
Machine Learning, 33, 155–177 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Coordination Strategies for Cooperative
Multiagent Systems

F. HO fho@watfast.uwaterloo.ca

M. KAMEL mkamel@watfast.uwaterloo.ca
Dept. of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Editors: Michael Huhns and Gerhard Weiss

Abstract. A central issue in the design of cooperative multiagent systems is how to coordinate the behavior
of the agents to meet the goals of the designer. Traditionally, this had been accomplished by hand-coding the
coordination strategies. However, this task is complex due to the interactions that can take place among agents.
Recent work in the area has focused on how strategies can be learned. Yet, many of these systems suffer from
convergence, complexity and performance problems. This paper presents a new approach for learning multiagent
coordination strategies that addresses these issues. The effectiveness of the technique is demonstrated using a
synthetic domain and the predator and prey pursuit problem.

Keywords: learning, multiagent, coordination, cooperative, hill-climbing

1. Introduction

Cooperative distributed artificial intelligence (DAI) is concerned with how a group of
intelligent agents can cooperate to jointly solve problems. Typically, AI systems have been
distributed due to one or more of the following reasons:

1. The Complexity of the Domain. The complexity of the environment and/or the com-
plexity of the tasks may make the design of a single agent difficult.

2. The Distributed Nature of the Domain. Some domains such as air traffic control or
sensor fusion are inherently distributed.

3. Performance Gains. Time constraints may require the use of multiple agents in domains
that allow for parallel problem solving.

4. Fault Tolerance. Redundancy in multiple agents would allow for goals to still be
achieved should agents be damaged.

5. Integration of Existing Software Systems. Rather than building new applications from
scratch, intelligent agents can be used to coordinate the use of existing programs
(Newell & Steier).

One of the central issues inDAI is coordination. Jennings defines coordination as “the
process by which an agent reasons about its local actions and the (anticipated) actions of
others to try and ensure that the community acts in a coherent manner” (Jennings, 1996).
The aims of coordination are to “ensure that all necessary portions of the overall problem
are included in the activities of at least one agent, that agents interact in a manner which

156 F. HO AND M. KAMEL

permits their activities to be developed and integrated into an overall solution, that team
members act in a purposeful and consistent manner, and that all of these objectives are
achievable within the available computational and resource limitations. (Jennings, 1996)”

Some current approaches to coordination include the use of organizational structures
(Durfee, Lesser & Corkill, 1987, Tennenholtz, 1995) (Ishida, 1994), the exchange of met-
alevel information (Durfee, 1988), and multiagent planning (Cammarata, McArthur &
Steeb, 1983, Kamel & Syed, 1994). These methods are all developed off-line and make
extensive use of domain knowledge. As such, they assume the availability of complete and
stationary world models that are hard to obtain in practice. Beyond the issue of models
is the computational complexity (Grefenstette, 1992) of generating coordination strategies.
The task of finding an optimal set of social laws for heterogeneous agents is NP-hard
(Tennenholtz, 1995). Haynes suggests that “in most cases a coordination strategy is chosen
if it is reasonably good” (Haynes & Sen, 1996).

In light of the problems with model completeness and the cost of generating good strate-
gies, researchers have developed systems that learn coordination strategies
(Sen, Sekaran & Hale, 1994, Haynes, et al., 1996, Parker, 1995, Weiß, 1993). However,
these methods can suffer from difficulties that range from lack of convergence, to high
computational complexity, and to potentially poor performance. This paper presents a
new approach to learning coordination strategies, based on probabilistic hill-climbing, that
makes a different set of trade-offs with respect to these criteria. The technique is guaranteed
to converge, has lower complexity than existing techniques that converge, and also has a
well-defined local performance measure.

The remainder of the paper is organized as follows. Section 2 defines the learning task
and provides a survey and analysis of existing methods. Section 3 presents the multiagent
probabilistic hill-climbing (MPHC) algorithm. First, an overview of the method is provided
which is then followed by the algorithmic details. Experiments on two different domains are
discussed in Section 4. The last section is a summary of the work and contains suggestions
for future research.

2. Learning Coordination Strategies

Suppose there areM agents, each with a a simple reflex architecture that maps its current
state, i.e. stimulus plus internal state, to an action. For each state,si, i = 1 . . . N , let there
beKi potential actions. Also let there be a common payoff function,U , that measures
the utility of an action with respect to a given state. This payoff may be a function of
an individual agent’s state as well as the global state and may also be delayed. Thus the
reward does not have to be the same for all agents. However, it is assumed that the payoff is
positively correlated due to the cooperative nature of the domain. Using these definitions,
an agent can be described as a mappingM:

M : si, i = 1 . . . N −→ Aj , j = 1 . . .Ki

Now let the system be applied to a series of initial states that are randomly drawn from some
fixed distribution,P. Given the set of agent mappings, each initial state would induce a
sequence of actions and new states with their associated payoffs. The goal of the system is

LEARNING MULTIAGENT COORDINATION STRATEGIES 157

to maximize the sum of the expected discounted payoffs for each agent overP. Formally,
the objective is to maximize:

E(
M∑
i=1

(
∞∑
j=1

γj−1rj))

where0 ≤ γ < 1 is the discount factor,r is the payoff, andE is the expectation operator.

