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LEARNING CONTROL SYSTEMS - REVIEW AND OUTLOOK*

- 8 Fu

Purdue University

Lafeyette,

Sunnary

The basic concept of learning control is
introduced. The following four learning schemes
are briefly reviewed: (1) trainable controllers
using linear classifiers, (2) reinforcement
learning control systems, (3) Bayesian estimation,
end (I) stochastic approximation. Potential
applications and problems for further research

in learning control are outlined,

Introduction

In desipning an optimal control system,

if all the a priori information ebout the con-
{rolled process (plant-environment) is known and
can be described deterministically, the optimal
controller is usually designed by deterministic
optimization techniques, If all or a part of the
a priori information can only be described statis-
tically, for example, in terms of probebility
distribution or density functions, then stochsstic
or statistical design techniques will be used.
However, if the a priori information required is
unknown or incompletely known, in general, an op-
timal desigm can not be achieved. Two different
spproaches have been taken to solve this class of
problems. One approach is to desigm a controller
based only upon the amount of information avail-
able. In that case, the unknown information is
either ignored or is assumed some known values
from the designer's best guess. The second ap-
proach is to design a controller which is capsble
of estinating the unknown informetion during its
cperation end an optimal comtrol action will be
determined on the basis of the estimated informa-
tion. In the first case, a rather conservative
design criterion (for example, Minimax criterion)
is ofter used; the systems designed are in general
inefficient and suboptimal. In the second case,
if the estimated information gradually approaches
the true information as time proceeds, then the
controller thus designed will approach to the op-
timel controller. Here the optimal controller
means that the performance of the controller de-
signed will be as equally good as if in the case
that all the a priori information reduired is
known. Because of the gradual improvement of per-
formance due to the improvement of the estimated
unknown informtion, this class of control sys-
tens may be called learning control systems. The
controller learns the wiknown information during
operation snd the learned information is, in turm,
uzed as an experience for future decisions or
controls.

From the concept just introduced, the problem
of learning may be viewed as the problem of esti-
motlon or successive approximation of the unknown
quantities of » functional which represent the

controlled process under study. The unknown quan-
tities to be estimated or learned by the contral-
ler may be either the parameters only or the form
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and parsmeters which describe a detemministic or
probsbilistic function. The relationship between
‘the control law and this function is usually cho-
sen by the designer {for example, in terms of a
preselected optimization criterion). Therefore,
as the controller obtains more information sbout
the unknown function or parameters, the control
1aw will be altered based on the updated informa-
tion in order to improve the system's performance.
A basic block dlagram for a learning control sya-
tem is shown in Figure 1. The dynamics of the
plant under the environmental disturbance Z are
assumed unknown or partially known. Therefore,
there is & need to design & controller which will
learn (or estimate) the unknown informstion re-
quired for an optimal control law. The sctual
control ection is determined on the basis of the
learned {or the estimated) information and is, in
general, suboptimal, However, if the learned in-
formation converges to the true information as
time proceeds; the suboptimal controller is ex-
pected to approach to the optimal controller
asymptotically. The "Teacher” evaluates the per-
formance of the controller and directs the learn-
ing process perfommed by the controller so the
overall system's performance will be gradually
improved.

Depending upon whether or not an external
supervision {in the form of a "Temcher") is re-
quired, the process of learning can be classified
into (1) learning with external supervision {or
treining or supervised or off-lime learming) and
(ii) leerning without external supervision or on—
line learning. In learning processes with exter-
nal supervision, the desired answer, for example,
the desired output of the system or the desired
optimal control action, is usually ccmsidered
exactly known. Directed by the known answe

(given by an extermal teacher, say), the contrcl—
ler modifies its control strategy or comtrol
parameters to improve the system’s performance,
On the other hand, in learning processes without
external supervision, the desired answer is mot
exactly known. Two approaches are usually em-
ployed in designing learning controllers. The
first approach is that the learning process is
cerried out by considering all possible answers
(the mixture approach in Bayesien learning). The
second approach is that the controller uses a
performance measure to direct the learning pro-
cess (performence feedback approach). The learned
information is considered as an experience of the
controller, end the experience will be used to
improve the quality of control whenmever similar
control situations recur. fThe new information ex-
tracted from & recurred control situstion is usei
to update the estimation or the experience asso-
cinted with that control situation. Different
experiences are obtained fram the information ex-
tracted fxom different control situstions. Simi-
ler control situations may be grouped to form a
class of control situations. A major Function
also performed by some learning controllers is the
classification of different classes of control
situstions such thet an optimel control lew can be
praduelly established between verious classes of
control situations and the admissible control ac-
tiona respectively.



