{n}\right)= \\
& \frac{p\left(x_{n} / x_{1}, \ldots, x_{n-1}, B\right)_{p}\left(B / x_{1}, \ldots, x_{n-1}\right)}{p\left(x_{n} / x_{1}, \ldots, x_{n-1}\right)} \tag{21}
\end{align*}
$$

It is necessary to select the a priori probebility $P_{0}(B)$ which is not equal to zero at the true value of B eharacterizing the mixture under consideration. Also; the identifiability conditions for a given type of mixture must be imposed in order to uniquely learn the unknown paremeters: The mixture $\mathrm{p}(\mathrm{X} / \theta, \mathrm{F})$ is said to be identifiable e^{27} if the mapping of θ and P onto $\mathrm{p}(\mathrm{K} / \%, \mathrm{P})$, derined by ($₹ 3)$, is a one-to-one nepping. Note that the question of whether $p(x) P)$ is identifiable or not is one
of urique characterization. That is, for a particular iamily of the i-th component (parameter conditional) density functions $\left\{p\left(x / \omega_{j}, \theta_{i}\right)\right\}$ and a set of perameters θ and P, the mixture $g(X / O, P)$ uniquely deternines the sets of parameters $\left\{\theta_{i}\right\}$ and $\left\{P\left(\omega_{i}\right)\right\}$. It is then cleer that if the norsupervised learming problem is such that the mix. ture is not uniquely characterized by $\left\{e_{1}\right\}$ and $\left\{P\left(\omega_{i}\right)\right\}$ (not identifisble), then there exists no umque solution to the underlyins eatimation problem. In addition to Bayesian learning technique ${ }^{26}$ the stochastic approximation procedure discussed in Section 6 can also be applied for estimating unknown parameters in a mixture distribution ${ }^{28-30}$.

G. Leerning Control Systems Using Stochastic approximation

The leaming control syntems discussed in Section 4 and Section 5 have demonstrated the edvanteges of introducing learning into a control system when the a priori infometion required is incompletely knom. A more general design technique using the performance feedback approsch is alscussed in this section. The basic idea is the application of the stochastic approximation procedure to the design of a learning controller 30-32. In other words, the controller uses the stochestic approximation procedure to leern the best control action for esch class of control situations. In order to implement the idee, the followinf approach is taken. First, a proper evalustion of symten's performance mast be performed such that the performance evaluation can be used to direct the learning process. However, since in learning control problems, the plantenvironment characteristics are, in general, unknown or incompletely known, an exact evalustion of performance index is actually impossible. In afdition, en instantaneous (or an interval basis) performance evaluation (a subgoal) must be eppropriately chosen such that the system's learning directed by the instantanecus performance evaluation will guarantee the final optimality with respect to the overall performance index specified. Under such a circumstance, it is proposed that the stochastic approximation procedure be applied to estimate the performance index first and then to learn the best control action.

Consider a plant described by the equation

$$
\begin{equation*}
y_{n+1}=\xi_{n+1}\left(y_{n}, u_{n+1}\right) \tag{35}
\end{equation*}
$$

where y_{n+1} is the observed response of the plant at instant $n+1$ when the control action u_{n+1} is applied. The instontaneous performance evaluation is chosen as

$$
\begin{equation*}
z_{n+1}=r\left(y_{n+1}, u_{n+1}, y_{n}\right) \tag{36}
\end{equation*}
$$

Where f is a prespecified positive definite fometion. For a stationary stochestic plant, the conditional density function $\mathrm{p}\left(\mathrm{a}_{n+1} / u_{n}, y_{n}, u_{n+1}\right)$ cices not depend explicitly on n, i.e.,

$$
\begin{gather*}
p\left(z_{n+1} ; u_{n}=u^{T}, y_{n}=y, u_{n+1}=u^{3}\right) \\
=p\left(z / u^{r}, y, u^{j}\right) \tag{37}
\end{gather*}
$$

for every n. The performence index of the syotem is

$$
\begin{equation*}
\text { IF }=\mathbb{E}\left[z / u^{r}, y, u^{j}\right] \tag{38}
\end{equation*}
$$

