
Learning Convolutional Neural Networks for Graphs

Mathias Niepert MATHIAS.NIEPERT@NECLAB.EU

Mohamed Ahmed MOHAMED.AHMED@NECLAB.EU

Konstantin Kutzkov KONSTANTIN.KUTZKOV@NECLAB.EU

NEC Labs Europe, Heidelberg, Germany

Abstract

Numerous important problems can be framed as

learning from graph data. We propose a frame-

work for learning convolutional neural networks

for arbitrary graphs. These graphs may be undi-

rected, directed, and with both discrete and con-

tinuous node and edge attributes. Analogous to

image-based convolutional networks that oper-

ate on locally connected regions of the input, we

present a general approach to extracting locally

connected regions from graphs. Using estab-

lished benchmark data sets, we demonstrate that

the learned feature representations are competi-

tive with state of the art graph kernels and that

their computation is highly efficient.

1. Introduction

With this paper we aim to bring convolutional neural net-

works to bear on a large class of graph-based learning prob-

lems. We consider the following two problems.

1. Given a collection of graphs, learn a function that

can be used for classification and regression problems

on unseen graphs. The nodes of any two graphs are

not necessarily in correspondence. For instance, each

graph of the collection could model a chemical com-

pound and the output could be a function mapping un-

seen compounds to their level of activity against can-

cer cells.

2. Given a large graph, learn graph representations that

can be used to infer unseen graph properties such as

node types and missing edges.

We propose a framework for learning representations for

classes of directed and undirected graphs. The graphs may

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 1 1 1... ...

......
(b)

(a)

Figure 1. A CNN with a receptive field of size 3x3. The field is

moved over an image from left to right and top to bottom using a

particular stride (here: 1) and zero-padding (here: none) (a). The

values read by the receptive fields are transformed into a linear

layer and fed to a convolutional architecture (b). The node se-

quence for which the receptive fields are created and the shapes of

the receptive fields are fully determined by the hyper-parameters.

have nodes and edges with multiple discrete and continuous

attributes and may have multiple types of edges. Similar

to convolutional neural network for images, we construct

locally connected neighborhoods from the input graphs.

These neighborhoods are generated efficiently and serve as

the receptive fields of a convolutional architecture, allow-

ing the framework to learn effective graph representations.

The proposed approach builds on concepts from convolu-

tional neural networks (CNNs) (Fukushima, 1980; Atlas

et al., 1988; LeCun et al., 1998; 2015) for images and ex-

tends them to arbitrary graphs. Figure 1 illustrates the lo-

cally connected receptive fields of a CNN for images. An

image can be represented as a square grid graph whose

nodes represent pixels. Now, a CNN can be seen as travers-

ing a node sequence (nodes 1-4 in Figure 1(a)) and gen-

erating fixed-size neighborhood graphs (the 3x3 grids in

Figure 1(b)) for each of the nodes. The neighborhood

graphs serve as the receptive fields to read feature values

from the pixel nodes. Due to the implicit spatial order of

the pixels, the sequence of nodes for which neighborhood

graphs are created, from left to right and top to bottom,

is uniquely determined. The same holds for NLP prob-

lems where each sentence (and its parse-tree) determines

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-

lections a problem-specific ordering (spatial, temporal, or

otherwise) is missing and the nodes of the graphs are not

in correspondence. In these instances, one has to solve two

problems: (i) Determining the node sequences for which

neighborhood graphs are created and (ii) computing a nor-

malization of neighborhood graphs, that is, a unique map-

ping from a graph representation into a vector space rep-

resentation. The proposed approach, termed PATCHY-SAN,

addresses these two problems for arbitrary graphs. For each

input graph, it first determines nodes (and their order) for

which neighborhood graphs are created. For each of these

nodes, a neighborhood consisting of exactly k nodes is ex-

tracted and normalized, that is, it is uniquely mapped to a

space with a fixed linear order. The normalized neighbor-

hood serves as the receptive field for a node under consider-

ation. Finally, feature learning components such as convo-

lutional and dense layers are combined with the normalized

neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which

has several advantages over existing approaches: First, it

is highly efficient, naively parallelizable, and applicable to

large graphs. Second, for a number of applications, rang-

ing from computational biology to social network analysis,

it is important to visualize learned network motifs (Milo

et al., 2002). PATCHY-SAN supports feature visualiza-

tions providing insights into the structural properties of

graphs. Third, instead of crafting yet another graph kernel,

PATCHY-SAN learns application dependent features with-

out the need to feature engineering. Our theoretical contri-

butions are the definition of the normalization problem on

graphs and its complexity; a method for comparing graph

labeling approaches for a collection of graphs; and a result

that shows that PATCHY-SAN generalizes CNNs on images.

Using standard benchmark data sets, we demonstrate that

the learned CNNs for graphs are both efficient and effec-

tive compared to state of the art graph kernels.

2. Related Work

Graph kernels allow kernel-based learning approaches such

as SVMs to work directly on graphs (Vishwanathan et al.,

2010). Kernels on graphs were originally defined as sim-

ilarity functions on the nodes of a single graph (Kondor

& Lafferty, 2002). Two representative classes of kernels

are the skew spectrum kernel (Kondor & Borgwardt, 2008)

and kernels based on graphlets (Kondor et al., 2009; Sher-

vashidze et al., 2009). The latter is related to our work,

as it builds kernels based on fixed-sized subgraphs. These

subgraphs, which are often called motifs or graphlets, re-

flect functional network properties (Milo et al., 2002; Alon,

2007). However, due to the combinatorial complexity of

subgraph enumeration, graphlet kernels are restricted to

... ...
neighborhood graph construction

convolutional architecture

node sequence selection

graph normalization

Figure 2. An illustration of the proposed architecture. A node

sequence is selected from a graph via a graph labeling procedure.