With this goal in mind, the learning task can be defined as finding the individual action
maps,{M1,M2, . . . ,MM}, such that the sum of the expected discounted payoff is max-
imized. To situate the task in an algorithmic context, consider the skeleton of a generic
single learner shown in Figure 1. Initially, an agent updates it’s internal state by combining

(0) Algorithm LearnMAP()
(1) repeat
(2) state← Update-State(state, percept)
(3) action← Choose-Action(state, map)
(4) update-val←Get-Feedback()
(5) Update-Map(update-val, map)
(6) until Termination-Condition(map)
(7) return (map)

Figure 1. Skeletal Algorithm

it’s current state with new stimuli. The latter may simply be input from sensors or it could
also include messages from other agents. With the new state and it’s action map, the agent
chooses an action and executes it. Feedback is received and the map updated. When the
termination criteria is reached, learning is halted.

The generic single agent skeleton is specialized for multiple agents by instantiating the
Choose-Action, Update-Map, andTermination-Condition functions. A key
requirement is that these functions be chosen such that the interactions between the in-
dividual action maps can be determined. Maximization of the sum of expected payoff
necessitates the exploitation of any positive interactions. Since the domain is multiagent, it
is assumed that there will be interactions and since it is also cooperative, it is assumed that
something can be gained through cooperation.

Beneficial interactions can be detected using two approaches. The first is through the use of
localized learning where other agents are treated as part of the environment. It is hoped that
the agents will “co-learn” and adapt themselves to each other (Sen, Sekaran & Hale, 1994,
Mataric, 1995, Sandholm & Crites, 1995). The second approach is to use “group” learning
(Weiß, 1993, Haynes, et al., 1996), where agents coordinate their choice of actions in order
to discern the joint effects. The following section highlights some previous work on learning
multi-agent coordination strategies.

158 F. HO AND M. KAMEL

2.1. Previous Work

Existing multi-agent learning algorithms can be roughly classified into three types, those
that use reinforcement learning individually (RLI), those that use reinforcement learning in
groups (RLG) or those that use genetic programming (GP).

As it’s name implies, agents using RLI (Sen, Sekaran & Hale, 1994, Mataric, 1995,
Sandholm & Crites, 1995) run local copies of a reinforcement learning algorithm such as Q-
learning. Typically,Choose-Action is some stochastic action selector,Update-Map
is the Q-value update rule, andTermination-Condition is a function that measures the
constancy of the agents’ behaviors. An example of a stochastic selector is the Boltzmann
exploration rule where the probability of executing an actionAj in statei is given by:

p(Aj) =
eQ(si,Aj)/t∑Ki
l=1 e

Q(si,Al)/t

whereQ is the Q-value, or utility, of an action in a given state and wheret is the temperature
or annealing rate.

Behavioral constancy is often measured by how many times, in a row, a prescribed goal
is achieved. For instance, learning is halted in the block pushing domain (Sen, Sekaran &
Hale, 1994) when the two agents have successfully pushed a block from start to end locations,
ten times in a row.

The RLI approach is simple but it does not guarantee convergence to stable action maps.
One assumption of algorithms like Q-learning is that the environment is stationary. Since
the agents can individually change their maps, this assumption is violated.

RLG methods implement grouped learning. In (Weiß, 1993),Choose-Action requires
the agents to bid for the right to execute an action within the context of a group of actions.
The group with the largest bid is selected for execution. This addresses the convergence
problem since changes to an agent’s action map are only in the context of groups and
therefore must be coordinated with those of other agents. This eliminates the stochasticity
introduced when agents unanimously make changes. The major difficulty of this method is
high sample complexity due to the combinatorics of grouping (Dowell & Stephens, 1996).
Given four agents, each with four states and two actions each, there would be(4x2)4 =
4096 groups if all the different state to action mappings are considered. Thus there is an
issue of scalability in the use of RLG’s.