Pattern Classification

Since the problem of classifying different
classes of control situstions is importent in the
design of & leamning controller, the general prob-
lem of pattern classification is briefly intro-
duced in this section. Suppose that & set of
measurements or cbservations is taken to represent

an unkn tern or a control situation. These
measurements (called features) are designated as

', o%,...,x" and can be represented by a k-di-
mensional vector X in the (feature) space r% Let
the m possible pattern classes (or m classf€s of

control situations) be Wy Wpyee.,w . The func-

tion of & pattern classifier is to assign (or to
meke a decision sbout) the correct class member-
ship to each given feature vector X. The opera-
tion can be interpreted as & partition of the k-
fdimensioval space () into m mutually exclusive
regions (or & mappifig fram the space @ to the de-
cision space). The partitioning bounddiry or de-
eision surface can be expressed in terms of "dis-
criminant functions’. Associated with each & a
d@iseriminant function di(x), =1L .us,m is e
Lected such that if X 15 from class w; then

4; (x) > dj(x) for all § £ 1 (1)

The decision surface between the class 0y and the
class w, s represented by the equetion

J
4,00 = 4,00 )

There ere msny weys for selecting d,(X). Sev-
erel importent discrimingnt functions aré dis-
cussed in the following

1) Linear discriminant funetion - The dis-

criminant function d,(X) iz selected as &

1jnear fynction of fésture measurements x,

ST S 1T

4, (x) -L wy X * T
=1 (3)
The decision surface represented by the
equetion
k
di(x) - dj(x) = ("1r dr) x, +
=1 ()

2 seat ) 0

1s elso a linear function of x''s or, in
other words, a hyperplane in the space 0.

W, o Tl il

r = Vi,
then (4) becomes
X

Tt 2
L W, =0 (5)
=

For m = 2, & two-class linear classifier can
be easily implemented by & threshold logic
device shown in Figure 2. If the input fea~
ture X is from w,, i.e., X ~w,, then the

output of the threshold logic device will be

+ 1 since
X
W T
dl(x) - dz(x) = wEx w20
r=1

On the other hand, if
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r
wxl +w <0

r=1
then the output will be -1 and X ~ w,. For
m > 2, several threshold logic devicés con-
nected in parellel can be used for classifi-
cation purposes. The various combinations of
+1 and -1 at the outputs of each threshold
logic device will give different classifica-
tions, In general, using F'gure 2,an m-class
classifier can be implemented as shown in
Figure 3.

2} Polynomial discriminant function - The
diseriminant function is selected as an n-th
order (n > 1) polynomial of x%, x%,...,xk.
In particular, if n = 2,
k-1 k
)+ Y S EE
a

a0 = v (F

r=l r=1 q‘!*l )
k
V‘w Xr + W
b i
o

1
PEED) LK)

where N =

let &4 = [aid]

where &, J=lyeensk

5
o =5
AL S e
end let B be a column vector with element
b, = Wy J=ly.sr,ke Then, (6) can be written

in vector matrix form

halenk 3£ 4

4, () = xTax + x5 + © (1)

where X© is the transpose of X and C = W1t
The decision surface between w, and wy is in

general a hyper-hyperboloid, In some special
cases, the decision surface may behypersphere
or hyper-elipsoid.

3) Statistical discriminant function - The
diseriminent functions selected in the first
two cases are assuned functions of the deter-
ninistic vector varisble X. However, if the
noise contaminating the feature measurements
and the variations af all patterns in each
class are considered, X is usually essumed to
be vector-valued rendom variable. In such s
case, one may select a discriminant funetion
of the following form

4, (x) = Plw;) pl/w;), 121, ..0im [€:5)

vhere P(w,) is the a priori probability of
class wj, Fand p(X/w;) is a milbi-variste con-
ditional demsity function of X given X ~ w;.
The deeision rule for classifying pettern
clagses using (8) as the discrimanant fune-
tion corresponds to the Bayes' decision rule
with zero-one loss function in the statisti-
cel decision theorye. A block disgram for
this type of pattern classifier is shown in
Figure 4.