The optimal control action u^{*} is defined by

$$
\begin{equation*}
E\left[z / u^{r}, y, u^{*}\right]=\operatorname{Min}_{j=1, \ldots, m}\left\{E\left[z / u^{T}, y, u^{j}\right]\right\} \tag{39}
\end{equation*}
$$

Since $p\left(z / u^{r}, y, u^{j}\right), j=1, \ldots$, ni and n are unknown, $E\left[z / u^{r}, y, u^{j}\right]$ cen only be obtained from the successive estimates $E_{M_{j}}\left[z / u^{r}, y, u \hat{v}\right], N_{j}=1,8, \ldots$ which converge to $E\left[z / u^{r}, y, u^{i}\right]$ with probability one for every uf. Also, since the condition assom ciated with the estimation of $\left[z_{z} / u^{5}, y_{,}, u^{\prime}\right]$ is always $\left(u^{r}, y, u^{j}\right)$, let $\left(u^{r}, y, u^{j}\right)$ be $\left(x^{q}, u^{3}\right)$. Then

$$
\begin{equation*}
E\left[z / u^{r}, y, u^{1}\right]=\Sigma\left[z / x^{c}, u^{5}\right] \tag{40}
\end{equation*}
$$

Let $\mathrm{z}_{\mathrm{T}_{\mathrm{qj}}+2}$ designate the value of $\mathrm{z}_{\mathrm{p}+1}$ distributed according to $p\left(z / X^{q}, u^{j}\right)$ where $N_{q j}$ is the number of times in n instants that u^{j} followed the ocemrence of X^{q}. The stochastic approximation procedure is used to estimate $E\left[z / x^{q}, u^{j}\right]$, 1, e.,

$$
\begin{align*}
& \hat{\mathrm{n}}_{\mathrm{N}_{\mathrm{q} i 1}+1}\left[z / \mathrm{X}^{\mathrm{q}}, u^{\mathfrak{j}}\right]=\hat{\mathrm{E}}_{\mathrm{N}_{\mathrm{q} i 1}}\left[z / \mathrm{X}^{\mathrm{q}}, u^{\mathrm{j}}\right] \tag{41}\\
& +\gamma_{\mathrm{N}_{\mathrm{qJ}}}\left\{z_{\mathrm{N}_{\mathrm{q}, \mathrm{~J}}}+1-\hat{k}_{\mathrm{N}_{\mathrm{qj}}}\left\{z / \mathrm{x}^{\mathrm{q}}, \mathrm{u}^{\ddagger}\right]\right\}
\end{align*}
$$

for $N_{q_{i}}=0, I, z, \ldots$, where $E_{0}\left[z / x^{q}, u^{j}\right]=0$ and $Y_{\mathrm{N}_{\mathrm{Q} j}}=1 / \mathrm{N}_{\mathrm{q} j^{*}}$ Then

$$
\begin{align*}
& \left.=E\left[z / X^{q}, u^{j}\right]\right\}=1 \tag{42}
\end{align*}
$$

The controiler is designed to use a pure rendam strategy to choose the proper control action at each instant. The desired optimal control law is