Existing genetic programming methods (Haynes, et al., 1996) apply this paradigm to
groups of changes in the action maps. Sample complexity is reduced, as compared to RLG,
since GP’s implement a form of beam search. That is, only a subset of the potential groups is
analyzed at the same time and from out of that group, a smaller subset is promoted to the next
generation. By limiting the size of the subsets, complexity can be controlled. However, this
incremental limited-width search may result in poor performance. This is an instance of the
well known “multiagent credit assignment” problem. Consider one complete instantiation
of the agent maps. As a group, let this combined set of maps have “high” expected payoff.
The question is, which choice of state to action mappings made beneficial contributions
and which, if any, were irrelevant? The simplest answer is to ignore the problem and say
that one is only concerned with the entire group (Haynes, et al., 1996). As long as the
group performs, it doesn’t matter which choices made the contributions. This solution can

LEARNING MULTIAGENT COORDINATION STRATEGIES 159

cause problems in approaches that use beam search or hill-climbing (beam of width 1) since
portions of the search space are discarded. An action assignment may be irrelevant but in
committing to it, the system may have placed itself in a local maxima since choices may
influence future decisions.

Consider a simplified scenario from a financial domain. Company X is losing money
and thus it must make some changes to its business strategy. The firm is structured into
two units that independently make their own decisions. The first is responsible for the
production and the other for sales and marketing. In the current state, production has the
option of either increasing the output of widgetA or diversifying and building a factory
to make widgetB. Note that they currently do not sell all theA’s that they manufacture.
Sales and marketing only has the option of spending more money on marketingA. There
are insufficient resources to increase the production and the promotion ofA while simul-
taneously starting the production ofB. Let one of the groups be the promotion ofA and
the production ofB. The advertisement campaign works and the inventory ofA is sold, but
widgetB is a flop. From the point of view of profit, the combined map (group) that only
promotesA is indistinguishable from the one that promotesA and buildsB. However, the
second map allows money to be spent on increasing the production ofA to meet the new
demand. Note that the problem has nothing to do with localized versus grouped methods.
Each agent could have individually arrived at their own choice of actions. The problem
occurs in incremental learning algorithms since decisions made in earlier steps can affect
the optimality of those yet to made as they cannot be undone.

In summary, the existing approaches make different trade-offs with respect to each other.
RLI’s favor lower sample complexity and simplicity at the expense of convergence. RLG’s
sacrifice sample complexity for guaranteed convergence. Finally, GP’s converge and have
controls on complexity, but at the potential cost of performance.

There are also some commonalities between the three methods. One is that convergence
is not well defined. Typically, the behavior of the agents is observed and if it is the same
over some interval then the system is said to have converged. Another issue is the lack of
quantification on performance. For instance, experiments may indicate that the algorithm
works well on a particular domain but performance bounds, on another domain, may be
hard to come by.

3. Multiagent Probabilistic Hill-climbing

The following sections present a multiagent learning technique based on probabilistic hill-
climbing. First a general discussion of probabilistic hill-climbing and it’s application to
multiagent systems is provided. Next, the algorithmic details are discussed. Finally, the
technique is theoretically evaluated in terms of the convergence, complexity and perfor-
mance issues highlighted in Section 2.

3.1. Overview

A defining characteristic of probabilistic hill-climbing (PHC) algorithms (Greiner, 1996,
Fong, 1995, Gratch, 1993) is that they make satisficing rather than optimal decisions.
Without getting into details at this point, consider the simplest state to action mapping

160 F. HO AND M. KAMEL

problem in the form of an agent with only one state. Let there exist a hypothesis se-
lection (HS) algorithm that, given the parametersε and δ, returns actionA∗ such that
∀Aj=1..k, Aj 6= A∗, Ū(A∗) > Ū(Aj) or |Ū(A∗) − Ū(Aj)| ≤ ε with 100(1-δ) % confi-
dence; whereU is the payoff of actionAj in stateS. In other words,A∗ is ε-optimal in that
every other action has an expected payoff which is either less thanA∗ or at mostε larger
thanA∗. Theε can be regarded as a measure of indifference. If the “best actions” have
expected rewards that are withinε of each other, then the agent doesn’t care which one is
selected.

If a procedure exists for one state, it can be extended to handle multiple states by embed-
ding it within a hill-climbing process. The choice of an action is regarded as a step. This
requires thatδ be allocated across the hill-climbing steps such that the sum over all steps is
δ. If the number of steps is bounded then this can be done by dividingδ by the bound, else
δ can be allotted by multiplying it by any series that sums to 1 at infinity (Greiner, 1996).

During the process, each state is tested for the existence ofA∗, and if it exists, the action
A∗i and itsŪ(A∗i) are stored. When all states have been tested, the map is modified to reflect
the choice of theA∗ with the highest expected payoff. Hill-climbing ends with the deletion
of all statistics associated with the remaining states. The agent’s state space has been altered
and thus these values are no longer valid. This procedure continues until an action has been
selected for each state. Given that anε-optimal action must exist for each state, termination
is guaranteed. A consequence of this approach is that the global optimality of the map is
traded for localε-optimality at each step.