If the cost of taking feature measure-
ments is to be considered or the features
measured azg sequential in nature one is led



4o use a sequential decision approsch 3%,
In tnis case, the feature messurements are
taken in After each

the classifier makes a decision either to
terminate the process and make a terminal
decision sbout the class membership or to
take an additional measurement. The error
probability (probability of misrecognition)
can be prespecified and the number of fee-
ture measurements required for & terminal
decision is not fixed but e random variable.
The advantage of using & sequential deci-
sion approsch is that, on the average, the
number of feature measurements ie less than
that required in a nonsequential case for
the same error probability. For example,

in a two-class classification problem Wald's
sequential probability ratio test can be

applied3. After each feature measurement is
taken, compare the sequential probability
ratio
By (/) -
s k=1,2...
B (7%, 4

with two stopping bounds A and B where

By x/mi), i=1,8, is the conditional den-
sity function of X given X ~ w; after k
nmeasurements have been taken. The stopping
bounds A and B are related to the probabil-
ity of misrecognition with the following
relationship.

€12 12

where €, is the provebility of classifying
X as in @, when actuslly X ~uw, end &, is
‘the probebility of classifying X as in wp
when actually X ~ - If A > A then X is
classified as from wj; if A <B, then X is
classified as from wp; and if B < kg < 4, the
classifier will teke an additional festure
measurement, and the process is proceed-
ing to the (krl)-th stege. For m > 2, the
generalized sequentisl probebility ratio
test may be used for sequentisl classifi-
cation. If the meximum number of festures,
¥, availsble is prespecified, the seguential
classification procedure must be, either
truncated et the Nth measurement’ or a back-
vard computetion procedure such as dynamic
programming must be used”. If all the in-
formation required in (3), (6), (8) or (9)
is known & priori, e pattern classifier can
be easily implemented. However, in practice,
the quantities in these equations are usu-
ally incompletely specified, For example,
the wir's in (3) and (6) and the p(X/mi)'s
in (8) and (9) are usually unknown & priori
or only partially known. Under such cireun-
stences, it is important to introduce a
learning process to pattern classitiers such
that the unknown information can be estime~
ted (learned) "on-line” from the actual in-
tut pattern samples.

Trainable Controllers

The linear classifier shown in Figure 2 has
been used as a trainsble controller to realize a
switg‘hing surface for time-optimal control sys-
tems® T, Using terminologies in pattern classi-
ficetion, the partition of feature space Q is
equivalent to the pertition of state space) end
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the switching surface in state space is corres-
ponding to the decision boundary in feature space.
The pertitioned regions in state space (feature
space) correspond to various control situstions
(pattern clssses). Once the desired switching
surface (decision boundary) is realized, the con-
troller behaves like a pattern classifier. The
output of the time-cptimel controller, u = +1 or
1, represents the classified control situation
and also the proper control ection in this case.
The realization of the switching surface is accom-
plished through a training procedure.

Since the time-optimel switching surfece is
in general non-linesr, the linear classifier used
for the controller is a plece-wise linear approx-
imation of the non-linear switching surface, The
state space is first quantized, forming elementary
hypercubes (elementary control situations) in
which control action is assumed constamt. Each
hypercube is coded with a linearly independent
code and constitutes a pattern (feeture) vector;
its classification is the seme as the control ac-
tion for the hyp A linearly i
code is defined here as one in which the set of
pattern vectors representing the zones of a state
varieble must be linearly independent set. The
dimension of the vectors may be increased by the
addition of s +1 element to each vector if neces-
sary to produce linear independence.

Two possible linearly independent codes are
illustrated in Teble I for the state varisble xt
The quentities @ B, and y are the values of the
thresholds which separate the dlfferent zones of
xi. The "single-spot" code is 8o named because
the "L" element eppears only once in each pattern
representation, while the “multispot" code has
maltiple number of "1 elements in the pattern
representstions, Similar codes cen be defined
with -1, +1 elements insteed of 0,1 elements.

Pattern Representetion for X

; “Single-spot” "Multispot" "Multispot’
zone of x Code Code Code
x>0 0,0,0,1) 1,3,1) (,1,3,1)
a>x »p  (0,0,1,0) 1,3,0)  (1,1,1,0)
g>x>y  (0,1,0,0) (1,0,0) (1,1,0,0)
Yy > x (1,0,0,0) (0,0,0)  (1,0,0,0)

TABLE I

The pattern representations (vectors) of the
single~spot code are linearly independent without
the addition of a +1 element, The multispot
pattern vectors are not linearly independent un-
%il they have been augmented with a +1 element as
shown in Table I. It can be proved that® when
the state veriables are encoded as described, o
single linear classifier as shown in Figure 5 will
approximste to an arbitrary desree of accuracy
(by increasing the mumber of quantum zones)
switching surfaces of the form

f(xl,xz, ...,xk) =0
provided thet no cross-product terms are included
in the expression.™

Tearning cepsbility is accomplished by the

=
Cross-product tems can be realized by using
sugnented linear classifiersS.



adjustable weights w. Refer to

11V e e
Figure 5, the input is the k-dimensional state
vector X which is tr&nsformed 1nt0 the N-dimen-
sional vector [vh, v, ...,vAIT.

