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LEARNING CONTROL SYSTEMS - REVIEW AND OUTLOOK

K. S. Fu
Purdue University 
Lafayette, Indiana

The basic concept of learning control is 
introduced. The following four learning schemes 
are briefly reviewed: (l) trainable controllers 
using linear classifiers, (2) reinforcement 
learning control systems, (3) Bayesian estimation, 
and (J-i) stocha.stic approximation. Potential 
replications and problems for further research 
in learning control are outlined.

1. Introduction
In designing an optimal control system, 

if all the a priori information about the con­ 
trolled process (plant-environment) is known and 
can be described deterministically, the optimal 
controller is usually designed by deterministic 
optimization techniques. If all or a part of the 
a priori information can only be described statis­ 
tically, for example, in terms of probability 
distribution or density functions, then stochastic 
or statistical design techniques will be used. 
However, if the a priori information required is 
unknown or incompletely known, in general, an op­ 
timal design can not be achieved. Two different 
approaches have been taken to solve this class of 
problems. One approach is to design a controller 
based only upon the amount of information avail­ 
able. In that case, the unknown information is 
either ignored or is assumed some known values 
from the designer's best guess. The second ap­ 
proach is to design a controller which is capable 
of estimating the unknown information during its 
operation and an optimal control action will be 
determined on the basis of the estimated informa­ 
tion. In the first case, a rather conservative 
design criterion (for example, Minimax criterion) 
in ofter used: the systems designed are in general 
inefficient and suboptimal. In the second case, 
if the estimated information gradually approaches 
the true information as time proceeds, then the 
controller thus designed will approach to the op­ 
timal controller. Here the optimal controller 
means that the performance of the controller de­ 
signed will be as equally good as if in the case 
that all the a. priori information required is 
known. Because of the gradual improvement of per­ 
formance due to the improvement of the estimated 
unknown information, this class of control sys­ 
tems may be called learning control systems. The 
controller learns the unknown information during 
operation and the learned information is, in turn, 
used as an experience for future decisions or 
controls.

From the concept just introduced, the problem 
of lea.rning may be viewed a.s the problem of esti­ 
mation or successive approximation of the unknown 
quantities of a functional which represent the 
controlled process under study. The unknown quan­ 
tities to be estimated or learned by the control­ 
ler may be either the parameters only or the form
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and parameters which describe a deterministic or 
probabilistic function. The relationship between 
the control law and this function is usually cho­ 
sen by the designer (for example, in terms of a 
preselected optimization criterion). Therefore, 
as the controller obtains more information about 
the unknown function or parameters, the control 
law will be altered based on the updated informa­ 
tion in order to improve the system's performance. 
A basic block diagram for a learning control sys­ 
tem is shown in Figure 1. The dynamics of the 
plant under the environmental disturbance Z are 
assumed unknown or partially known. Therefore, 
there is a need to design a controller which will 
learn (or estimate) the unknown information re­ 
quired for an optimal control law. The actual 
control action is determined on the basis of the 
learned (or the estimated) information and is, in 
general, suboptimal. However, if the learned in­ 
formation converges to the true information as 
time proceeds, the suboptimal controller is ex­ 
pected to approach to the optimal controller 
asymptotically. The "Teacher" evaluates the per­ 
formance of the controller and directs the learn­ 
ing process performed by the controller so the 
overall system's performance will be gradually 
improved.

Depending upon whether or not an external 
supervision (in the form of a "Teacher") is re­ 
quired, the process of learning can be classified 
into (i) learning with external supervision (or 
training or supervised or off-line learning) and 
(ii) learning without external supervision or on­ 
line learning. In learning processes with exter­ 
nal supervision, the desired answer, for example, 
the desired output of the system or the desired 
optimal control action, is usually considered 
exactly known. Directed by the known answer 
(given by an external teacher, say), the control­ 
ler modifies its control strategy or control 
parameters to improve the system's performance. 
On the other hand, in learning processes without 
external supervision, the desired answer is not 
exactly known. Two approaches are usually em­ 
ployed in designing learning controllers. The 
first approach is that the learning process is 
carried out by considering all possible answers 
(the mixture approach in Bayesian learning). The 
second approach is that the controller usep a 
performance measure to direct the learning pro­ 
cess (performance feedback approach). The learned 
information is considered as an experience of the 
controller, and the experience will be used, to 
improve the quality of control whenever similar 
control situations recur. The new information ex­ 
tracted from a recurred control situation is used 
to update the estimation or the experience asso­ 
ciated with that control situation. Different 
experiences are obtained from the information ex­ 
tracted from different control situations. Simi­ 
lar control situations may be grouped to form a 
class of control situations. A major function . 
also performed by some learning controllers is the 
classification of different classes of control 
situations such that an optimal control law can be 
gradually established, between various classes of 
control situations and the admissible control, ac­ 
tions respectively*
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2. Pattern Classification
Since the problem of classifying different 

classes of control situations is important in the 
design of a learning controller, the general prob­ 
lem of pattern classification is briefly intro­ 
duced in this section. Suppose that a set of 
measurements or observations is taken to represent 
an unknown pattern or a control situation. These 
measurements (called features) are designated as
12 k x , x ,...,x , and can be represented by a k-di-

mensional vector X in the (feature) space 0 . Let 
the m possible pattern classes (or m classes of 
control situations) be to , cu , . ..,eu . The func­
tion of a pattern classifier is to assign (or to 
make a decision about) the correct class member­ 
ship to each given feature vector X. The opera­ 
tion can be interpreted as a partition of the k- 
dimensional space Q into m mutually exclusive 
regions (or a mapping from the space Q to the de­ 
cision space). The partitioning boundary or de­ 
cision surface can be expressed in terms of "dis­ 
criminant functions". Associated with each w. a 
discriminant function d. (X), i = 1, ...,m is se­ 
lected such that if X is from class uo. then

d.(x) > d.(X) for all j ^ i (l)
The decision surface between the class us. and the
class u). is represented by the equation 