For some nodes in the sequence, a local neighborhood graph is as-

sembled and normalized. The normalized neighborhoods are used

as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph

kernels are the Weisfeiler-Lehman (WL) kernels (Sher-

vashidze et al., 2011). WL kernels, however, only sup-

port discrete features and use memory linear in the num-

ber of training examples at test time. PATCHY-SAN uses

WL as one possible labeling procedure to compute re-

ceptive fields. Deep graph kernels (Yanardag & Vish-

wanathan, 2015) and graph invariant kernels (Orsini et al.,

2015) compare graphs based on the existence or count of

small substructures such as shortest paths (Borgwardt &

Kriegel, 2005), graphlets, subtrees, and other graph in-

variants (Haussler, 1999; Orsini et al., 2015). In con-

trast, PATCHY-SAN learns substructures from graph data

and is not limited to a predefined set of motifs. More-

over, while all graph kernels have a training complexity

at least quadratic in the number of graphs (Shervashidze

et al., 2011), which is prohibitive for large-scale problems,

PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are

a recurrent neural network architecture defined on graphs.

GNNs apply recurrent neural networks for walks on the

graph structure, propagating node representations until a

fixed point is reached. The resulting node representations

are then used as features in classification and regression

problems. GNNs support only discrete labels and perform

as many backpropagation operations as there are edges and

nodes in the graph per learning iteration. Gated Graph Se-

quence Neural Networks modify GNNs to use gated recur-

rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from

the low-dimensional grid structure (Bruna et al., 2014;

Henaff et al., 2015). All of these methods, however, assume

one global graph structure, that is, a correspondence of the

vertices across input examples. (Duvenaud et al., 2015)

perform convolutional type operations on graphs, develop-

ing a differentiable variant of one specific graph feature.

Learning Convolutional Neural Networks for Graphs

3. Background

We provide a brief introduction to the required background

in convolutional networks and graph theory.

3.1. Convolutional Neural Networks

CNNs were inspired by earlier work that showed that the

visual cortex in animals contains complex arrangements

of cells, responsible for detecting light in small local re-

gions of the visual field (Hubel & Wiesel, 1968). CNNs

were developed in the 1980s and have been applied to im-

age, speech, text, and drug discovery problems (Atlas et al.,

1988; LeCun et al., 1989; 1998; 2015; Wallach et al., 2015).

A predecessor to CNNs was the Neocognitron (Fukushima,

1980). A typical CNN is composed of convolutional and

dense layers. The purpose of the first convolutional layer

is the extraction of common patterns found within local re-

gions of the input images. CNNs convolve learned filters

over the input image, computing the inner product at ev-

ery image location in the image and outputting the result as

tensors whose depth is the number of filters.

3.2. Graphs

A graph G is a pair (V,E) with V = {v1, ..., vn} the set

of vertices and E ⊆ V × V the set of edges. Let n be the

number of vertices and m the number of edges. Each graph

can be represented by an adjacency matrix A of size n×n,

where Ai,j = 1 if there is an edge from vertex vi to vertex

vj , and Ai,j = 0 otherwise. In this case, we say that vertex

vi has position i in A. Moreover, if Ai,j = 1 we say vi and

vj are adjacent. Node and edge attributes are features that

attain one value for each node and edge of a graph. We use

the term attribute value instead of label to avoid confusion

with the graph-theoretical concept of a labeling. A walk is

a sequence of nodes in a graph, in which consecutive nodes

are connected by an edge. A path is a walk with distinct

nodes. We write d(u, v) to denote the distance between u
and v, that is, the length of the shortest path between u and

v. N1(v) is the 1-neighborhood of a node, that is, all nodes

that are adjacent to v.

Labeling and Node Partitions. PATCHY-SAN utilizes

graph labelings to impose an order on nodes. A graph la-

beling ℓ is a function ℓ : V → S from the set of vertices V
to an ordered set S such as the real numbers and integers.

A graph labeling procedure computes a graph labeling for

an input graph. When it is clear from the context, we use

labeling to refer to both, the graph labeling and the proce-

dure to compute it. A ranking (or coloring) is a function

r : V → {1, ..., |V |}. Every labeling induces a ranking

r with r(u) < r(v) if and only if ℓ(u) > ℓ(v). If the la-

beling ℓ of graph G is injective, it determines a total order

of G’s vertices and a unique adjacency matrix A
ℓ(G) of

G where vertex v has position r(v) in A
ℓ(G). Moreover,

every graph labeling induces a partition {V1, ..., Vn} on V
with u, v ∈ Vi if and only if ℓ(u) = ℓ(v).

Examples of graph labeling procedures are node degree and

other measures of centrality commonly used in the analysis

of networks. For instance, the betweeness centrality of a

vertex v computes the fractions of shortest paths that pass

through v. The Weisfeiler-Lehman algorithm (Weisfeiler &

Lehman, 1968; Douglas, 2011) is a procedure for partition-

ing the vertices of a graph. It is also known as color refine-

ment and naive vertex classification. Color refinement has

attracted considerable interest in the ML community since

it can be applied to speed-up inference in graphical mod-

els (Kersting et al., 2009; 2014) and as a method to compute

graph kernels (Shervashidze et al., 2011). PATCHY-SAN

applies these labeling procedures, among others (degree,

page-rank, eigenvector centrality, etc.), to impose an order

on the nodes of graphs, replacing application-dependent or-

ders (temporal, spatial, etc.) where missing.