= [vh e ¢ 10T (10)
A an

and W= [wl, Vo seer ¥y My

The ocutput is

_f+l if ©(v) >0
I [-1 if £(V) <0 (12)
where
2(v) = Vu (13)

The switching surface is not known a priori, but
1is defined implicitly by a training set. The
training set consists of a finite number of
polnts (control situations) in state space whose
optimal control actions wk are nown. Specifi-
cally, those pointe in the state space lie on
the optimal trajectory X*(t). The points, when
transforned into the new space define 2
training set T = (Vjud), j = 1,oe.,L. If the
set T is decomposed into two sets T, and T, where
all the elements V, with u* = +1 are in T ;end
with u* = -1 in T,7 then

v > 0 for each V € T
and o {1%)
VW <0 foreachV €T,

The training set T, which is considered as repre-
sentative of the population of control situations
actually encountered, is used to determine a
vector W which will then be used to classify
other control situations.

During the training process, the trainsble
controller, (Figure 5) mekes changes in its
weights besed only on the training pattern vector
presently being "shown” to it, together with the
desired output of that pattern vector. The
‘training pattern vectors are presented to the
controller sequentially several times until all
pattern vectors (representing control situations)
in the training set are being correctly classi-
fied, or until the number of classification
errors has reached some steady-state value. The
wveight chenge after each incorrect classification
1s oF. Two types of training algorithms, least-
mean-square-error and error-correction, may be
spplied. They are swmarized below:

(A) Least-mean-square-error tralnlng pro-

cedure - The value of @

e ¢
vy
where € = (d - VW) is defined es the
snalog error, d 1s the desired cutput, and § is &
proportionallty constant. When the procedure is
used and § is small (B << 1), the controller tends
o minimize the mean-square error
i
i T 12
ée = (a T va.w)
=1
where V. represents the j-th training pettern vec-
tor and’d 4y the desired binary output for V,. The
lesst training 1l
give a unique solution weight vector. However,

it will not neceasarily minimize the number of
classification errors even with linearly separeble

a @a5)
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sets Tl and T?’ i.e., with Tl and T, which can be

correctly classified by means of e linear switch-
ing surface.

(B) Error-correction training procedure -
In this case the weight vector is modified when
the binary oubput of the controller disagrees with
the desired binary output. That is, for any,VeT1,

>0, if the mxtput is erroneous (i.e., V w«u)

or undefined (i.e., = 0}, then let the new .
weight vector be

Wo= W+ (16)
On the other hand, for V € T,, if VW > 0, then
e

W= W - ar)
Before training, W may be preset to any convenient
values, Three rules for choosing O are suggestedl

(1) Fixed increment rule - 2 is any fixed
positive number.
(ii) Absolute correction rule -

o = the smallest integer greater then

@
J—L"T" (18)
vy
(ii1) Fractional correction rule -
a
=>\JV—T"'—L,0<A52 (19)
vV
The error-correction training proce-
dure will find a solution weight vec-
tor when T, =nd 7, are lincarly separ-
able. It ¥ill not necessarily mini-
mize the musber of binary classifice-
tion errors when T, end T, are not li-
nearly separeble; althoush it gener-
ally does produce close o the minimum
mumber of classification errors.

4. Reinforcement Learning Control Systems

Psychologists consider that any systematic
change in & system's performance with & certein
specified goal is learning, Varicus kinds of re-
spense must be distinguished first in order to
describe the performance change of s system. Tn
general, mutually exclusive and exhsustive

classes of responses wy, ..., are considered.

Let P(w,) be the probability of occurence of the
i-th cléss of responses. We consider the per-

formance change being expressed by the change or
reinforcement of the set of probabilities (P w)]
Mathematically, the reinforcement of {Pfu, can

be described as the following relationship’s 11

= E 3 203
B 0/ = OB (0 /X) b (10 () ( 0}
where Pn(wi/x) is the probability of w;
stant n given the input X being opserved,

(0 = 7 )\n(x; wi) <1 and kn(x;m1

at in-

i=
Because of the reletionship between P, (“’1 X)
and Pn(wi/x) being linesr, (?0) is often called

@ linear reinforcement learning algorifhm., It

can be easily shown that, if )\n(xzwi) = A(wi).
then o
B, (w, /)= B (g v (1 f‘))\(wi) (71)
nLim Py /) = Awy) (22)