3
d (X) = d (X)
1 o

(2)

There are many ways for selecting d.(x). Sev­ 
eral important discriminant functions are dis­ 
cussed in the following

1) Linear discriminant function - The dis­ 
criminant function d.(X) is selected as a 
linear function of feature measurements x , 
x2, ...,xk, i.e., 

k

(3)
The decision surface represented by the 
equation

k
d.(X) -d (

r=l 00

is also a linear function of x ' s or, in 
other words, a hyperplane in the space 0 
Let

then (k) becomes 
k

rw xr . .k+1 = o (5)
r=l

For m = 2, a two-class linear classifier can 
be easily implemented by a threshold logic 
device shown in Figure 2. If the input fea­ 
ture X is from m, 9 i.e., X ~ ou^, then the
output of the threshold logic device will be 
4- 1 since

k~~ r
d1 (x) - = > o

r=l
On the other hand, if

rw x + w. , r k+1 < 0
r=l

then the output will be -1 and X ~ uo . For 
m > 2, several threshold logic devices con­ 
nected in parallel can be used for classifi­ 
cation purposes. The various combinations of 
4-1 and -1 at the outputs of each threshold 
logic device will give different classifica­ 
tions. In general, using F : gure 2, an m-class 
classifier can be implemented as shown in 
Figure 3.
2) Polynomial discriminant function - The 
discriminant function is selected as an n-th 
order (n > l) polynomial of x1, x2 , ...,xk . 
In particular, if n = 2,

k 0 k-1 k
d.(x) wrr ( x ) +

r=l r=l q=r4-l
r q ' w x x +_ rq

(6)
^ rW X 4- w._ .r N+-1 
r=l

let A = [a..]
where a = w , j=l, ...,k

a . = g- w , j, q=l, ..., k, j 4 q
and let B be a column vector with element
b. = w., j=l, ...,k. Then, (6) can be written
in vector matrix form

d.(X) = XTAX + XTB + C (7)
where X is the transpose of X and C = w .
The decision surface between u). and u). is in-*- J
general a hyper -hype rboloid. In some special 
cases, the decision surface may be hyper sphere 
or hyper-elipsoid.
3) Statistical discriminant function - The 
discriminant functions selected in the first 
two cases are assumed functions of the deter­ 
ministic vector variable X. However, if the 
noise contaminating the feature measurements 
and the variations af all patterns in each 
class are considered, X is usually assumed to 
be vector-valued random variable. In such a 
case, one may select a discriminant function 
of the following form

(8)d± (X) = P(uJi ) p(X/uo
where P(UO. ) is the a priori probability of 
class ua.^a.nd p(X/uo. ) is a multi-variate con­
ditional density function of X given X ~ u^. 
The decision rule for classifying pattern 
classes using (8) as the discrimanant func­ 
tion corresponds to the Bayes' decision rule 
with zero-one loss function in the statisti­ 
cal decision theory2 . A block dia.gra.rn for 
this type of pattern classifier is shown in 
Figure h.

If the cost of taking feature measure­ 
ments is to be considered or the features 
measured az;e sequential in nature one is led
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to use a sequential decision approach 3***. 
In this case, the feature measurements are 
taken in sequence. After each measurement, 
the classifier makes a decision either to 
terminate the process and make a terminal 
decision about the class membership or to 
take an additional measurement. The error 
probability (probability of misrecognition) 
can be prespecified and the number of fea­ 
ture measurements required for a terminal 
decision is not fixed but a random variable. 
The advantage of using a sequential deci­ 
sion approach is that, on the average, the 
number of feature measurements is less than 
that required in a nonsequential case for 
the same error probability. For example, 
in a two-class classification problem Wald's 
sequential probability ratio test can be 
applied3. After each feature measurement is 
taken, compare the sequential probability 
ratio

Pk(x/V 
5^x71^7 k = 1, 2, , (9)

with two stopping bounds A and B where 
p (X/uu.), i = 1,2, is the conditional den­ 
sity function of X given X ~ uo. after k 
measurements have been taken. The stopping 
bounds A and B are related to the probabil­ 
ity of misrecognition with the following 
relationship.

l-(
A = B = i-e12

where is the probability of classifying
and isX as in oo when actually X ' 

the probability of classifying X as in u^ 
when actually X ~ (J^. If ^ > A, then X is 
classified as from u^; if \^ < B, then X is 
classified as from 0)3; and if B < \-£ < A, the 
classifier will take an additional feature 
measurement, and the process is proceed­ 
ing to the (k-Hl)-th stage. For m > 2, the 
generalized sequential probability ratio 
test may be used for sequential classifi­ 
cation. If the maximum number of features, 
N, available is prespecified, the sequential 
classification procedure must be either 
truncated at the Nth measurement^ or a. back­ 
ward computation procedure such as dynamic 
programming must be used^. If all the in­ 
formation required in (3), (6), (8) or ( cj) 
is known a priori, a. pattern classifier can 
be ea.sily implemented. However, in practice, 
the quantities in these equations are usu­ 
ally incompletely specified. For example, 
the w. 's in (3) and (6) and the p(x/uai )'s
in (8) and (9) are usually unknown a priori 
or only partially known. Under such circum­ 
stances, it is important to introduce a 
learning process to pattern classifiers such 
that the unknown information can be estima­ 
ted (learned) "on-line" from the actual in­ 
put pattern samples.

Trainable Controllers

The linear classifier shown in Figure 2 has 
been used as a trainable controller to realize a 
switching surface for time-optimal control sys­ 
tems"* 7. Using terminologies in pattern classi­ 
fication, the partition of feature space Q is 
equivalent to the partition of state space, and

the switching surface in state space is corres­ 
ponding to the decision boundary in feature space. 
The partitioned regions in state space (feature 
space) correspond to various control situations 
(pattern classes). Once the desired switching 
surface (decision boundary) is realized, the con­ 
troller behaves like a pattern classifier. The 
output of the time-optimal controller, u = +1 or 
-1, represents the classified control situation 
and also the proper control action in this case. 
The realization of the switching surface is accom­ 
plished through a training procedure.