Isomorphism and Canonicalization. The computational

problem of deciding whether two graphs are isomorphic

surfaces in several application domains. The graph isomor-

phism (GI) problem is in NP but not known to be in P or

NP-hard. Under several mild restrictions, GI is known to

be in P. For instance, GI is in P for graphs of bounded de-

gree (Luks, 1982). A canonicalization of a graph G is a

graph G′ with a fixed vertex order which is isomorphic to

G and which represents its entire isomorphism class. In

practice, the graph canonicalization tool NAUTY has shown

remarkable performance (McKay & Piperno, 2014).

4. Learning CNNs for Arbitrary Graphs

When CNNs are applied to images, a receptive field (a

square grid) is moved over each image with a particular

step size. The receptive field reads the pixels’ feature val-

ues, for each channel once, and a patch of values is cre-

ated for each channel. Since the pixels of an image have

an implicit arrangement – a spatial order – the receptive

fields are always moved from left to right and top to bot-

tom. Moreover, the spatial order uniquely determines the

nodes of each receptive field and the way these nodes are

mapped to a vector space representation (see Figure 1(b)).

Consequently, the values read from two pixels using two

different locations of the receptive field are assigned to the

same relative position if and only if the pixels’ structural

roles (their spatial position within the receptive field) are

identical.

To show the connection between CNNs and PATCHY-SAN,

we frame CNNs on images as identifying a sequence of

nodes in the square grid graph representing the image and

building a normalized neighborhood graph – a receptive

Learning Convolutional Neural Networks for Graphs

Algorithm 1 SELNODESEQ: Select Node Sequence

1: input: graph labeling procedure ℓ, graph G = (V,E), stride
s, width w, receptive field size k

2: Vsort = top w elements of V according to ℓ
3: i = 1, j = 1
4: while j < w do
5: if i ≤ |Vsort| then
6: f = RECEPTIVEFIELD(Vsort[i])
7: else
8: f = ZERORECEPTIVEFIELD()
9: apply f to each input channel

10: i = i+ s, j = j + 1

field – for each node in the identified sequence. For graph

collections where an application-dependent node order is

missing and where the nodes of any two graphs are not yet

aligned, we need to determine for each graph (i) the se-

quences of nodes for which we create neighborhoods, and

(ii) a unique mapping from the graph representation to a

vector representation such that nodes with similar structural

roles in the neighborhood graphs are positioned similarly in

the vector representation.

We address these problems by leveraging graph labeling

procedures that assigns nodes from two different graphs

to a similar relative position in their respective adjacency

matrices if their structural roles within the graphs are sim-

ilar. Given a collection of graphs, PATCHY-SAN (SELECT-

ASSEMBLE-NORMALIZE) applies the following steps to

each graph: (1) Select a fixed-length sequence of nodes

from the graph; (2) assemble a fixed-size neighborhood for

each node in the selected sequence; (3) normalize the ex-

tracted neighborhood graph; and (4) learn neighborhood

representations with convolutional neural networks from

the resulting sequence of patches.

In the following, we describe methods that address the

above-mentioned challenges.

4.1. Node Sequence Selection

Node sequence selection is the process of identifying, for

each input graph, a sequence of nodes for which receptive

fields are created. Algorithm 1 lists one such procedure.

First, the vertices of the input graph are sorted with re-

spect to a given graph labeling. Second, the resulting node

sequence is traversed using a given stride s and for each

visited node, Algorithm 3 is executed to construct a recep-

tive field, until exactly w receptive fields have been created.

The stride s determines the distance, relative to the selected

node sequence, between two consecutive nodes for which a

receptive field is created. If the number of nodes is smaller

than w, the algorithm creates all-zero receptive fields for

padding purposes.

Several alternative methods for vertex sequence selection

are possible. For instance, a depth-first traversal of the in-

Algorithm 2 NEIGHASSEMB: Neighborhood Assembly

1: input: vertex v, receptive field size k
2: output: set of neighborhood nodes N for v
3: N = [v]
4: L = [v]
5: while |N | < k and |L| > 0 do
6: L =

⋃
v∈L

N1(v)
7: N = N ∪ L
8: return the set of vertices N

put graph guided by the values of the graph labeling. We

leave these ideas to future work.

4.2. Neighborhood Assembly

For each of the nodes identified in the previous step, a re-

ceptive field has to be constructed. Algorithm 3 first calls

Algorithm 2 to assembles a local neighborhood for the in-

put node. The nodes of the neighborhood are the candidates

for the receptive field. Algorithm 2 lists the neighborhood

assembly steps. Given as inputs a node v and the size of

the receptive field k, the procedure performs a breadth-first

search, exploring vertices with an increasing distance from

v, and adds these vertices to a set N . If the number of col-

lected nodes is smaller than k, the 1-neighborhood of the

vertices most recently added to N are collected, and so on,

until at least k vertices are in N , or until there are no more

neighbors to add. Note that at this time, the size of N is

possibly different to k.

4.3. Graph Normalization

The receptive field for a node is constructed by normaliz-

ing the neighborhood assembled in the previous step. Illus-

trated in Figure 3, the normalization imposes an order on

the nodes of the neighborhood graph so as to map from the

unordered graph space to a vector space with a linear order.

The basic idea is to leverage graph labeling procedures that

assigns nodes of two different graphs to a similar relative

position in the respective adjacency matrices if and only if

their structural roles within the graphs are similar.

To formalize this intuition, we define the optimal graph nor-

malization problem which aims to find a labeling that is

optimal relative to a given collection of graphs.

Problem 1 (Optimal graph normalization). Let G be a col-

lection of unlabeled graphs with k nodes, let ℓ be an injec-

tive graph labeling procedure, let dG be a distance mea-

sure on graphs with k nodes, and let dA be a distance

measure on k × k matrices. Find ℓ̂ such that

ℓ̂ = argmin
ℓ

EG

[
∣

∣dA

(

A
ℓ(G),Aℓ(G′)

)

− dG(G,G′)
∣

∣

]

.