T4 is noted thaty from (22), A(w;) is the Limite



ing probability of Pn(wi/}(). Hence, xn(x;wi)

should be, in general, related to the information
or performance evaluated from the imput X at in-
stent n. In learning control system, the input
X to the learning controller is usually the out-
put of the plant and w, mey directly represent
the i-th control action. (x ) can be identi-~
fied as the normalized index of performance asson
ciated with the i-th class of responses (control
actions) of the controller. In some simpler
cases, An(x;mi) may be O or 1 to indicate whe-
ther theperformance of the system at instent n,
Que to the i-th control action, is satisfactory
or unsatisfactory. Or x (X: W ) may be 0 or 1 to
indicate whether or not Bhe decision (or clessi-
Fication) w. made by the controller at instant n
from the input X is correct. In these cmses, it
can be proved that P (wi/x) will converge to its
paximm 23 1 -+ = in $he mean and in probability
if the i-th control action is  desired onell, 13

The linear reinforcement learning algorithm
has been applied to control systems designllsl!
In the design of a reinforcement learning con-
troller, the possible classes of response

,m) of the controller are the corres-
yondim’ adnissible control ackions and the quali-
ty of the control actions for different control
situations or the performance of the controller
is evaluated at the output of the plant, The
controller is designed to learn the best control
action at each time instent in the sbsence of
complete informetion about the plant and the en-
vironmental disturbance. The learning process is
directed by the system's performance evalusted at
each time instant. Therefore, the comtroller is
sble to learn without an external supervision, or
say, to learn "on-line”. A block diagram of
"on-line" learning control systems using rein-
Torcement algorithms is shown in Figure 6.

Weltz and Tul' heve simulated a class of
reinforcement learning control systems on a hy-
brid computer facility (GEDA-TBM 1620). The fea-
ture vector X is essentially the same as the
state vector of the plant in this case. The in-
dex of performence of the system is of the fom

(R b 10~ 3
nlx,) %, =% atinstant nT  (23)
n=1

where T is the sampling period which must be long
enough to allow for a significant change in X for
a typical control action u. The set of admissitle
control actions {ul, u2,...,u™] is given. The
controller first classifies any input X into a
class of control situations and then learns the
best conbrol action for each class of control
situations through a linear reinforcement al-
gorithm. The performance evaluated at each time
instant n (sometimes called instantaneous per-
formance evaluation or subgosl) is chosen as

88(n) = X5 G X, (2)
where G is a diagonal matrixz whose elements may

be either preassigned or determined throvgh a
learning process.

The clessification of control situations in
the state space (also the feature space in this
case) is performed by constructing adaptive seme
ple sets. As soon as a measurement of X is ta-
ken, compare the presently messured vector X
with the existing vectors having been tzken. If
the Euclideen distance between X and sny existing
vector is less than e prespecified distance D,

they belong to the same control situation. Other-
wise, it is considered as a new control situation
and a new sample set is established with the vee-
tor X as its center and D as the radius. If e
neasured X falls within distance D of two or more
existing vectors it is considered & member of the
closed set, The sample set construction produces
what might be called a type of generalization
since 1t makes use of the fact thet points in

the neighborhood of & given point in the state
space will usuelly have similar characteristics
and will require similer control sctioms. The
distance D can be varied during the process. The
sample sets (control situations) esteblished in
the state spece mst be partitioned into m classes
such that a best control action can be determined
for each class of control situations. This is
accomplished by applying the linear reinforcement
learning algorithm.

Let B (w/5,) be the probebility that ul

1is the best control action for the control sitwa-
tion S, {or the J-th sample set) st instent nl.
Initially, sssuming no & priori kmowledge, all
Po(ui/sj) = % P(ui/SJ) will then be modified
according to the following reinforcement algorithm:
Pml(ui/sj) = 6 pn(ui/sd) + (1-@) )\n(sj,ui)
@5)
where An(sa, ) assumes either 1 or O depending
upon whether or mnot the IPS(n) defined in (24)
is reduced by sPplying u'. « is called learning
parameter. The larger & is, the slower the prodb-
sbilities P(ul/s 4) converge, which results in o
slower learning Tate. In the process of learning,
o can be adjusted sccording tO the amount of re-
duetion in IPS due to the control szction ul. As
the learning process proceeds, P(ul/s.) epproaches
1 for ul and each 5j with the poss].blg exception
of those sample sets (control situetioms) located
on the decision surfaces (or celled switching
‘bounderies). A control action ul is used for con-
trol situation 85 with probability p(ui/sj)(n pure
random strategy) unless scme P(ul/S3) exceeds a
preset threshold. In this case, the ul for which
p(ui/sd) is meximum is used as the control actien
for 8, J