Since the time-optimal switching surface is 
in general non-linear, the linear classifier used 
for the controller is a piece-wise linear approx­ 
imation of the non-linear switching surface. The 
state space is first quantized, forming elementary 
hypercubes (elementary control situations) in 
which control action is assumed constant. Each 
hypercube is coded with a linearly independent 
code and constitutes a pattern (feature) vector; 
its classification is the same as the control ac­ 
tion for the hypercube. A linearly independent 
code is defined here as one in which the set of 
pattern vectors representing the zones of a state 
variable must be linearly independent set. The 
dimension of the vectors may be increased by the 
addition of a +1 element to each vector if neces­ 
sary to produce linear independence.

Two possible linearly independent codes are 
illustrated in Table I for the state variable x^ 
The quantities a, (3, and y are the values of the 
thresholds which separate the different zones of 
xi. The "single-spot" code is so named because 
the "1" element appears only once in each pattern 
representation, while the "multispot" code has 
multiple number of "1" elements in the pattern 
representations. Similar codes can be defined 
with -1, +1 elements instead of 0,1 elements.

Pattern Representation for x1

i "Single-spot" "Multispot" "Multispot' 
zone of x1 Code Code Code
x1 > a
a > x1 > 3
3 > x1 > Y
Y > x1

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(1,0,0,0)

(1,1,1)

(1, 1, 0)

(1,0,0)

(0,0,0)

(1, 1, 1, 1)
(1, 1, 1, 0)

(1,1,0,0)

(1,0,0,0)

TABLE I

The pattern representations (vectors) of the 
single-spot code are linearly independent without 
the addition of a +1 element. The multispot 
pattern vectors are not linearly independent un­ 
til they have been augmented with a +1 element as 
shown in Table I. It can be proved that0 when 
the state variables are encoded as described, a 
single linear classifier as shown in Figure 5 will 
approximate to an arbitrary degree of accuracy 
(by increasing the number of quantum zones) 
switching surfaces of the form

f(x1,x2,...,xk ) = 0
provided that no cross-product terms are included 
in the expression.*

Learning capability is accomplished by the

Cross-product terms can be realized by using
augmented linear classifiers^.
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adjustable weights w , w , ..., w , w . Refer to
Figure 5, the input is the k-dimensional state 
vector X which is transformed into the N-dimen- 
sional vector [v^, v^, ... v^] • Let

V = [v1, 
and W = [w ,
The output is

N.,v

r 
L

where

+ 1 if f (V) > 0 
-1 if f(V) < 0

X,f(V) = VW

(10)
(11)

(12)

(13)
The switching surface is not known a priori, but 
is defined implicitly by a training set. The 
training set consists of a finite number of 
points (control situations) in state space whose 
optimal control actions U* are known. Specifi­ 
cally, those points in the state space lie on 
the optimal trajectory X*(t). The points, when 
transformed into the new space Cl , define a
training set T = {V.,u*}, j = 1,:..,L. If theJ 3 
set T is decomposed into two sets T.. and T« where
all the elements V. with u* = +1 are in T^and 
with u* = -1 in T j3 then

VTW > 0 for each V € T
and

V W < 0 for each V €

The training set T, which is considered as repre­ 
sentative of the population of control situations 
actually encountered, is used to determine a 
vector W which will then be used to classify 
other control situations.

During the training process, the trainable 
controller, (Figure 5) makes changes in its 
weights based only on the training pattern vector 
presently being "shown" to it, together with the 
desired output of that pattern vector. The 
training pattern vectors are presented to the 
controller sequentially several times until all 
pattern vectors (representing control situations) 
in the training set are being correctly classi­ 
fied, or until the number of classification 
errors has reached some steady-state value. The 
weight change after each incorrect classification 
is QV. Two types of training algorithms, least- 
mean-square-error and error-correction, may be 
applied. They are summarized below:

(A) Least-mean-square-error training pro­ 
cedure - The value of oc is

a = l p 6 I (15)
T V V

m
where 6 = (d - V W) is defined as the 

analog error, d is the desired output, and 3 is a 
proportionality constant. When the procedure is 
used and 3 is small (3 « l), the controller tends 
to minimize the mean-square error

where V. represents the j-th training pattern vec­ 
tor and^d. the desired binary output for V.. The

3 <J least-mean-square-error training procedure will
give a unique solution weight vector. However, 
it will not necessarily minimize the number of 
classification errors even with linearly separable

sets TI and Tg , i.e., with T, and T0 which can he
correctly classified by means of a. linear switch­ 
ing surface.

(B) Error-correction training procedure - 
In this case the weight vector is modified when 
the binary output of the controller disagrees with 
the desired binary output. That is, for any V€T]_, 
VTW > 0, if the output is erroneous (i.e., V W<(j) 
or undefined (i.e., V^W = 0), then let the new 
weight vector be

-w (1.6)
On the other hand, for V £ T«, if V W > 0, then 
let

W = W -.IV (17)
Before training, W may be preset to any convenient 
values. Three rules for choosing ex are suggestedJ-

(i) Fixed increment rule - O' is any fixed 
positive number.

(ii) Absolute correction rule -
Of. = the smallest integer greater than

|VTW|
T V V

(iii) Fractional correction rule -

a = X |VTW|
T V V

0 < X < 2 (19)

The error-correction training proce­ 
dure will find a solution weight vec­ 
tor when T, and TO are linearly separ­ 
able. It will not necessarily mini­ 
mize the number of binary classifica­ 
tion errors when T and T~ are not li­ 
nearly separable; although it gener­ 
ally does produce close to the minimum 
number of classification errors.

h. Reinforcement Learning Control Systems

Psychologists consider that any systematic 
change in a system's performance with a. certain 
specified goal is learning. Various kinds of re­ 
sponse must be distinguished first in order to 
describe the performance change of a system. In 
general, mutually exclusive and exhaustive
classes of responses 'ju_,...,U) are considered. 1m
Let P(UJ. ) be the probability of occurence of the 
i-th class of responses. We consider the per­ 
formance change bein^ expressed by the change or 
reinforcement of the set of probabilities [P(UJ.)]* 
Mathematically, the reinforcement of [P('ji.J] can 
be described as the following relationship' •> H.