The problem amounts to finding a graph labeling proce-

dure ℓ, such that, for any two graphs drawn uniformly at

Learning Convolutional Neural Networks for Graphs

4

2

5

3

1

4

21

3
normalize

subgraph

receptive field

reads vertex and edge

attributes = channels

select

neighborhood

... ...

1 2 3 4 5 1 2 3

Figure 3. The normalization is performed for each of the graphs induced on the neighborhood of a root node v (the red node; node

colors indicate distance to the root node). A graph labeling is used to rank the nodes and to create the normalized receptive fields, one of

size k (here: k = 9) for node attributes and one of size k × k for edge attributes. Normalization also includes cropping of excess nodes

and padding with dummy nodes. Each vertex (edge) attribute corresponds to an input channel with the respective receptive field.

Algorithm 3 RECEPTIVEFIELD: Create Receptive Field

1: input: vertex v, graph labeling ℓ, receptive field size k
2: N = NEIGHASSEMB(v, k)
3: Gnorm = NORMALIZEGRAPH(N, v, ℓ, k)
4: return Gnorm

random from G, the expected difference between the dis-

tance of the graphs in vector space (with respect to the ad-

jacency matrices based on ℓ) and the distance of the graphs

in graph space is minimized. The optimal graph normal-

ization problem is a generalization of the classical graph

canonicalization problem. A canonical labeling algorithm,

however, is optimal only for isomorphic graphs and might

perform poorly for graphs that are similar but not isomor-

phic. In contrast, the smaller the expectation of the optimal

normalization problem, the better the labeling aligns nodes

with similar structural roles. Note that the similarity is de-

termined by dG.

We have the following result concerning the complexity of

the optimal normalization problem.

Theorem 1. Optimal graph normalization is NP-hard.

Proof: By reduction from subgraph isomorphism.

PATCHY-SAN does not solve the above optimization prob-

lem. Instead, it may compare different graph labeling

methods and choose the one that performs best relative to a

given collection of graphs.

Theorem 2. Let G be a collection of graphs and let

(G1, G
′
1
), ..., (GN , G′

N) be a sequence of pairs of graphs

sampled independently and uniformly at random from G.

Let θ̂ℓ :=
∑N

i=1
dA

(

A
ℓ(Gi),A

ℓ(G′
i)
)

/N and θℓ :=

EG

[
∣

∣dA

(

A
ℓ(G),Aℓ(G′)

)

− dG(G,G′)
∣

∣

]

. If dA ≥ dG,

then EG [θ̂ℓ1] < EG [θ̂ℓ2] if and only if θℓ1 < θℓ2 .

Theorem 2 enables us to compare different labeling proce-

dures in an unsupervised manner via a comparison of the

corresponding estimators. Under the assumption dA ≥
dG, the smaller the estimate θ̂ℓ the smaller the absolute

difference. Therefore, we can simply choose the labeling ℓ
for which θ̂ℓ is minimal. The assumption dA ≥ dG holds,

for instance, for the edit distance on graphs and the Ham-

Algorithm 4 NORMALIZEGRAPH: Graph Normalization

1: input: subset of vertices U from original graph G, vertex v,
graph labeling ℓ, receptive field size k

2: output: receptive field for v
3: compute ranking r of U using ℓ, subject to

∀u,w ∈ U : d(u, v) < d(w, v) ⇒ r(u) < r(w)
4: if |U | > k then
5: N = top k vertices in U according to r

6: compute ranking r of N using ℓ, subject to
∀u,w ∈ N : d(u, v) < d(w, v) ⇒ r(u) < r(w)

7: else if |V | < k then
8: N = U and k − |U | dummy nodes
9: else

10: N = U
11: construct the subgraph G[N] for the vertices N
12: canonicalize G[N], respecting the prior coloring r

13: return G[N]

ming distance on adjacency matrices. Finally, note that all

of the above results can be extended to directed graphs.

The graph normalization problem and the application of ap-

propriate graph labeling procedures for the normalization

of local graph structures is at the core of the proposed ap-

proach. Within the PATCHY-SAN framework, we normalize

the neighborhood graphs of a vertex v. The labeling of the

vertices is therefore constrained by the graph distance to v:

for any two vertices u,w, if u is closer to v than w, then v is

always ranked higher than w. This definition ensures that v
has always rank 1, and that the closer a vertex is to v in G,

the higher it is ranked in the vector space representation.

Since most labeling methods are not injective, it is neces-

sary to break ties between same-label nodes. To do so, we

use NAUTY (McKay & Piperno, 2014). NAUTY accepts

prior node partitions as input and breaks remaining ties by

choosing the lexicographically maximal adjacency matrix.

It is known that graph isomorphism is in PTIME for graphs

of bounded degree (Luks, 1982). Due to the constant size

k of the neighborhood graphs, the algorithm runs in time

polynomial in the size of the original graph and, on aver-

age, in time linear in k (Babai et al., 1980). Our exper-

iments verify that computing a canonical labeling of the

graph neigborhoods adds a negligible overhead.

Learning Convolutional Neural Networks for Graphs

Algorithm 4 lists the normalization procedure. If the size

of the input set U is larger than k, it first applies the ranking

based on ℓ to select the top k nodes and recomputes a rank-

ing on the smaller set of nodes. If the size of U is smaller

than k, it adds disconnected dummy nodes. Finally, it in-

duces the subgraph on the vertices N and canonicalizes the

graph taking the ranking r as prior coloring.

We can relate PATCHY-SAN to CNNs for images as follows.