learning progresses, most of the probabil-
itles P(\ﬂ-/SJ) will approach either 1 or 0. If a
semple set happens to be located on & decision
surface then some of the probabilities corres-
ponding to this set will oscillate between 1 and
O during the learning process since one control
action would be the best for ome part of the set
and a different control action would be the best
for enother part. It is proposed that these

sets should be partitioned into subsets with
smeller radii to cbtain finer quantization. The
procedure is to establish subsets in those sample
sets if, after a certain mmber of X measurements
within a sample set 8y, and P(ul/5;) still lies
between two thresholds (typical values of the two
thresholds might be 0.1 and 0.9). A typical ex-
emple of the sample set construction for a second
order plant with two control actions (m = 2),

wl = +1 and v# = -1, is shown in Figure 7. A
sampling period T = 0.5 sec. was used. A typical
learning curve for the system is shown in Figure&
Reasonsble performence cen be obteined for mest
stationary systems by applying this subset-parti-
tion criterion. A second scheme which can be used
for boty stationary and nonstationsry systems,
utilizes the curveture of the approximated



({learned) switching boundary to determine where
subsets should be estsblished. The ubilizetion
of & priori knowledge Tor more efficient parti-
tion =nd the problem of subgosl selection has re-
cently been studied by Jonesl®17. The chain en-
coding scheme described by Freemanl® is used to
determine the curvature of the learned switching
boundary. Regions of the switching boundary with
relatively high curvature in one direction are
identified end those sets that are located on
the inside of the curve are further divided

into subsets.

5. Bayesian Learning in Control Systems

In the statistical design of an optimal con-
troller vaing amic programmingl® or statisti-
decision theory20722, the true knowledge of the
probebility distribution of the plent cutput or of
‘the environmental paremeters is required. For
example, consider a discrete stochastic plant
characterized by the equation

e = B0, (26)

where X is the state vector {a random varisble)
at instdnt n, and u, 1s the control action at in-
stant n, In determining the optimal control ac-
tion u* $o minimize the performance index

§
I, =El nEIF(xn,un_l) 1, & recurrence relation-

ship can be derived using dynemic programming .
with the probability density funckion p(X) known
Similar to the case mentioned in statistical
petbern classification, if these probability dis-
tribution or density functions are unknown or in-
completely known, a controller can be designed £o
first estimete (to learn) the unknown function,
and then to implement the control law on the basls
of the estimated inf £3, It the esti
{1earned) function spproaches the true function,
the control law will epproach the optimal control
law as if all the information required had been
Jnown. An approach based on the iterative ppli-
cation of Bayes' theorem to estimate the unimown
information is introduced in this section®3-20.

on?3,

Suppose that the probability demsity fumetion
P(X/wi) is to be leamned, where wj represents the
i-th class of control situstions. Let X;,...,
be the feature measurements with known classifi-
cations of control situations (called learning
semples), say, all in wj. This is certainly the
case of supervised learning. If the form of
p(X/wi) is known but some parameters 8 are un-
¥nown, then the problem is reduced to that of
estimating @ for given measurements Xy;..+sX «
Since @ 1s unknown, it can be assumed to be & ran-
dom varisble with & certain a priori distribu-
tion. By applying Bayes' theorem, the a poster-
iori density function of 6 is computed from the
& priori density function and the information ob-
tained from semple measurements, i.e.,

p8/wgXppeenr X)) =

DX /0y 8Ky o 0s Xy 1 ID(O/0p Ky e e Xy )
B0y %y o) (27)

For example, if p(X/w;) is Gaussian distributed
with mean vector M and covariemce matrix K, end
the unknown parsmeter ¢ is the mean vector M.
Let the a priori distribution of 6, p_(8/wi), be
also Guassian distributed with initial mean vec-
tor My and initial covarisnce matrix o. Then,
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after the first sample measurement X, has been
teken

Do/, X, )-E /By B () (29)
P Xl o

It is noted that the assumption of a Gaussian dis-
tribution for p (8/w_ ) will simplify the compu-
tation of (28) $incelthe product of p(X/wy,e)
Po(B/ws) is also a Gaussien distribution. By us-
ing this property of reproducible distribution of .
p,(6/w;) and the iterative applicabion of Bayes'
theorem, after n learning samples, a recursive
expression for estimation 6=M is glven as!