$$
\begin{equation*}
P\left(u^{*} / x^{q}\right)=1 \tag{43}
\end{equation*}
$$

The subjective probabilities $\left\{\mathrm{P}_{\mathrm{n}_{\mathrm{q}}}\left(\mathrm{u}^{\mathrm{k}} / \mathrm{x}^{q}\right) ; \mathrm{x}=1\right.$, $\ldots, \mathrm{m}\}$ for the pure random strategy ane modified on the bssis of the estimates $\mathbb{E}\left[z / x^{q}, u^{f}\right], n_{q}$ is the number of occurrences of x^{q} in n instanta and $n_{q}=\sum_{j=1}^{m} N_{q j}$. Several algorithms can be applied to modify the subjective probabilities. The algorttim described in the following is the one based on the stochastic approximation procedurer After ($\mathrm{n}_{\mathrm{q}}+1$) occurrences of x^{q}, let the estimates of the performance 1ndices be $\hat{\mathrm{A}}_{\mathrm{q}}+1\left[\mathrm{z} / \mathrm{X}^{\mathrm{q}}, \mathrm{n}^{\mathrm{j}}\right], \mathrm{k}=$ $1, \ldots, m$. The subjective probabilities are recursively computed for every $u^{\mathrm{l}}, \mathrm{k}=1, \ldots, \mathrm{~m}$, by

$$
\begin{align*}
p_{n_{q}}+1
\end{align*}
$$

where (i)

$$
\left(1-\gamma_{n_{q}}\right)>0, \sum_{\sum_{n=1}^{q}}^{\infty} Y_{n_{q}}^{2}<\infty, \prod_{n_{q}=1}^{\infty}\left(1-\gamma_{n_{q}}\right)=0
$$

and

$$
\sum_{\bar{n}_{q}=r}^{\infty} \pi_{k=r}^{\pi_{q}}\left(1-\psi_{k}\right)^{2}<\infty \text { for } r=0,1, \quad 2, \ldots
$$

and (ii) $\varepsilon_{-1}+1\left(x^{q} ; u^{k}\right)$

It can be shown that if, for every suboptimal control action \mathfrak{x},

Equation (47) indicates that the desired optimsi control law as defined in (4.3) will be eventually obtained with probability one.

7. Conclustons and Remarks

The basic coneept of learning control has been reviewed. Several importent learming techniques have been described. Theoretically speaking, these techniques have similar leaming properties 33-35. However, from an engineering viempoint, the a priori information required and the comerutation involved for these techniques are different. Recentiy, stochastic automata with varlable structures have been proposed as models for learning systems. Simple applications have been made on pattern recognition and learning control systems ${ }^{36,37}$.

In supervised or off-line learning for training) schemes, the system usually stops to learn es soon as the training process is termineted. When the system is actually operating vithIn its random envirorment, nonsupervised or online learning scheres must be used. It is known that the rate of learming for nonsupervised learming is reletively slower then that for supervised learning, and any additional a priori information (for example, the form of the plant equation, the type of the enviromental disturbance, etc.) will ingrove the learning rate of the system. In meny practical situations, it is possible to use the combination of both supervised and nonsupervised learning schemes. That is, a supervised learaing scheme is used first to learm as much a priori information as possible, and then a nonsupervised learning scheme will be in operation on-line. The operation of such a systen cen be considered as consisting of tho modes, training and on-line learning. In practical design, the training process can usually be performed as a computer similation.

Lexming control is a new area of research. preliminary attempts of applying theoretical re. sults to spacecraft control problems have already been macie by aeveral euthors $15,38-40$. Other applications include the control of velve actuators ${ }^{11}$, the control of power syateras and production processes $42-54$. At the present state-of-the-art, the implementation of more sophisticated on-line leaming techniques usually requires large or high-speed computers. Nevertheless, with the rapia progress in computer technolofy, it is anticipated that the seriousness of this problem will be reduced. In the theoretical study, many problems, for example, new algorithom with higher learning, the determination of proper atopping rules and learning in nonstationary enviroments, still need to be solved.