Theorem 3. Given a sequence of pixels taken from an

image. Applying PATCHY-SAN with receptive field size

(2m − 1)2, stride s, no zero padding, and 1-WL normal-

ization to the sequence is identical (up to a fixed permuta-

tion of the receptive field) to the first layer of a CNN with

receptive field size 2m− 1, stride s, and no zero padding.

Proof: It is possible to show that if an input graph is a

square grid, then the 1-WL normalized receptive field con-

structed for a vertex is always a square grid graph with a

unique vertex order.

4.4. Convolutional Architecture

PATCHY-SAN is able to process both vertex and edge at-

tributes (discrete and continuous). Let av be the number

of vertex attributes and let ae be the number of edge at-

tributes. For each input graph G, it applies normalized re-

ceptive fields for vertices and edges which results in one

(w, k, av) and one (w, k, k, ae) tensor. These can be re-

shaped to a (wk, av) and a (wk2, ae) tensors. Note that

av and ae are the number of input channels. We can now

apply a 1-dimensional convolutional layer with stride and

receptive field size k to the first and k2 to the second ten-

sor. The rest of the architecture can be chosen arbitrarily.

We may use merge layers to combine convolutional layers

representing nodes and edges, respectively.

5. Complexity and Implementation

PATCHY-SAN’s algorithm for creating receptive fields is

highly efficient and naively parallelizable because the fields

are generated independently. We can show the following

asymptotic worst-case result.

Theorem 4. Let N be the number of graphs, let k be the

receptive field size, w the width, and O(f(n,m)) the com-

plexity of computing a given labeling ℓ for a graph with

n vertices and m edges. PATCHY-SAN has a worst-case

complexity of O(Nw(f(n,m) + n log(n) + exp(k))) for

computing the receptive fields for N graphs.

Proof: Node sequence selection requires the labeling of

each input graph and the retrieval of the k highest ranked

nodes. For the creation of normalized graph patches, most

computational effort is spent applying the labeling proce-

dure ℓ to a neighborhood whose size may be larger than

5 10 20 30 40 50

Field size (k)

500

1500

2500

3500

4500

F
ie
ld
s/
se
c. torus

random
power

pol-books
preferential
astro-ph
email-enron

Figure 4. Receptive fields per second rates on different graphs.

k. Let d be the maximum degree of the input graph G,

and U the neighborhood returned by Algorithm 2. We have

|U | ≤ (k − 2)d ≤ n. The term exp(k) comes from the

worst-case complexity of the graph canonicalization algo-

rithm NAUTY on a k node graph (Miyazaki, 1997).

For instance, for the Weisfeiler-Lehman algorithm, which

has a complexity of O((n + m) log(n)) (Berkholz et al.,

2013), and constants w ≪ n and k ≪ n, the complexity of

PATCHY-SAN is linear in N and quasi-linear in m and n.

6. Experiments

We conduct three types of experiments: a runtime analysis,

a qualitative analysis of the learned features, and a compar-

ison to graph kernels on benchmark data sets.

6.1. Runtime Analysis

We assess the efficiency of PATCHY-SAN by applying it to

real-world graphs. The objective is to compare the rates

at which receptive fields are generated to the rate at which

state of the art CNNs perform learning. All input graphs

are part of the collection of the Python module GRAPH-

TOOL
1. For a given graph, we used PATCHY-SAN to com-

pute a receptive field for all nodes using the 1-dimensional

Weisfeiler-Lehman (Douglas, 2011) (1-WL) algorithm for

the normalization. torus is a periodic lattice with 10, 000
nodes; random is a random undirected graph with 10, 000
nodes and a degree distribution P (k) ∝ 1/k and kmax = 3;

power is a network representing the topology of a power

grid in the US; polbooks is a co-purchasing network of

books about US politics published during the 2004 presi-

dential election; preferential is a preferential attachment

network model where newly added vertices have degree

3; astro-ph is a coauthorship network between authors of

preprints posted on the astrophysics arxiv (Newman, 2001);

email-enron is a communication network generated from

about half a million sent emails (Leskovec et al., 2009). All

experiments were run on commodity hardware with 64G

RAM and a single 2.8 GHz CPU.

1https://graph-tool.skewed.de/

Learning Convolutional Neural Networks for Graphs

Figure 5. Visualization of RBM features learned with 1-dimensional WL normalized receptive fields of size 9 for a torus (periodic lattice,

top left), a preferential attachment graph (Barabási & Albert 1999, bottom left), a co-purchasing network of political books (top right),

and a random graph (bottom right). Instances of these graphs with about 100 nodes are depicted on the left. A visual representation of

the feature’s weights (the darker a pixel, the stronger the corresponding weight) and 3 graphs sampled from the RBMs by setting all but

the hidden node corresponding to the feature to zero. Yellow nodes have position 1 in the adjacency matrices. (Best seen in color.)

Figure 4 depicts the receptive fields per second rates for

each input graph. For receptive field size k = 5 and k = 10
PATCHY-SAN creates fields at a rate of more than 1000/s
except for email-enron with a rate of 600/s and 320/s, re-

spectively. For k = 50, the largest tested size, fields are

created at a rate of at least 100/s. A CNN with 2 convolu-

tional and 2 dense layers learns at a rate of about 200-400
training examples per second on the same machine. Hence,

the speed at which receptive fields are generated is suffi-

cient to saturate a downstream CNN.

6.2. Feature Visualization

The visualization experiments’ aim is to qualitatively in-

vestigate whether popular models such as the restricted

Boltzman machine (RBM) (Freund & Haussler, 1992) can

be combined with PATCHY-SAN for unsupervised feature

learning. For every input graph, we have generated recep-

tive fields for all nodes and used these as input to an RBM.