PnM (uJi /X) = aPnK /X) * ( 1 -a ) Xn (X ^i ) ( 9 °) 

where P (uj./X) is the probability of oj. at in­ 
stant n given the input X being observed,
0 < -v < 1, 0 < \ (X; a* ) < 1 and - 1.

Because of the relationship between P _U1 (uo. ;/X) 
and P (uo./X) beins linear, (?0) is often called
a linear reinforcement learning algorithm. It 
can be easily shown that, if 'X (X:tu. ) = X(u>.)»
then

P fuu./X)=o^p (oj. Ml- 'n )X(V ) n i ' 01 i
and

Lim P (u^/v) ^
n —» OD

II is noted that," frorr:. (22), X(uO i." the linvit-
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ing probability of P (uh/X). Hence, \ (X;u>. )
should be, in general, related to the information 
or performance evaluated from the input X at in­ 
stant n. In learning control system, the input 
X to the learning controller is usually the out­ 
put of the plant and tu. may directly represent 
the i-th control action. \ (X;UD. ) can be identi­ 
fied as the normalized index of performance asso­ 
ciated with the i-th class of responses (control 
a.ctions) of the controller. In some simpler 
cases, X (X;m. ) may be 0 or 1 to indicate whe­ 
ther the performance of the system at instant n, 
due to the i-th control action, is satisfactory 
or unsatisfactory. Or \ (X;u).) may be 0 or 1 to 
indicate whether or not the decision (or classi­ 
fication) a), made by the controller at instant n 
from the input X is correct. In these cases, it 
can be proved that P (oo./X) will converge to its 
maximum as n -» » in the 
if the i-th control action

mean and in probability 
on is a desired onell? J-3.

The linear reinforcement learning algorithm 
has been applied to control systems design^-* ̂ -5. 
In the design of a reinforcement learning con­ 
troller, the possible classes of response 
u>. (i = 1, •••,Tn) of the controller are the corres­ 
ponding admissible control actions and the quali­ 
ty of the control actions for different control 
situations or the performance of the controller 
is evaluated at the output of the plant. The 
controller is designed to learn the best control 
action at each time instant in the absence of 
complete information about the plant and the en­ 
vironmental disturbance. The learning process is 
directed by the system's performance evaluated at 
each time instant. Therefore, the controller is 
able to learn without an external supervision, or 
say, to learn "on-line". A block diagram of 
"on-line" learning control systems using rein­ 
forcement algorithms is shown in Figure 6.

1*4 Waltz and Fu have simulated a class of
reinforcement learning control systems on a hy­ 
brid computer facility (GEDA-IBM 1620). The fea­ 
ture vector X is essentially the same as the 
state vector of the plant in this case. The in­ 
dex of performance of the system is of the form 

N
IP = , 1x2n(xn ) x1 = x1 at instant nT (23)

n=l
where T is the sampling period which must be long 
enough to allow for a significant change in X for 
a typical control action u. The set of admissible 
control actions {u1, u2 , ...,um] is given. The 
controller first classifies any input X into a 
class of control situations and then learns the 
best control action for each class of control 
situations through a linea.r reinforcement al­ 
gorithm. The performance evaluated at each time 
instant n (sometimes called instantaneous per­ 
formance evaluation or subgoal) is chosen as

IPS(n) - G X
where G is a diagonal matrix whose elements may 
be either preassipned or determined through a 
learning process.

The classification of control situations in 
the state space (also the feature space in this 
case) is performed by constructing adaptive sam­ 
ple sets. Ac soon as a measurement of X is ta­ 
ken, compare the presently measured vector X 
with the existing vectors having been taken. If 
the Euclidean distance between X and any existing 
vector is less than a prespecified distance D,

they belong to the same control situation. Other­ 
wise, it is considered as a new control situation 
and a new sample set is established with the vec­ 
tor X as its center and D as the radius. If a 
measured X falls within distance D of two or more 
existing vectors it is considered a member of the 
closed set. The sample set construction produces 
what might be called a type of generalization 
since it makes use of the fact that points in 
the neighborhood of a given point in the state 
space will usually have similar characteristics 
and will require similar control actions. The 
distance D can be varied during the process. The 
sample sets (control situations) established in 
the state space must be partitioned into m classes 
such that a best control action can be determined 
for each class of control situations. This is 
accomplished by applying the linear reinforcement 
learning algorithm.

Let P (uVs.) be the probability that uft 3
is the best control action for the control situa­ 
tion S. (or the j-th sample set) at instant nT. 
Initially, assuming no a priori knowledge, all
P (uVs.) = -• P(u1/S.) will then be modified o j m j
according to the following reinforcement algorithm: 

P^jfrVs.,) = « P^Vs..) + (1-a) \n (S..,ui )
(25)

where Xn(Sj,u ) assumes either 1 or 0 depending 
upon whether or not the JPS(n) defined in (2k) 
is reduced by applying u1 . a is called learning 
parameter. The larger a is, the slower the prob­ 
abilities P(ui/S.) converge, which results in a 
slower learning rate. In the process of learning, 
a can be adjusted according t° the amount of re­ 
duction in IPS due to the control action u^. As 
the learning process proceeds, P(ui/S.) approaches 
1 for ui and each Sj with the possible exception 
of those sample sets (control situations) located 
on the decision surfaces (or called switching 
boundaries). A control action u^ is used for con­ 
trol situation S^ with probability P(uVs.;)(a pure 
random strategy) unless some P(ui/sj) exceeds a 
preset threshold. In this case, the u^ for which 
P(ui/S-) is maximum is used as the control action
for S..u