Referenceg

1. Milsson, N. J., "Leaming Machines", MoGrawHill, New York, 2965.
2. Chow, C. K., An optinum character recognition system using decision functions. IRE TRANS.
on Bectronic Computers, Vol. E2-6, pp. 247254, December (1957).
3. $F u, K$. S., A sequentizl decision model for optimum reeognition. Biological Erototype and Synthetic Systems, Vol. I, Flenum Fress, (1962).
4. Chien, \quad. F., and Fu, K. S., A modified sequential recomition machine using timevarying atopping boundaries, IEEE Trans, on Information Theory, Vol. IT-12, April (1966),
5. Fu, K. B., Chien, Y. T., and Cardillo, G. P., A Syramic progranming approach to sequential pattern recognition. IMEE Trans. on Electronic Computers, (1967).
6. Smith, F. W., Contact control by adaptive patterm-recognition techniques. Tech. Rept. No. 6762-2. Stanford Electronic Laboratories, Stanford University, Califormia, April 1964.
7. Widrow, B., and Smith, F. W., Pattern recognizing control systems. Computer and Information Sciences, ed., J. T. Tru and R. H. Wilicox, Spartian Books, (1964).
8. Push, R., and Mosteller, F., "Stochestic Models for Leaming". John Wiley and Sons, 1955.
9. Tsetiln, M. L., on the behavior of finite Autonata in random enviroments. Avtonatika 1 Telemekhanika, Vol. 22, No. 10, (1951).
10. Varshavsky, V. I., and Vorontsova, I. P., On the behavior of atochastic autamsta with variable atructure. Avtometika i Telemekhamika, Vol. 24, No. 3, (1963).
11. $\overline{F r}$, K. S., and McLaren, E. W., An application of stochastic automata to the synthesis of learning systems. Tech. Rept. TR-EE-65-17. School of Electrical Engineering, Purdue University, September 1965.
12. MoMurty, G. J., and Fu, K. S., A variable stracture eutomaton used as a multi-model searching technique. IERE Trans on Automatic Control, Vol. AC-11, duly (1956).
13. Fu, K. S., and Nikolic, Z. J., On some reimforcement techniques and their relations with stochastic approximation. IEEE Trans, on Automatic Control, Vol. AC-11, Ontober (1966).
14. Waltz, M. D., and Fu, K. S., A heuristic approach to reinforcement learning control systems. IEEE Trens, on Autanatic Control, Vol. AC-10, October (1965).
15. Mendel, J. M., Survey of learning control systems for space vehicle applications. Preprints, JACC, August (1966).
16. Jones, I. E., III, on the choice of subgoals for learming control systems. IEEE Trans. on Automatic Control, December (1953).
17. Jones, I. E., III, and Fu, K. S., A. learning control system--design considerations. Tech. Rept. TH-EE-68-32, School of Electrical Emgineering, Purdue University, October 1968.
18. Fremen, H, on the digital coxputer classification of geometric line patterns. pros. Wational zlectronics Coniference, Vol. I9, October (1962).
19. Tou, J. T., "Modern Control Theory". MctrahHill, 1964.
20. Hsu, J. C., ant Meserve, W. E., Decisionmaking in adaptive control systems. Trans. IRE on Autamatic Control, pp. 2h-32, January (1962).
21. Ula, Ii,, and Kim, M., An errpirical bayes approach to adaptive control. J. Franklin Institute, Vol. 280 , No. 3, geptember (1965).
22. Sawarasi, Y., Bumahara, Y., and Wikamizo, TH, "Statistical Decision Theory in Adaptive Control Systems". Academic Press, 1967.
23. Fu, K. S., A class of learning control gystems using statistical decision functions.