The RBM had 100 hidden nodes and was trained for 30
epochs with contrastive divergence and a learning rate of

0.01. We visualize the features learned by a single-layer

RBM for 1-dimensional Weisfeiler-Lehman (1-WL) nor-

malized receptive fields of size 9. Note that the features

learned by the RBM correspond to reoccurring receptive

field patterns. Figure 5 depicts some of the features and

samples drawn from it for four different graphs.

6.3. Graph Classification

Graph classification is the problem of assigning graphs to

one of several categories.

Data Sets. We use 6 standard benchmark data sets to com-

pare run-time and classification accuracy with state of the

art graph kernels: MUTAG, PCT, NCI1, NCI109, PRO-

TEIN, and D&D. MUTAG (Debnath et al., 1991) is a data

set of 188 nitro compounds where classes indicate whether

the compound has a mutagenic effect on a bacterium. PTC

consists of 344 chemical compounds where classes indi-

cate carcinogenicity for male and female rats (Toivonen

et al., 2003). NCI1 and NCI109 are chemical compounds

screened for activity against non-small cell lung cancer and

ovarian cancer cell lines (Wale & Karypis, 2006). PRO-

TEINS is a graph collection where nodes are secondary

structure elements and edges indicate neighborhood in the

amino-acid sequence or in 3D space. Graphs are classi-

fied as enzyme or non-enzyme. D&D is a data set of 1178
protein structures (Dobson & Doig, 2003) classified into

enzymes and non-enzymes.

Experimental Set-up. We compared PATCHY-SAN with

the shortest-path kernel (SP) (Borgwardt & Kriegel, 2005),

the random walk kernel (RW) (Gaertner et al., 2003), the

graphlet count kernel (GK) (Shervashidze et al., 2009), and

the Weisfeiler-Lehman subtree kernel (WL) (Shervashidze

et al., 2011). Similar to previous work (Yanardag & Vish-

wanathan, 2015), we set the height parameter of WL to 2,

the size of the graphlets for GK to 7, and chose the de-

cay factor for RW from {10−6, 10−5, ..., 10−1}. We per-

formed 10-fold cross-validation with LIB-SVM (Chang &

Lin, 2011), using 9 folds for training and 1 for testing, and

repeated the experiments 10 times. We report average pre-

diction accuracies and standard deviations.

For PATCHY-SAN (referred to as PSCN), we used 1-

dimensional WL normalization, a width w equal to the av-

erage number of nodes (see Table 1), and receptive field

sizes of k = 5 and k = 10. For the experiments we only

used node attributes. In addition, we ran experiments for

k = 10 where we combined receptive fields for nodes and

edges using a merge layer (k = 10E). To make a fair com-

Learning Convolutional Neural Networks for Graphs

Data set MUTAG PCT NCI1 PROTEIN D & D

Max 28 109 111 620 5748

Avg 17.93 25.56 29.87 39.06 284.32

Graphs 188 344 4110 1113 1178

SP [7] 85.79± 2.51 58.53± 2.55 73.00± 0.51 75.07± 0.54 > 3 days

RW [17] 83.68± 1.66 57.26± 1.30 > 3 days 74.22± 0.42 > 3 days

GK [38] 81.58± 2.11 57.32± 1.13 62.28± 0.29 71.67± 0.55 78.45± 0.26
WL [39] 80.72± 3.00 (5s) 56.97± 2.01 (30s) 80.22± 0.51 (375s) 72.92± 0.56 (143s) 77.95± 0.70 (609s)

PSCN k=5 91.58± 5.86 (2s) 59.43± 3.14 (4s) 72.80± 2.06 (59s) 74.10± 1.72 (22s) 74.58± 2.85 (121s)
PSCN k=10 88.95± 4.37 (3s) 62.29± 5.68 (6s) 76.34± 1.68 (76s) 75.00± 2.51 (30s) 76.27± 2.64 (154s)
PSCN k=10E 92.63± 4.21 (3s) 60.00± 4.82 (6s) 78.59± 1.89 (76s) 75.89± 2.76 (30s) 77.12± 2.41 (154s)

PSLR k=10 87.37± 7.88 58.57± 5.46 70.00± 1.98 71.79± 3.71 68.39± 5.56

Table 1. Properties of the data sets and accuracy and timing results (in seconds) for PATCHY-SAN and 4 state of the art graph kernels.

Data set GK [38] DGK [45] PSCN k=10

COLLAB 72.84± 0.28 73.09± 0.25 72.60± 2.15
IMDB-B 65.87± 0.98 66.96± 0.56 71.00± 2.29
IMDB-M 43.89± 0.38 44.55± 0.52 45.23± 2.84
RE-B 77.34± 0.18 78.04± 0.39 86.30± 1.58
RE-M5k 41.01± 0.17 41.27± 0.18 49.10± 0.70
RE-M10k 31.82± 0.08 32.22± 0.10 41.32± 0.42

Table 2. Comparison of accuracy results on social graphs [45].

parison, we used a single network architecture with two

convolutional layers, one dense hidden layer, and a softmax

layer for all experiments. The first convolutional layer had

16 output channels (feature maps). The second conv layer

has 8 output channels, a stride of s = 1, and a field size

of 10. The convolutional layers have rectified linear units.

The dense layer has 128 rectified linear units with a dropout

rate of 0.5. Dropout and the relatively small number of

neurons are needed to avoid overfitting on the smaller data

sets. The only hyperparameter we optimized is the num-

ber of epochs and the batch size for the mini-batch gradient

decent algorithm RMSPROP. All of the above was imple-

mented with the THEANO (Bergstra et al., 2010) wrapper

KERAS (Chollet, 2015). We also applied a logistic regres-

sion (PSLR) classifier on the patches for k = 10.