Now consider a multiagent setting where each agent runs an individual copy of the PHC
algorithm. Instead of hill-climbing at will, let the agents wait until they have all found their
A∗’s. This can be accomplished using a simple messaging protocol.

Due to the use of hill-climbing, the system is susceptible to the multiagent credit assign-
ment problem. There areM concurrent map changes to be made, but not all of these changes
may be useful. The problem can be solved by noting that it stems from over-commitment.
In the financial example, the increase in profits only required the marketing of widgetA
and not the production of widgetB. A criteria that requires the system to minimize the
number of action choices that are committed to would remove the unnecessary production
of B. Intuitively, agents should only commit to the minimum number of choices needed to
meet their goals. This would prevent irrelevant action assignments from blocking future
assignments that may prove beneficial. Given that the hill-climbing task is equivalent to
finding the “best step” at each point in the map space, the job is to define the “minimally
best step”. There are two cases of minimality to consider:

1. If theA∗i ’s do not beneficially interact then the “minimally best” step is theA∗i with
the largestÛ . Steps should be atomic. Thus, if the effects of the changes are simply
additive, then the one with the biggest improvement should be implemented.

2. If subsets of theA∗i ’s beneficially interact then the “minimally best” step is the interact-
ing subset with the largest̂U . Again, theε-optimality criteria can be applied to compute
the subset with the largest expected reward.

The issue is to determine which, if any, of theA∗’s interact. This can be done by grouping
theA∗’s. If there are beneficial interactions between all the elements of the group then

LEARNING MULTIAGENT COORDINATION STRATEGIES 161

the expected reward of the group should be greater than the sum of it’s parts. This can be
verified by comparing the payoff of a set of changes with the payoffs of it’s subsets under
the assumption that they are, at least, partially independent. That is, the payoffs are simply
additive.

All combinations of groups of size 2 to M, where M is the number of agents, are gen-
erated since interactions can occur between any two or more of theA∗’s. The result is an
exponential number of groups but the base of exponent is always 2 and not the number of
states times the number of actions as in Section 2.1. Consider three agents and let theirA∗’s
beA, B, andC; respectively. IfA, B, andC beneficially interact then̂U(A,B,C) should be
greater than that of:

1. Û(A, B,D3)+Û(D1,D2,C)

2. Û(A,D2,C)+Û(D1,B,D3)

3. Û(D1,B,C)+Û(A,D2,D3)

4. Û(A)+Û(B)+Û(C)+Û(D)

whereD represents the choice of an action other thanA∗ for the state associated withA∗.
A complete mapping requires an action for every state and thus, ifA∗ is not chosen then
some other action must be. The first three cases represent the scenario where two out of
the threeA∗’s interact while the third is independent. The last case represents the scenario
where they are all independent.

Cooperation is required to compute the payoff of these (sub)sets. Each agent must know
when and when not to use itsA∗. Recall that initially the agents individually choose their
actions until they have found theirA∗’s. Once this been achieved they must coordinate
their actions to discern the beneficial interactions. This requirement breaks learning into
two stages. The first stage uses co-learning while the second uses grouped learning. Thus,
MPHC uses a mixture of both paradigms.

3.2. Algorithmic Details

As discussed in Section 2, a learning algorithm is realized by instantiating theChoose-
Action, Update-Map, andTermination-Condition functions. The key element
of the MPHC algorithm is theHS procedure. Given a historical sequence of payoffs,
the expected payoff,̄Uj , for each action can be approximated using its sample mean,Ûj .
The task is to find the action that satisfies theε-optimality criteria. This can be done by
formulating a series of pair-wise hypothesis tests that compare the mean of the action with
the largest average value,m = argmaxkj=1(Û), with those of the remaining actions,j 6=
m. If the probability:∀j 6= m, Ûm < Ûj − ε is less thanδ thenm is chosen.

These calculations require assumptions to be made about the distribution ofU . The
simplest case is to assume nothing and use distribution-free techniques such as Hoeffding’s
inequality (Hoeffding, 1963) to construct confidence intervals around the value of eachÛ .
However, these methods are sample hungry. MPHC takes a different tack and modifies
the quantity that is being estimated. During initialization, each state is assigned a random
default action. When an action is selected for execution byChoose-Action, its payoff

162 F. HO AND M. KAMEL

is computed. Then the payoff using the default mapping is evaluated. This is done by
“replaying” the actions of the environment but changing the actions of the agent. The
difference between the two values is stored as the payoff. Since differences are used, the
central limit theorem (Kirkpatrick, 1974) can be invoked and the distribution of the payoffs
considered to be normal after a number of trials. This allows T-tests to be used in the
pair-wise hypothesis tests. TheHS algorithm is shown in Figure 2 and is similar to the
approach taken in (Chien, Gratch & Burl, 1995). The first step is to return the index,m, of