W, = k(e 0T ee (e #K)TX (29)
and

. -1

o = K(E, KT8 (20)
In terms of the initial estimates M_ and 3, (29)
and (30) becomes 0 &

M= (n']'if)(§°+n'1k)'lmo+5o(ao+n'1x)'1 <K>
(31)

and
I S
EAEN G JICHUE N R N (32)

n
where <% > =% % X, is the semple mean. Equa-
ny gt

tion (31) shows that the n-th estimate of the
mean vector, M, can be interpreted as a weighted
average of the'a priori mean vector M, and the
sample information <X > Asn - My = <X >
and &, - O which means, on the everage, the es-
+timate My will approach the true mean vector M.
Similarly, if the covarience matrix X is unknown
or if both M end X are wknown, the Bayesian
learning technique can also be applied“S.

If the correct classifications of the learn-
ing samples X),...,X_are oot svailable, a non-
supervised ledrning fechnigue must be used. In
this case, each measurement X, msy be considered
as from eny one of the m clasSes of control situa-
tions. A relstively general approach is to form
a mixture density (or distribution) function on
the basis of the probsbility demsity functions
from &ll possible classificstions, i.e.,

e

g
p(x/6,P) =  Plu;) p(X/w;,6) (33)
=1
where 6; is the unknown pavameter associated with
p(x/#;), and 6 = {053 & = L...,m}, P= {P(u;):
i=1,...,m}. Let B = (8,P) and consider that
the sequence of independent messurements X, .-, X
are taken from the mixture with probebility den-
sity function p(X). Then & successive applica-
tion of Beyes' theorem given

P(B/EpsecnsX,) =

(34)
B /Xy e X B)p(B/Xy, -« X )
UK /Xy - DESE

Tt is necessery to select the a priori probability
po(B) which is not equal to zero at the true value
of B characterizing the mixture under considera-

tion. Also, the identifiability conditions for s
given type of mixture must be imposed in order to
uniquely learn the unknown paremeters: The mix-

ture p(X/6,P) is said to be identifieble?! if the
mapping of 6 end P onto p(X/3,P), defined by (23}
is a one-to-one mepping. Note that the question

of whether p(X/G, P) is identifisble or not is ome



of unique characterization. That is, for a par-
ticular family of the i-th component (perameter
conditional) density functions {p(X/wi,6;)} and a
set of pars.meters 8 end P, the mixture th/S, P)
the sets of
and [P(wi)] Tt is then clear that 1f the non—
supervised learning problem is such that the mix-
ture is not uniquely charecterized by {¢;} and
{P(w;)} (not identifisble), then there exists no
unigue solution to the underlying estimstion
probl In addition to Bayesisn leaming tech~
nique?  the c appr
discussed in Section 6 ean also be ﬂppl).ed for
estimating unknown parameters in e mixture dis-
tribution?t-30,

6. Learning Control Systems Using Stochastic
Amroxlmation

The learming control systems discussed in
Section 4 and Section 5 have demonstrated the ad-
ventages of introducing learning into a control
system when the & priori information required is
incompletely known. A more general design tech-
nique using the performsnce feedback approsch is
discussed in this section. The basic idea is
‘the application of the stochastic approximation
prosedure go the desig of o learning controller

. In other words, the controller uses the
stochastic approximation procedure to learn the
best control action for each class of control
situations. In order to implement the idea, the
following approach is teken. First, a proper
evaluation of system's performance must be per-
formed such that the performance evaluation can
be used to direct the learning process. However,
since in learning control problems, the plant-
envircnment characteristics are, in general, un-
known or incompletely known, an exact evalustion
of performance index is actually impossible. In
eddition, sn instentaneous {or an interval basis)
performance evaluation (a subgoal) must be appro-
priately chosen such thet the system's learning
directed by the instantaneous performence evalua-
tion will guarantee the final optimality with
respect to the overall performance index speci-
fied, Under such a circunstance, it is proposed
thet the stochastic approximation procedure be
epplied to estimate the perfomance index first
and then to learn the best control action.