Moreover, we ran experiments with the same set-up2 on

larger social graph data sets (up to 12000 graphs each, with

an average of 400 nodes), and compared PATCHY-SAN with

previously reported results for the graphlet count (GK) and

the deep graphlet count kernel (DGK) (Yanardag & Vish-

wanathan, 2015). We used the normalized node degree as

attribute for PATCHY-SAN, highlighting one of its advan-

tages: it can easily incorporate continuous features.

Results. Table 1 lists the results of the experiments. We

omit the results for NCI109 as they are almost identical to

NCI1. Despite using a one-fits-all CNN architecture, the

CNNs accuracy is highly competitive with existing graph

2Due to the larger size of the data sets, we removed dropout.

kernels. In most cases, a receptive field size of 10 results

in the best classification accuracy. The relatively high vari-

ance can be explained with the small size of the bench-

mark data sets and the fact that the CNNs hyperparame-

ters (with the exception of epochs and batch size) were not

tuned to individual data sets. Similar to the experience on

image and text data, we expect PATCHY-SAN to perform

even better for large data sets. Moreover, PATCHY-SAN is

between 2 and 8 times more efficient than the most effi-

cient graph kernel (WL). We expect the performance ad-

vantage to be much more pronounced for data sets with a

large number of graphs. Results for betweeness centrality

normalization are similar with the exception of the runtime

which increases by about 10%. Logistic regression applied

to PATCHY-SAN’s receptive fields performs worse, indicat-

ing that PATCHY-SAN works especially well in conjunction

with CNNs which learn non-linear feature combinations

and which share weights across receptive fields.

PATCHY-SAN is also highly competitive on the social graph

data. It significantly outperforms the other two kernels on

four of the six data sets and achieves ties on the rest. Table 2

lists the results of the experiments.

7. Conclusion and Future Work

We proposed a framework for learning graph represen-

tations that are especially beneficial in conjunction with

CNNs. It combines two complementary procedures: (a)

selecting a sequence of nodes that covers large parts of the

graph and (b) generating local normalized neighborhood

representations for each of the nodes in the sequence. Ex-

periments show that the approach is competitive with state

of the art graph kernels.

Directions for future work include the use of alternative

neural network architectures such as RNNs; combining dif-

ferent receptive field sizes; pretraining with RBMs and au-

toencoders; and statistical relational models based on the

ideas of the approach.

Learning Convolutional Neural Networks for Graphs

Acknowledgments

Many thanks to the anonymous ICML reviewers who pro-

vided tremendously helpful comments.

References

Alon, Uri. Network motifs: theory and experimental

approaches. Nature Reviews Genetics, 8(6):450–461,

2007.

Atlas, Les E., Homma, Toshiteru, and Marks, Robert J. II.

An artificial neural network for spatio-temporal bipolar

patterns: Application to phoneme classification. In An-

derson, D.Z. (ed.), Neural Information Processing Sys-

tems, pp. 31–40. 1988.

Babai, László, Erdős, Paul, and Selkow, Stanley M. Ran-

dom graph isomorphism. SIAM J. Computing, 9(3):628–

635, 1980.

Barabási, Albert-Laszlo and Albert, Réka. Emergence of

scaling in random networks. Science, 286(5439):509–

512, 1999.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,

Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-

laume, Turian, Joseph, Warde-Farley, David, and Ben-

gio, Yoshua. Theano: a CPU and GPU math expression

compiler. In Proceedings of the Python for Scientific

Computing Conference (SciPy), 2010.

Berkholz, Christoph, Bonsma, Paul S., and Grohe, Mar-

tin. Tight lower and upper bounds for the complexity of

canonical colour refinement. In Proceedings of the Eu-

ropean Symposium on Algorithms, pp. 145–156, 2013.

Borgwardt, Karsten M. and Kriegel, Hans-Peter. Shortest-

path kernels on graphs. In Proceedings of the Fifth IEEE

International Conference on Data Mining (ICDM), pp.

74–81, 2005.

Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and Le-

Cun, Yann. Spectral networks and locally connected net-

works on graphs. In International Conference on Learn-

ing Representations, 2014.

Chang, Chih-Chung and Lin, Chih-Jen. Libsvm: A library

for support vector machines. ACM Trans. Intell. Syst.

Technol., 2(3):27:1–27:27, 2011.

Chollet, François. keras. https://github.com/

fchollet/keras, 2015.

Debnath, Asim Kumar, de Compadre, Rosa L. Lopez, Deb-

nath, Gargi, Shusterman, Alan J., and Hansch, Cor-

win. Structure-activity relationship of mutagenic aro-

matic and heteroaromatic nitro compounds. correlation

with molecular orbital energies and hydrophobicity. J.

Med. Chem., (34):786–797, 1991.

Dobson, Paul D. and Doig, Andrew J. Distinguishing en-

zyme structures from non-enzymes without alignments.

Journal of Molecular Biology, 330(4):771 – 783, 2003.

Douglas, Brendan L. The weisfeiler-lehman method

and graph isomorphism testing. arXiv preprint

arXiv:1101.5211, 2011.

Duvenaud, David K, Maclaurin, Dougal, Iparraguirre,

Jorge, Bombarell, Rafael, Hirzel, Timothy, Aspuru-

Guzik, Alan, and Adams, Ryan P. Convolutional net-

works on graphs for learning molecular fingerprints. In

Advances in Neural Information Processing Systems, pp.

2215–2223, 2015.

Freund, Yoav and Haussler, David. Unsupervised learning

of distributions of binary vectors using two layer net-

works. In Advances in Neural Information Processing

Systems, pp. 912–919, 1992.