Proc. Second IFAC (Tecdinstion) Symposiun m Theory on Selt-Adaptive Control Systems, Ceptcmaer (1955).
24. Braverman, De, and Abramson, N\%, Learming to recognize patterms in a randan environment. TRE Trans, on Information Theory, Vol. IT-8, Septerber (1968).
25. Keehs, D. G., A note on learning for Guassian properties. IEEEE Trans. on Information Theory, Vol. IT-11, Jamuary (1965)-
26. Fralick, S. C., Learming to recognize a pattern without a teacher. ISEE Trans. on Intormation Theory, Vol. ITm13, Januery (1967).
27. Teicher, H., Identifiability of finite vixtures. Ant. Math. Stat. Vol. 34, December (1963).
28. Chien, Y. T., and Fu, K. S., On Bayesian learning and stochastic approximation. IEFEE Trans. on System Sefence and Cybernetics. June (1967).
29. Nikolic, Z. J., and Fu, K. S., On the estimation and decomposition of maxture using stochastic approximation. Eroc. 1967 SHIEECO, April (1967).
30. Nikclic, Z. J., and Ev, K. S., A rathematical model of learning in an unknown rendem environnent. Proc. 1966 National Electronies Conference, October (1966).
31. NLkolic, Z. J., and Fw, K. S., An algorithm for learning without external supervision and its application to learning control systems. IEEE Trans. on Autamat Le Control, Vol. AC-11, July (1906).
32. Tsypkin, Ya, Z*s Adaptation, leaming and self-learning in control systems. Third TFAC, London, June (1966).
33. Fu, K. S., Mkolic, Z. J., Ghien, Y. Tı, and Wee, W. G., On the stochastic approximation and related learning techniques. Tech. Rept. TR-EE-66-6. School of mectrical Frgineering, Furdue University, April 1966.
34. Fu, K. S., Leaming control systems. Advances in Information Systems Science, ed, J. T. Tou, Plenum Press, (1959).
35. Fi, K. S., Leaming system theory. Coppter 11, System Theory, ed., I. A. Zadeh and B. Polak, Mc-Graw-H111, New York, (1969).
36. Fu, K. S., Stochastic automata as models of learning systems. Ccmputer and Information Sciences II, ed., J. T. Tou, Academic Press, (1967) -
37. MeLaren, R. W., A stochestic eutomator model for a class of learning eontrollers. Preprints, 1967 Joint Autamatis Control Conference, (1967).
36. Smith, F. B., Jr., Trainable flight control system investigation. $\mathrm{FI}-\mathrm{TDF}-64-89$, Wright-Patterson AFB, Ohio, 1964.
39. Barron, R., Self-organizing control. Control. Ingineering, February, Merch (1965).
40. Mendel, J. M., Applications of artificial intellience techmiques to a spaceeraft control problem. Douglas Report DAC-59388, Sante Monice, Californie (1966).
4. Garden, M., Learning control of valve ectuators in direct digitel control systems. Preprints, Joint Automatic Control Confer enes, (1967).
k2. Krug, Go K., and Netushil, A. V., Autamatic syotems with learning elements. Proc. LFAC Congress, (1963).
43. Ivanov, A. Zie, Kriag, G. Ko, et. al., Iearm-ing-type control systems. Proc. Mroscow Power Institute, No. 44.
44. Netuahil, A. Vo, Krus, G. K., and Letskil, E. K., Use of lesrning systems for the
sutmation of complex produetion processes. Izv. VUZOV SSSE, Meshinostrovenie, Ho. 12 (1961).
45. Fu, K. S., Learming control systems. Computer and Information Sciences, ed., J. T. Tou and R. H. Wilcox, Spartan Books, (1964).
46. Sklansky, J., Leaming systems for automatic Control. THEN Trans. on Aut matic Control, Vol. AC-11, Jemuary (1966).
47. Tou, J. T., and Fill, J. D., Steps towerd learning control. Preprints, JACC, August (1966).
155. Fu, K. S., "Sequential Dectaion Methods in Pattern Recognition and Nechine Learning." Academic Press, New York, 1968.
49. Butz, A. P., Learming bang-bang regulatore. Proc. Hewail Irtemational Conference on Systen Sciences, Jemuary (968).
50. Leondes, C. T., Bnd Mendel, J. M., Artiflcial intelligence control. Douglas Faper No. 4336, MCDonnell-Douzlas, Santa Monica, Celiformia, January 1967.

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

Figure 8.

[^0]: *This work uas supported by the National Bcience Fommdation Grant, GK-1379.

[^1]: *Cross-product terres an be realized by using augnented linear classifiers ${ }^{6}$.