Consider a plant described by the equation
Y1 = Ener OpeBe) (35)

where y . is the cbserved response of the plant
at inst3RE mt1 when the control action upp is

applied, The instentenecus performance evalua-
tion is chosen as
a1 = Tnerr Berr ) (:6)

where T is & prespecified positive definite func-
tion. For a stationary stochastic plant, the
conditional density function p(zml/u T n+1)
does not depend explicitly on n, i.e.,
bl - s
Blag, 30, = uhy, = By, =)
»
= plz/u"y ) (37)

for every n. The performance index of the system

= Elz/u%, v ] (38)
The optimal control action u* is defined by

Blaff,yud - Min ATy} (39)
3L, euepm
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Since p{z/uf,y,ud), i =1,..., m and & are un-
known, E[2/uT,y,u)] can only be obteined from the
successive estimates By [2/v%,y,ul], Ny = 1,2,...

which converge to E[z/uT,y,uwl] with pro‘hsbility
one for every ul, Also, since the condition asso-
clated ¥ith the estimtion gf B/, y,nJ] is al-

ways (uf,y,ul), let (uF,y,ul) be (% ud).” Tren
E[z/uf, y,ul] = E{zA9 ud) (4o}
aistributel

Let 2y ,; designate the value of z, .
w’) where N_. is the number of

times in n instants thnt \l“l follwed the occurence
is

of XL The
used to estimete E[z/xq uJ], E e.,

Byl uJJ-z,, [2/x% 1

sccording to p(z/x%

(81}
+ v,,‘u(z%+1 - F.qu f2/x% w90}

0,1,2,..., where Ee[z/x‘l,uﬂ] 3 el
1/N .. Then
Eepil i

for N,

~
N
al =
P{y Iim B 25091
LA EE) SR
(42)
= Elz/x% w1}t
The controller is designed to use a pure ran-
dom strategy to choose the proper control action
at each instant. The desired optimel control
law is

Plut/x?) = 1 (43)
The subjective probabilities {Pn (/5% x =

...,m} for the pure random strateg 51'3 modified
on the basis of the estimates E[z/X%,w!]. n_ is

the number of occurrences of X1 in n instants and

Ny BSeversl algoritims can be applied

1
to modify the subjective probsbilities. The al-
gorithm described in the follmrlng is the one
based on the
After (ng+1) oceurrences of X3, let e e
of the performance indices be En l2/x% ), k=

1,...,m 'The subjective probebilities are recur-
sively computed for every uf, k = 1,...,m, by

x X
anﬂ(“ A = an(“ " - an+1[§nq+1(xq;“k)

- an(u“/x‘ln ()

where (i)

s
g
B 5 (g )P <etorz=0, 1 2.0

end (n) g +1(x%u")

ll«1[1/)61, W]

1 1f En alz/ 25T = M1n
{ (5)

01 Enqq[z/xq,uk] # Kin F,,q+1[z/x‘1,ujl



It can be shom fhet if, for every suboptimal
il U

He, (Xq;u“)/zl,...,zn J<w  (46)
q q

then
P{ Lin B (wAY)-1}=1 (7)
n e B
Equation {47) indicates that the desired optimal
control law as defined in (13) will be eventually
cbtained with probability one.

7.__Conclusions end Remarks

The basic concept of learning control has
been reviewed. Several importent lesrning tech-
nigques have been described. Theoretically spesk-
ing, these techniques have similar learning
properties33~35, However, from an engineering
viewpoint, the a priori information required and
the computation involved for these techniques are
different. Recently, stochastic automata with
varisble structures have been proposed as models
for learning systems. Simple spplications have
been made on petper; recognttion wnd Learning
control systems3®s 37

In supervised or off-line learning {or
training) schemes, the system usually stops to
learn as soon as the training process is termine-
ted. When the system is actually operating with-
in its rendom environment, nonsupervised or on-
line learning schemes must be used, It is known
that the rate of learning for nonsupervised
learning is relatively slower than that for super-
vised learning, and any additional & priori in-
formation (for exsmple, the form of the plant
equation, the type of the environmental distur-
‘bance, etc.) will improve the learning rate of the
system. In meny practical situations, it is poss-
ible to use the combination of both supervised
and nonsupervised learning schemes. That is, a
supervised learning scheme is used first to

learn as much a priori information as possible,
and then a nonsupervised learning scheme will be
in operation on-line. The operstion of such &
system can be considered as consisting of two
modes, training end on-line learning. In practi-
cal design, the training process can usually b
performed as & computer simulation.

Learning control is a new area of research.
Preliminery attempts of applying theoretical re-
sults to spacecraft control Ernblems have already
been made by several euthorsid, 36-40, e:
}catlons include the control of velve actua-
tors™l, the confrol of pover systems and produc-
tion processes At the present state-of-
the-art, the implementation of more sophistleated
on-line learning technigues usuelly requires large
or high-speed computers. Nevertheless, with the
repid progress in computer technology, it is anti-
cipated that the seriousness of this problem will
be reduced. In the theoretical study, many prob-
lems, for example, mew algoritims with higher
learning, the determination of proper stopping
rules end learning in nonstationary emvironments,
still need to be solved.
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