(0) Algorithm HS(ε, δ)
(1) m = argmaxkj=1(∆−Û)
(2) t-error=0
(3) ∀j 6= m
(4) pwe=p-within-epsilon(j,m,ε)
(5) plt= p-greater-than(j,m)
(6) pe=Max(pwe,plt)
(7) t-error=t-error+(1-pe)
(8) if (t-error< δ) then
(9) hill-climb=T

Figure 2. HS Algorithm

the action with the largest meanδ−Û . For every other action,j, the probability that it’s
mean lies within±ε of the mean ofm, pwe, and the probability that it’s mean is less than
that ofm, plt, are computed using T-tests. The larger of these two values is taken to be the
actual case. That is, ifpweis larger thanplt then actionj is considered to have a utility that
is within ε of m. One minus this value is the probability thatm is notε-optimal with respect
to j. If the sum of these probabilities is less thanδ thenm is ε-optimal with confidence
100(1-δ)%.

Given an algorithm to determineAi, the next component is a method to test for interac-
tions. Again, T-tests can be used to compute the probability that a group is greater than or
within ε of its parts, under various independence assumptions. TheTest-Interactions
algorithm is shown in Figure 3. Initially, all potential groupings of theA∗ actions are gen-
erated. In the process, theD’s are given the value of their random default assignment. Each
element of the set of groupings is then tested for interactions. The probability that a group
contains independent elements is determined by taking the product of a series of pairwise
T-tests. This requires a number of samples, the parameterN1, be taken to ensure the validity
of the normal distribution assumption. In the tests, the pairs correspond to comparing a
group with it’s subgroups as described in Section 3.1. For each case, the probability that
their means are withinε of each other is computed. Another series of tests is then used to
determine if the mean of the group is greater than its subgroups. Again, a product is used
to combine these results which assumes that the errors are independent. The maximum of
these two probabilities is taken to be the actual case as in theHS algorithm. If maximum
value is the “greater than” case and the combined error is less thanδ, the group is considered

LEARNING MULTIAGENT COORDINATION STRATEGIES 163

(0) Algorithm Test-Interactions(A∗,ε,δ,N1)
(1) i-groups =φ
(2) groups =Generate-groups(A∗)
(3) if (num-samps> N1) then∀X, X ∈ groups
(4) sub-groups =return-sub-groups(X,groups)
(5) pwe =

∏sub−groups
group-within-epsilon(X,ε)

(6) pgt =
∏sub−groups

group-greater-than(X)
(7) t-error = 1-Max(pwe,pgt)
(8) if (t-error = pgt and t-error< δ) then
(9) i-groups = i-groups

⋃
X

(10)Max-Payoff(i-groups)

Figure 3. Test-Interdependence Algorithm

to be beneficially interacting. All interacting groups are collected and the one with largest
expected payoff is returned.

3.2.1. Update-Map Function TheHS andTest-Interactions algorithms are
both parts of theUpdate-Map function shown in Figure 4. This function implements a
hill-climbing step as discussed in Section 3.1. The first thing to notice is that there are two

(0) Algorithm Update-Map(ε1, ε2, δ1, δ2,G)
(1) ∀Si, i = 1 . . . N : if ∃A∗i =HS(ε1, δ1) then
(2) P = P

⋃
A∗i

(3) if P then
(4) g =Maximum-Avg-Payoff(P)

;;End Stage 1
;;G contains theA∗’s from the other agents

(5) interacting =Test-Interactions(g
⋃

G,ε2,δ2)
(6) if (g ∈ interacting) then
(7) Modify-Map(g)
(8) Delete-Statistics(Si=1...N)

Figure 4. Update-Map

ε’s andδ’s arguments. This is the result of using a two stage approach. The twoδ’s andε’s
add up to theδ andε that has been allocated to this step, but these values have been split
across the stages.

164 F. HO AND M. KAMEL

In Update-Map, steps one to four correspond to stage one. Each agent runsHS on
each of its states and collects theA∗i ’s into P. If P is not empty then the element with largest
expected reward is chosen. Once all agents have found theirA∗, the algorithm moves onto
stage two. As discussed, the agents must cooperate to determine the payoff of the groups.
This requires a change to theChoose-Action procedure such that the agents coordinate
their choice of actions. The initial stage one instantiation of this algorithm will be discussed
in Section 3.2.2. Step five returns the interacting group with the largest expected reward.
If an agent’sA∗ is a member of this group then it’s map is modified. The step ends with
the deletion of all statistics since hill-climbing has been performed.