Fukushima, Kunihiko. Neocognitron: A self-organizing

neural network model for a mechanism of pattern recog-

nition unaffected by shift in position. Biological Cyber-

netics, 36(4):193–202, 1980.

Gaertner, Thomas, Flach, Peter, and Wrobel, Stefan. On

graph kernels: Hardness results and efficient alterna-

tives. In Proceedings of the 16th Annual Conference on

Computational Learning Theory, pp. 129–143, 2003.

Haussler, David. Convolution kernels on discrete struc-

tures. Technical report, Department of Computer Sci-

ence, University of California at Santa Cruz, 1999.

Henaff, Mikael, Bruna, Joan, and LeCun, Yann. Deep

convolutional networks on graph-structured data. arXiv

preprint arXiv:1506.05163, 2015.

Hubel, David H. and Wiesel, Torsten N. Receptive fields

and functional architecture of monkey striate cortex.

Journal of Physiology (London), 195:215–243, 1968.

Kersting, Kristian, Ahmadi, Babak, and Natarajan, Sri-

raam. Counting belief propagation. In Proceedings of

the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence (UAI), pp. 277–284, 2009.

Kersting, Kristian, Mladenov, Martin, Garnett, Roman, and

Grohe, Martin. Power iterated color refinement. In Pro-

ceedings of the Twenty-Eighth AAAI Conference on Ar-

tificial Intelligence (AAAI), pp. 1904–1910, 2014.

Kondor, Risi and Borgwardt, Karsten M. The skew spec-

trum of graphs. In Proceedings of the 25th International

Conference on Machine Learning (ICML), pp. 496–503,

2008.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

Learning Convolutional Neural Networks for Graphs

Kondor, Risi and Lafferty, John. Diffusion kernels on

graphs and other discrete input spaces. In Proceedings of

the 19th International Conference on Machine Learning

(ICML), pp. 315–322, 2002.

Kondor, Risi, Shervashidze, Nino, and Borgwardt,

Karsten M. The graphlet spectrum. In Proceedings of

the 26th International Conference on Machine Learning

(ICML), pp. 529–536, 2009.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., and Jackel, L. D. Back-

propagation applied to handwritten zip code recognition.

Neural Comput., 1(4):541–551, 1989.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,

Patrick. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep

learning. Nature, 521:436–444, 2015.

Leskovec, Jure, Lang, Kevin J, Dasgupta, Anirban, and

Mahoney, Michael W. Community structure in large net-

works: Natural cluster sizes and the absence of large

well-defined clusters. Internet Mathematics, 6(1):29–

123, 2009.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel,

Richard. Gated graph sequence neural networks. arXiv

preprint arXiv:1511.05493, 2015.

Luks, Eugene M. Isomorphism of graphs of bounded va-

lence can be tested in polynomial time. Journal of Com-

puter and System Sciences, (25):42–65, 1982.

McKay, Brendan D. and Piperno, Adolfo. Practical graph

isomorphism, {II}. Journal of Symbolic Computation,

60(0):94 – 112, 2014.

Milo, Ron, Shen-Orr, Shai, Itzkovitz, Shalev, Kashtan, Na-

dav, Chklovskii, Dmitri, and Alon, Uri. Network motifs:

simple building blocks of complex networks. Science,

298(5594):824–827, 2002.

Miyazaki, Takunari. The complexity of mckays canonical

labeling algorithm. In Groups and Computation II, vol-

ume 28, pp. 239–256, 1997.

Newman, Mark EJ. The structure of scientific collabora-

tion networks. Proceedings of the National Academy of

Sciences, 98(2):404–409, 2001.

Orsini, F., Frasconi, P., and Raedt, L. De. Graph invari-

ant kernels. In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), pp. 678–689, 2015.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and

Monfardini, G. The graph neural network model. IEEE

Transactions on Neural Networks, 20(1):61–80, 2009.

Shervashidze, Nino, Vishwanathan, S.V.N., Petri, To-

bias H., Mehlhorn, Kurt, and Borgwardt, Karsten M. Ef-

ficient graphlet kernels for large graph comparison. In

Proceedings of the 12th International Conference on Ar-

tificial Intelligence and Statistics (AISTATS), pp. 488–

495, 2009.

Shervashidze, Nino, Schweitzer, Pascal, van Leeuwen,

Erik Jan, Mehlhorn, Kurt, and Borgwardt, Karsten M.

Weisfeiler-lehman graph kernels. J. Mach. Learn. Res.,

12:2539–2561, 2011.

Toivonen, Hannu, Srinivasan, Ashwin, King, Ross D,

Kramer, Stefan, and Helma, Christoph. Statistical evalu-

ation of the predictive toxicology challenge 2000–2001.

Bioinformatics, 19(10):1183–1193, 2003.

Vishwanathan, S. V. N., Schraudolph, Nicol N., Kondor,

Risi, and Borgwardt, Karsten M. Graph kernels. J. Mach.

Learn. Res., 11:1201–1242, 2010.

Wale, Nikil and Karypis, George. Comparison of descrip-

tor spaces for chemical compound retrieval and classifi-

cation. In Proceedings of the International Conference

on Data Mining (ICDM), pp. 678–689, 2006.

Wallach, Izhar, Dzamba, Michael, and Heifets, Abra-

ham. Atomnet: A deep convolutional neural network for

bioactivity prediction in structure-based drug discovery.

CoRR, abs/1510.02855, 2015.

Weisfeiler, Boris and Lehman, AA. A reduction of a graph

to a canonical form and an algebra arising during this

reduction. Nauchno-Technicheskaya Informatsia, 2(9):

12–16, 1968.

Yanardag, Pinar and Vishwanathan, S.V.N. Deep graph ker-

nels. In Proceedings of the 21th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining, pp. 1365–1374, 2015.