As learning progresses, most of the probabil­ 
ities P(ui/Sj) will approach either 1 or 0. If a 
sample set happens to be located on a decision 
surface then some of the probabilities corres­ 
ponding to this set will oscillate between 1 and 
0 during the learning process since one control 
action would be the best for one part of the set 
and a different control action would be the best 
for another part. It is proposed that these 
sets should be partitioned into subsets with 
smaller radii to obtain finer quantization. The 
procedure is to establish subsets in those sample 
sets if, after a certain number f of X measurements 
within a sample set Sj, and P(u1/S-;) still lies 
between two thresholds (typical values of the two 
thresholds might be 0.1 and 0.9)- A typical ex­ 
ample of the sample set construction for a second 
order plant with two control actions (m = 2), 
u1 = +1 and u2 = -1, is shown in Figure 7. A 
sampling period T = 0.5 sec. was used. A typical 
learning curve for the system is shown in Figure 8. 
Reasonable performance can be obtained for most 
stationary systems by applying this subset-parti­ 
tion criterion. A second scheme which can be used 
for boty stationary and nonstationary systems, 
utilizes the curvature of the approximated
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(learned) switching boundary to determine where 
subsets should be established. The utilization 
of a priori knowledge for more efficient parti­ 
tion and the problem of subgoal selection has re­ 
cently been studied by Jones1^ 17. The chain en­ 
coding scheme described by Freeman1^ is used to 
determine the curvature of the learned switching 
boundary. Regions of the switching boundary with 
relatively high curvature in one direction are 
identified and those sets that are located on 
the inside of the curve are further divided 
into subsets.
5. Bayesian Learning in Control Systems

In the statistical design of an optimal con­ 
troller using dynamic programming^ or statisti- 
decision theory20~22^ the true knowledge of the 
probability distribution of the plant output or of 
the environmental parameters is required. For 
example, consider a discrete stochastic plant 
characterized by the equation

X ., = g(X ,u ) n+1 &v n' n' (26)

where X is the state vector (a random variable) 
at instant n, and un is the control action at in­ 
stant n. In determining the optimal control ac­ 
tion u* to minimize the performance index

N
I = E [ £ F(X , u )], a recurrence relation­ al n n~
ship can be derived using dynamic programming __ 
with the probability density function p(X) known * 
Similar to the case mentioned in statistical 
pattern classification, if these probability dis­ 
tribution or density functions are unknown or in­ 
completely known, a controller can be designed to 
first estimate (to learn) the unknown function, 
and then to implement the control law on the basis 
of the estimated information*^, if the estimated 
(learned) function approaches the true function, 
the control law will approach the optimal control 
law as if all the information required 'had been 
known. An approach based on the iterative appli­ 
cation of Bayes' theorem to estimate the unknown 
information is introduced in this section^ 3 -2°,

Suppose that the probability density function 
) is to be learned, where w± represents the 

i-th class of control situations. Let X.., ,..|X 
be the feature measurements with known classifi­ 
cations of control situations (called learning 
samples), say, all in U)j_. This is certainly the 
case of supervised learning. If the form of 
p(X/u)i) is known but some parameters 6 are un­ 
known, then the problem is reduced to that of 
estimating 0 for given measurements X.., . ..,X • 
Since 0 is unknown, it can be assumed to be a ran­ 
dom variable with a certain a priori distribu­ 
tion. By applying Bayes ' theorem, the a poster­ 
iori density function of 6 is computed from the 
a priori density function and the information ob­ 
tained from sample measurements, i.e.,

p n aVl>---n-l (27)
For example, if p(X/uo^) is Gaussian distributed 
with mean vector M and covariance matrix K, and 
the unknown parameter 6 is the mean vector M. 
Let the a priori distribution of 0, p (0/u>i), be 
also Guassian distributed with initial mean vec­ 
tor M0 and initial covariance matrix <$ o . Then,

after the first sample measurement X, has been 
taken

.,
J_ J_

It is noted that the assumption of a Gaussian dis­ 
tribution for p (0/0). ) will simplify the compu­ 
tation of (28) sinceHhe product of p(X1 /uo^,0) 
po (0/a)jL ) is also a Gaussian distribution. By us­ 
ing this property of reproducible distribution of , 
p0 (0/0)j_) and the iterative application of Bayes' 
theorem, after n learning samples, a recursive 
expression for estimation 0=M is given as2i|

Mn = K < WK>~\-l+ *n-l ( *n-l+K>~\
and

$ = K($ . + n v n-1 K) -1 n-1
In terms of the initial estimates M and $ , (29) 
and (30) becomes

o o o o
(3D

t^K)'1 * (32)

M = n
and

(n"1 K)(§

where < X > = — £ X. is the sample mean. Equa-n i=l L
tion (31) shows that the n-th estimate of the 
mean vector, M , can be interpreted as a weighted 
average of the a priori mean vector Mo and the 
sample information < X >. Asn-*o°,Mn -*<x> 
and $n -» 0 which means, on the average, the es­ 
timate Mn will approach the true mean vector M. 
Similarly, if the covariance matrix K is unknown 
or if both M and K are unknown, the Bayesian 
learning technique can also be applied** 5.