3.2.2. Choose-Action Function An important component of any co-learning ap-
proach is theChoose-Action function which has two roles. It must perform exploration
to find the best action for a given state but it also must dwell on the current estimate forA∗i .
The second requirement allows the agents to determine if there are beneficial interactions
between their current choices forA∗. Intuitively, joint sampling of their respectiveA∗’s
allows the agents to measure the effect of the combination. The necessity of this is illus-
trated in Section 4.1 where some of the trials used a random strategy forChoose-Action.
Results for these cases were poor.

The constraints onChoose-Action are similar to those for the k-arm bandit problem
(Berry & Fristedt, 1985) where the task is to maximize the long-run total reward of sampling
the arms of an imaginary multi-armed slot machine. On each iteration, and given the results
of the previous trials, an arm is selected for sampling.

One approach to the problem is the Z-heuristic (Rivest & Yin, 1994). Given statei, a
normal random number is generated for each action,Aj , that is parameterized by the mean
and variance ofU(Aj). The action with the largest random number is chosen for execution.
This technique compliments the use of default actions and∆-payoffs since the distribution
of theU ’s can be assumed to be normal after a number of trials. Since a number of trials is
required, the Z-heuristic is parameterized byN0, or the number of initial samples that must
be seen before the strategy is invoked. At the outset, the actions are chosen at random.

3.3. Terminate-Condition Predicate

The use of MPHC results in a straightforward termination criteria since each state must be
assigned one action. Thus learning can be haled when all agents have hill-climbed on each
of their states. The problem is not as simple in practice since there may be domains with
states that are rarely visited or that go unvisited. The set of problems may not entail these
states or the states may be suboptimal. Non-termination is not a major issue for MPHC
since the technique adds little overhead except when sampling actions in a non-terminate
state. When an agent enters a state, it first checks to see if the state has been assigned an
action. If so, the action is simply executed.

Termination can be enforced by adding an extra test to each state. Each agent keeps track
of the number of trials that as passed. The probability that a state will be visited for less
than or equal toε3 number of times can then computed using distribution free methods. If
this value drops below an assignedδ then learning can be terminated on that state.

LEARNING MULTIAGENT COORDINATION STRATEGIES 165

3.4. Theoretical Evaluation

MPHC has a number of advantages over the existing learning methods. As with many other
approaches, an improvement in one criteria may require sacrifice in another. Thus the job
is to select an appropriate set of trade-offs.

In terms of convergence, the approach is guaranteed to converge unlike RLI techniques
since each state that is visited must have anε-optimal action. This even holds for non-
cooperative domains such as the case where there are two agents trying to learn different
versions of the parity problem. Consider a situation where agent one has an odd parity payoff
function while agent two has an even parity one. Each agent has a choice of returning a one
or a zero. This results in four states, and if the payoff for even and odd parity is the same,
the sum of payoffs for these states is constant. Thus the expected payoff for either action is
also the same. Traditional RL techniques would flip back and forth between assignments
as a positive reward was received. However, theε indifference zone would come into play
in MPHC and result in an action being assigned.

In terms of complexity, a rough comparison can be made between MPHC and non-
genetic programming based group techniques by examining the number ofÛ ’s that need
to be estimated. While the RLG approach does not explicitly estimate means, the nature
of the problem is similar since finding the best group requires an overall measure of group
performance. Consider a domain with one state and four agents, each with five actions
apiece. If all groups are generated, there are54-1=624 means to estimate. One the other
hand, if MPHC is used, there are 20 (4 x 5) means to estimate in stage one and24-1=15 in
stage two, for a total of 35. These numbers cannot be directly compared since the number of
samples required to perform the estimation may not be equal but there is a large difference.
However, the range in number of samples required should be similar since the task is the
same.

Complexity comparisons cannot be made between MPHC and RLI techniques since the
latter methods are not guaranteed to converge. Comparisons are also inappropriate in the
case of GP since their complexity is determined completely by how they are parameterized.

The theoretical performance of MPHC is hard to quantify. Decreased sample complexity
compared to complete grouping is bought by using local hill-climbing. This invalidates any
claims to global optimality. However, as compared to genetic programming, the proposed
approach has the advantage that it accounts for the multiagent credit assignment problem.
The actual ability of the technique to find useful coordination strategies must be empirically
verified using test domains.

4. Experimental Validation

The effectiveness of multiagent probabilistic hill-climbing was tested using four different
domains. Two of these, the symbol and predator and prey domains are highlighted below.