If the correct classifications of the learn­ 
ing samples X1 ,...,X are not available, a non- 
supervised learning technique must be used. In 
this case, each measurement X. may be considered 
as from any one of the m classes of control situa­ 
tions. A relatively general approach is to form 
a mixture density (or distribution) function on 
the basis of the probability density functions 
from all possible classifications, i.e., 

m
p(X/0,P) p(X/cui,0) (33)

where 0^ is the unknown parameter associated with 
p(X/$i), and 0 = {0i; i - 1, ...,m], P = [P(oji ); 
i = 1,...,m}. Let B = (0, P) and consider that 
the sequence of independent measurements X ,..., X 
are taken from the mixture with probability den­ 
sity function p(x). Then a successive applica­ 
tion of Beyes 1 theorem given

p(B/X1,...,Xn ) =

P (Xn/X1, .,Xn_1,B)p(B/X1,...,Xn _1 )

It is necessary to select the a priori probability 
p0 (B) which is not equal to zero at the true value 
of B characterizing the mixture under considera­ 
tion. Also, the identifiability conditions for a 
given type of mixture must be imposed in order to 
uniquely learn the unknown parameters: The mix­ 
ture p(X/0,P) is said to be identifiable2? if the 
mapping of 0 and P onto p(X/§, P), defined by (°3)» 
is a one-to-one mapping. Nnte that the question 
of whether p(X fi, P) is identifiable or not is one
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of unique characterization. That is, for a par­ 
ticular family of the i-th component (parameter 
conditional) density functions [p(X/uui, &±)} and a 
set of parameters 0 and P, the mixture p(X/0, P) 
uniquely determines the sets of parameters [6±] 
and [P(u>i)}. It is then clear that if the non- 
supervised learning problem is such that the mix­ 
ture is not uniquely characterized by {6^} and 
{p(ux^)} (not identifiable), then there exists no 
unique solution to the underlying estimation 
problem. In addition to Bayesian learning tech­ 
nique^^ the stocha.stic approximation procedure 
discussed in Section 6 can also be applied for 
estimating unknown parameters in a mixture dis-

6. Learning Control Systems Using Stochastic 
Approximation
The learning control systems discussed in 

Section k and Section 5 have demonstrated the ad­ 
vantages of introducing learning into a control 
system when the a priori information required is 
incompletely known. A more general design tech­ 
nique using the performance feedback approach is 
discussed in this section. The basic idea is 
the application of the stochastic approximation 
procedure to the design of a learning controller 
30-32. In other words, the controller uses the 
stochastic approximation procedure to learn the 
best control action for each class of control 
situations. In order to implement the idea, the 
following approach is taken. First, a proper 
evaluation of system's performance must be per­ 
formed such that the performance evaluation can 
be used to direct the learning process. However, 
since in learning control problems, the plant- 
environment characteristics are, in general, un­ 
known or incompletely known, an exact evaluation 
of performance index is actually impossible. In 
addition, an instantaneous (or an interval basis) 
performance evaluation (a subgoal) must be appro­ 
priately chosen such that the system's learning 
directed by the instantaneous performance evalua­ 
tion will guarantee the final optimality with 
respect to the overall performance index speci­ 
fied. Under such a circumstance, it is proposed 
that the stochastic approximation procedure be 
applied to estimate the performance index first 
and then to learn the best control action.

Consider a plant described by the equation
l l

where y is the observed response of the plant 
at instant n+1 when the control action u is
applied. The instantaneous performance evalua­ 
tion is chosen as

Vi = f(Vi' Vi' V (36)
where f is a prespecified positive definite func­ 
tion. For a stationary stochastic plant, the
conditional density function p(z , /u , y , u _.)n+1 n n n+1 does not depend explicitly on n, i.e.,

= p(z/ur, y, u° (37)
for every n. The performance index of the system 
is

(38)IP = E[z/ur,y,uj ]

The optimal control action U* is defined by
E[z/ur,y,u*] = Min [E[>,/ur, y, u] } (39)

Since p(z/ur, y, uJ ), j = 1, ..., m and $ are un­ 
known, E[z/ur, y, u^j can only be obtained from the 
successive estimates IL. [z/ur,y,uJ], N. = 1,2,...

J . 3
which converge to E[z/ur, y, uj ] with probability 
one for every uJ. Also, since the condition asso­ 
ciated with the estimation gf E[ z/ur, y,.uJ] is al­ 
ways (ur,y,uJ), let (ur, y,uj ) be (X<1, u^). Then

E[z/ur,y,uJ] = Efz/X^uJ] (Uo) 
Let z +1 designate the value of z ^ distributed

qj* a i according to p(z/X , ud ) where N . is the number of1 qj 
times in n instants that u followed the occurence
of X . The stochastic approximation procedure is 
used to estimate E[z/X% u<3], i.e.,

qJ

f or N . = 0,1,2,..., where EQ[z/Xq, uj'] = 0 and 
y.T = 1/N .. Then

q. 3 -
*

- T?F r7 /Y*! I, «5 T» __ T- HiLZ/A , U J ) = 1

The controller is designed to use a pure ran­ 
dom strategy to choose the proper control action 
at each instant. The desired optimal control 
law is

P(u*/Xq) = 1 0*3) 
The subjective probabilities {P (uk/Xq); k = 1,
... , m} for the pure random strategy are. modified 
on the basis of the estimates E[ z/X% u^ ]. n is
the number of occurrences of Xq in n instants and

m n = S N .. Several algorithms can be applied
to modify the subjective probabilities. The al­ 
gorithm described in the following is the one 
based on the stochastic approximation procedure. 
After (riq+l) occurrences of X^, let the estimates 
of the performance indices be E + , [z/Xq, u^'], k =
1, ...,m. The subjective probabilities are recur­ 
sively computed for every uk, k = 1, ...,m, by

q q
- P (uk/xq )]

where (i)

(1-Y ) > 0, v < CP, n (1-Y ) = 0n
and oo n

n (l- Yl ) < oo f or r = 0, 1, 2, ...
ri

n =r k=rq.
and (ii) i(xq ;uk

1 if En^iCz/xu] = Min

0 if En 4. 1 [z/Xq,uk ] 4 Min ^ , 1 [z/Xq ud ]
M. J M.
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It can be shown hat if, for every suboptimal
control action u

then
P { Lim P (u-*/Xq ) = 1} = 1

Equation (47) indicates that the desired optimal 
control law as defined in (I-1 3) will be eventually 
obtained with probability one.
7* Conclusions and Remarks

The basic concept of learning control has 
been reviewed. Several important learning tech­ 
niques have been described. Theoretically speak­ 
ing, these techniques have similar learning
properties33-35 However, from an engineering
viewpoint, the a priori information required and 
the computation involved for these techniques are 
different. Recently, stochastic automata with 
variable structures have been proposed as models 
for learning systems. Simple applications have 
been made on pattern recognition and learning 
control systems^"*37.

In supervised or off-line learning (or 
training) schemes, the system usually stops to 
learn as soon as the training process is termina­ 
ted. When the system is actually operating with­ 
in its random environment, nonsupervised or on­ 
line learning schemes must be used. It is known 
that the rate of learning for nonsupervised 
learning is relatively slower than that for super­ 
vised learning, and any additional a priori in­ 
formation (for example, the form of the plant 
equation, the type of the environmental distur­ 
bance, etc.) will improve the learning rate of the 
system. In many practical situations, it is poss­ 
ible to use the combination of both supervised 
and nonsupervised learning schemes. That is, a 
supervised learning scheme is used first to 
learn as much a priori information as possible, 
and then a nonsupervised learning scheme will be 
in operation on-line. The operation of such a 
system can be considered as consisting of two 
modes, training and on-line learning. In practi­ 
cal design, the training process can usually be 
performed as a computer simulation.

Learning control is a new area of research. 
Preliminary attempts of applying theoretical re­ 
sults to spacecraft control problems have already 
been made by several authors1^ 38-^0. other 
applications include the control -of valve actua­ 
tor s^1, the control of power systems and produc­ 
tion processes ^2-^4. At the present state-of- 
the-art, the implementation of more sophisticated 
on-line learning techniques usually requires large 
or high-speed computers. Nevertheless, with the 
rapid progress in computer technology, it is anti­ 
cipated that the seriousness of this problem will 
be reduced. In the theoretical study, many prob­ 
lems, for example, new algorithms with higher 
learning, the determination of proper stopping 
rules and learning in nonstationary environments, 
still need to be solved.
References
1. Nilsson, N. J., "Learning Machines", McGraw- 

Hill, New York, 1965.
2. Chow, C. K», An optimum character recognition 

system using decision functions. IRE TRAMS.

on Electronic Computers, Vol. EC-6, pp.2^7- 
25k, December (1957)-

3- Fu, K. S., A sequential decision model for 
optimum recognition. Biological Prototype 
and Synthetic Systems, Vol. I, Plenum Press, 
(1962).

4. Chien, Y. T., and Fu, K. S., A modified se­ 
quential recognition machine using time- 
varying stopping boundaries. IEEE Trans. on 
Information Theory, Vol. IT-12, April (1966).

5. Fu, K. S., Chien, Y. T., and Cardillo, G. P., ' 
A dynamic programming approach to sequential 
pa.ttern recognition. IEEE Trans. on Elec­ 
tronic Computers, (19677^

6. Smith, F. W., Contact control by adaptive
pattern-recognition techniques. Tech. Rept. 
No. 6762-2. Stanford Electronic Laborator­ 
ies, Stanford University, California., April 
19614.

7. Widrow, B., and Smith, F. W., Pattern recog­ 
nizing control systems. Computer and Infor­ 
mation Sciences, ed., J. T. Tou and R. H. 
Wilcox, Spartan Books, (196^4).

8. Bush, R., and Hosteller, F., "Stochastic
Models for Learning". John Wiley and Sons,
1955.

9. Tsetlin, M. L., On the behavior of finite
Automata in random environments. Avtomatika 
i Telemekhanika, Vol. 22, No. 10, (1961).

10. Varshavsky, V. I., and Vorontsova, I. P.,
On the behavior of stochastic automata with 
variable structure. Avtomatika i Telemek­ 
hanika, Vol. 24, No. 3, (1963).————————

11. Fu, K. S., and McLaren, R. W., An application 
of stochastic automata to the synthesis of 
learning systems. Tech. Rept. TR-EE-65-17. 
School of Electrical Engineering, Purdue- Uni­ 
versity, September 1965.

12. McMurty, G. J., and Fu, K. S., A variable 
structure automaton used as a multi-model 
searching technique. IEEE Trans on Automatic 
Control, Vol. AC-11, July (1966).———————

13- Fu, K. S., and Nikolic, Z. J., On some rein­ 
forcement techniques and their relations with 
stochastic approximation. IEEE Trans. on 
Automatic Control, Vol. AC-TTJOctober (1966).

14. Waltz, M. D., and Fu, K. S., A heuristic
approach to reinforcement learning control 
systems. IEEE Trans.on Automatic Control, 
Vol. AC-10, October (1965)-

15. Mendel, J. M., Survey of learning control 
systems for space vehicle applications. 
Preprints, JACC, August (1966).

16. Jones, L. E., Ill, On the choice of subgoals 
for learning control systems. IEEE Trans. on 
Automatic Control, December (1968).

17. Jones, L. E., III, and Fu, K. S., A learning 
control system—design considerations. 
Tech. Rept. TR-EE-68-32, School of Electrical 
Engineering, Purdue University, October 1968.18. Freeman, H., On the digital computer classi­ 
fication of geometric line patterns. Proc. 
National Electronics Conference, Vol. TS^ 
October (1962).

19. Tou, J. T., "Modern Control Theory". McGraw- 
Hill, 196^4.

20. Hsu, J. C., and Meserve, W. E., Decision- 
making in adaptive control systems. Trans. 
IRE on Automatic Control, pp. 24-32, 
January (1962)..

21. Ula, N., and Kirn, M., An empirical Bayes ap­ 
proach to adaptive control. J. Franklin In­ 
stitute, Vol. 280, No. 3, September (1965).