4.1. Symbol Domain

The symbol domain is a toy problem where a groups of agents learn which symbol to return
from its assigned set. Payoffs are based on the particular combination of symbols with all

166 F. HO AND M. KAMEL

agents receiving the same payoff. Consider four agents that have each been assigned five
contiguous letters from the alphabet. These assignments are shown in Table 1. The payoff

Table 1.Agents and their Symbol Assignments

Agent Symbols

1 {A B C D E}

2 {F G H I J}

3 {L M N O P}

4 {Q R S T U}

function maps triples of symbols to a scalar value. This mapping can be expressed inε
units given values forε and the maximum reward.

Since the symbol assignments are unique, the construction of a particular triple requires
the agents to cooperate. Beyond the need for cooperation, the payoff mapping also controls
the difficulty of the learning task. A symbols is used in more than one triple and thus there is
a probability that it will be part of someε-optimal triples. If the number ofε-optimal triples
is increased then the probability that any random symbol being a member of aε-optimal
triple also increases. This translates to a higher probability that the default actions will also
form aε-optimal triple.

The payoff distribution of the remaining non-optimal triples also affects the complexity
of the task. A distribution that has a peak in the number of 2ε triples poses a greater degree
of difficulty than one that is flat or one that has a peak at a higher multiple ofε. Triples that
are closer to beingε-optimal are harder to distinguish than those that are further away.

The symbol domain is the simplest form of the learning problem found in Section 2. Each
agent has only one state and a fixed number of actions, i.e. which symbol to return, that
it can execute. The domain is also deterministic when the payoff function is fixed. This
simplicity makes the domain useful for examining the performance of MPHC since any
complicating details have been omitted. In particular, the intermediate results of the stages
can be directly analyzed and the effectiveness of each stage determined.

Example histograms for the distributions of triples are shown in Figures 5 and 6. The units
along the x-axis are in terms ofε. For lack of better labels, the distributions are referred to
asD-1 andD-2, respectively. Since each of the four agents has been assigned five symbols,

there are a total of

(
4
3

)
54= 500 different triples. Of these, 4.2% are within oneε of the

best triple inD-1. This number drops to 1.8% in the case ofD-2. Note thatD-2 also has
a large number of within 2ε entries. As discussed, the skew makes the task of returning an
ε triple even more difficult. Results of experiments onD-1 andD-2 are shown in Tables
2 and 3, respectively. During the trials, the value ofN0 was varied to ascertain its effect.
The remaining parameters,ε1, ε2, δ1, δ2, andN1 were held constant at 0.2, 0.2, 0.025,
0.025 and 30. In the case ofN1, it was found that all trials used more than 30 samples
during stage two and thus it was not necessary to determine its effect. All default actions

LEARNING MULTIAGENT COORDINATION STRATEGIES 167

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

E from Best Utility

N
um

be
r

of
 In

st
an

ce
s

Figure 5.D-1 Distribution

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

E from Best Utility

N
um

be
r

of
 In

st
an

ce
s

Figure 6.D-2 Distribution

were assigned randomly. To reduce runtime, sample cutoffs of 5000 and 800 were placed
on stage one and two, respectively. If the algorithm did not return an answer by this time,
a failure was noted. For each distribution, experiments were also run using random and
round-robin sampling schemes forChoose-Action during stage one.

The first column of each table represents the test conditions in terms ofN0 and the
sampling method. Z stands for the Z-heuristic, while R and S denote random and round-
robin sampling, respectively. Random and round-robin sampling used aN0 value of 10.
Since neither scheme involved switching sampling methods,N0 was simply used to indicate
when the hill-climbing criterion should be checked. Recall that the Z-heuristic starts out

168 F. HO AND M. KAMEL

Table 2.Results forD-1

Parameters ε0 ε1 F1 F2 DNH1 DNH2

5/Z 4 9 0 3 (34/0) 0

10/Z 4 36 5 2 (3/0) 0

15/Z 7 38 3 2 0 0

10/R 1 12 35 2 0 0

10/S 2 16 17 4 (11/2) 0

with random sampling and then changes over to focussed sampling. In the case of random
and round-robin sampling, it always took much more than 10 samples to complete stage
one. Thus, the arbitrary value of 10 has no effect on the performance of these approaches.
The remainder of the table is organized as follows:

1. ε0: The number of trials that found the best triple.

2. ε1: The number of trials that found a triple that is withinε of the best.

3. Failed Stage 1: The number of trials that did not return anε0 or ε1 triple during stage
one.

4. Failed Stage 2: The number of trials that did not return eitherε0 or ε1 triple during
stage two.

5. D.N.H Stage 1: This item contains two entries. The first is the number of trials that
reached the first stage sample limit of 5000 without halting. Entry two is the number of
stage one D.N.H entries that would have resulted in a stage one failure if the algorithm
had returned the current best set as the final best triple.