22. Sawaragi, Y., Surriahara, Y-, and N-kamizo, T., 
"Statistical Decision Theory in Adaptive Con­ 
trol Systems". Academic Press, 1967*

23. Fu, K. S., A class of learning control sys­ 
tems using statistical decision functions.

10-16



Proc. Second IFAC (Teddington) Symposium on 
Theory on Self-Adaptive Control Systems, 
September(1965).~ 

?k. Braverman, D., and Abramson, N., Learning to 
recognize patterns in a random environment. 
IRE Trans. on Information Theory, Vol. IT-8, 
September (1962).

25. Keehn, D. G., A note on learning for Guas-
sian properties. IEEE Trans. on Information 
Theory, Vol. IT-11, January (1965).

26. Fralick, S. C., Learning to recognize a. 
pattern without a teacher. IEEE Trans. 
on Information Theory, Vol. IT-13* January 
(1967).

27. Teicher, H., Identiflability of finite 
mixtures. Ann. Math. Stat., Vol. 3^> 
December (1963).

28. Chien, Y. T., and Fu, K. S., On Bayesian 
learning and stochastic approximation. 
IEEE Trans. on System Science and Cyberne­ 
tics, June (1967).

29. Nikolic, Z. J., and Fu, K. S., On the esti­ 
mation and decomposition of mixture using 
stochastic approximation. Proc. 19^7 
SWIEECO, April (1967).

30. Nikolic, Z. J., and Fu, K. S., A mathemati­ 
cal model of learning in an unknown random 
environment. Proc. 1966 National Electro­ 
nics Conference, October (1966).

31. Nikolic, Z. J., and Fu, K. S., An algorithm 
for learning without external supervision 
and its application to learning control 
systems. IEEE Trans. on Automatic Control, 
Vol. AC-11, July (1966).

32. Tsypkin, Ya. Z., Adaptation, learning and 
self-learning in control systems. Third 
IFAC, London, June (1966).

33- Fu, K. S., Nikolic, Z. J., Chien, Y. T.,
and Wee, W. G., On the stochastic approxima­ 
tion and related learning techniques. Tech. 
Kept. TR-EE-66-6. School of Electrical 
Engineering, Purdue University, April 1966.

3*1. Fu, K. S., Learning control systems. Ad­ 
vances in Information Systems Science, ed. 
J. T. Tou, Plenum Press,(1969).

35» Fu, K. S., Learning system theory. Chapter 
11, System Theory, ed., L. A. Zadeh and E. 
Polak, Mc-Graw-Hill, New York, (1969).

36. Fu, K. S., Stochastic automata as models of 
learning systems. Computer and Information 
Sciences II, ed., J. T. Tou, Academic Press, 
(1967).

37• McLaren, R. W., A stochastic automaton mo­ 
del for a class of learning controllers. 
Preprints, 1967 Joint Automatic Control 
Conference, (1967)-

38. Smith, F. B., Jr., Trainable flight control 
system investigation. FDL-TDR-6^-89, 
Wright-Patterson AFB, Ohio, 196^4.

39- Barron, R., Self-organizing control. Con­ 
trol Engineering, February, March (1968).

^iO. Mendel, J. M., Applications of artificial 
intelligence techniques to a spacecraft 
control problem. Douglas Report DAC-59328, 
Santa Monica, California (1966).

Ul. Garden, M., Learning control of valve ac­ 
tuators in direct digital control systems. 
Preprints, Joint Automatic Control Confer­ 
ence, (1967T

Jf2. Krug, G. K., and Netushil, A. V., Automatic 
systems with learning elements. Proc. IFAC 
Congress, (1963).

^3- Ivanov, A. Z., Krug, G. K., et. al., Learn­ 
ing-type control systems. Proc. Moscow 
Power Institute, No. hh.

i^. Netushil, A. V., Krug, G. K., and Letskii, 
E. K., Use of learning systems for the

automation of complex production processes.
Izv. VUZOV SSSR, Mashinostroyenie, No. 12(1961). ———————— ——— 

^5- Fu, K. S., Learning control systems. Compu­ 
ter and Information Sciences, ed., J. T. Tou
and R. H. Wilcox, Spartan Books, (1964). 

h6. Sklansky, J., Learning systems for automatic
Control. IEEE Trans. on Automatic Control,
Vol. AC-11, January (1966). 

^1. Tou, J. T., and Hill, J. D., Steps toward
learning control. Preprints, JACC, August(1966). ——— 

^8. Fu, K. S., "Sequential Decision Methods in
Pattern Recognition and Machine Learning."
Academic Press, New York, 1968. 

1*9- Butz, A. R. , Learning bang-bang regulators.
Proc. Hawaii International Conference on
System Sciences, January (1968). 

50. Leondes, C. T., and Mendel, J. M., Artificial
intelligence control. Douglas Paper No.
^336, McDonnell-Douglas, Santa Monica,
California, January 1967.

10-17



Control ler u Plant

Teacher

FIGURE I.

W,k+l

FIGURE 2.

10-18



Maximum 
Amplitude 
Detector

FIGURE 3.

p(X/a>2 )

p(X/w)m

p(X/ai,)

Maximum 
Amplitude
Detector

Decision

FIGURE 4.

10-19



Quantizer / 
Encoder

Quantizer / 
Encoder

Quantizer / 
Encoder

u

w,N+l

FIGURE 5

10-20



Reinforcement 
Learning 
Controlleri

u Plant

Performance 
Evaluation

FIGURE 6.

10-21



Switching Boundary t x2 =r

-70

Plant

9 M =20
T = 2 sec. (comp. time) 
Time Scale l : 4

hrs. Learning (comp. time)

- P<O.SO
-KX)-90«0-70-60-50-40-30-20-IO 0 I02030405060708O90IOO

RGURE 7.



500

6 8 10 
Time in Minutes

12 14

FIGURE 8.

10-23


	Learning Control Systems -Review and Outlook
	Scholarly Commons Citation

	Learning Control Systems -Review and Outlook