6. D.N.H Stage 2: This item contains two entries. The first is the number of trials that
reached the second stage sample limit of 800 without halting. Entry two is the number of
stage two D.N.H entries that would have resulted in a stage two failure if the algorithm
had returned the current best triple as the actual one.

From the tables, it can be seen that MPHC is capable of returningε-optimal results, with
a good success rate, given parameters appropriate to the distribution. If the success rate is
computed by summing the number ofε0 andε1 entries, the best result is the case of 15/Z
on theD-1 distribution. However, its score of 90% fell short of the specified value of 95%.
Recall thatδ1 + δ2=0.05. This outcome underscores the heuristic nature of the approach.
Yet, simply summing theε0 andε1 entries underestimates the success rate due to theDNH
entries. For instance, an examination of the stage oneDNH’s, especially forD-1, indicates
that most of them would have return anε-optimal result if allowed to halt. This would lead
to moreε-optimal final results in the case of the other parameterizations. The validation of

LEARNING MULTIAGENT COORDINATION STRATEGIES 169

Table 3.Results forD-2

Parameters ε0 ε1 F1 F2 DNH1 DNH2

5/Z 8 10 2 3 (27/5) 0

10/Z 13 27 0 6 (4/3) 3

15/Z 8 22 5 7 (8/8) 0

10/R 0 4 45 1 0 0

10/S 1 14 22 1 12 0

this hypothesis was pragmatically beyond the computational capabilities of the Sparcstation
IPX used in these experiments.

The large number ofDNH1 entries, particularly for small values ofN0, is an artifact of
the Z-heuristic. One problem is that it tends to spend most of its time sampling the best
triple. This is exacerbated by distributions where a few triples are much better than the
others. Confidence in the utility estimates, and hence error, is a function of the number of
samples. Given that most of the samples are concentrated on one triple, the incremental
error reduction per sample is low. IncreasingN0 forces the procedure to sample each triple
at least a fixed number of times.

4.2. Predator and Prey

The object of the predator and prey domain is for four predators to capture a prey within
a 30 by 30 toroidal grid world. Diagonal moves are not allowed and capture occurs when
the four agents are directly adjacent and orthogonal to the prey. At each time step, the prey
has a 90% change of moving; thus, making the predators faster than the prey. The prey
is controlled by a simple strategy that moves it away from the closest predator. All ties
are arbitrarily broken. Predators have a choice of moving in one of the four orthogonal
directions or staying put.

Collisions occur when two predators try to occupy the same square. In this case, the
predators remain in their previous positions. However, if a predator does not move then it
can be pushed by another predator. This can happen when a predator decides not to move
or if its chosen move results in a collision. Predators cannot push the prey.

Using the simple architecture from Section 2, predators are controlled by a strategy based
on the relative direction of the prey with respect to a predator. Thus there is a state for
each of the eight compass directions, (N, S, E, W, NW, SW, NE, SE). Associated with
each state are five potential actions, (north, west, south, east, hold). Since the grid world
is toroidal and there is no explicit representation for distances, the relative direction of the
prey that minimizes the distance between prey and predator is the one returned. Although
this representation is simple, it is capable of encoding similar strategies to those found in
(Haynes, et al., 1996). Following (Haynes, et al., 1996), experiments used the following
payoff scheme:

170 F. HO AND M. KAMEL

1. After each move, each predator receives a value of 1
distance−to−prey . This encourages

the predators to stay close to the prey.

2. At the end of the simulation, every predator that is orthogonally adjacent to the prey,
receives a reward of the total number of moves allowed. This biases the mappings
towards those that bring the predators next to the prey.

3. If the predators capture the prey then all predators are given a value of four times the
maximum number of moves allowed in addition to any other reinforcement received.
Clearly this favors mappings that aid in capture.

As in the case of (Haynes, et al., 1996), the initial locations of the predators were random
with the prey being centered in the grid. The movement of the prey was synchronized with
that of the predators. The maximum number of moves was set at 100. A trial ends when
either this number is exceeded or if the prey is captured.

Experiments were performed using the same procedure as in (Haynes, et al., 1996) where
learning used 100 moves while test runs allowed 200 moves for capture. Results for
two different GP approaches and MPHC are shown in Table 4. In all cases, 100 trials
were performed and the number of captures and the average number of steps to capture
are reported. STGP (Haynes & Sen, 1995) andA1 (Haynes, et al., 1996) are both GP

Table 4.Predator and Prey Results

Algorithm Captures Avg. Moves

STGP 26 79.9

A1 0 200

MPHC-N 97 71.9

MPHC-R 100 72

approaches that differ in thatSTGP learns a single strategy that is used by all predators.
Thus, there is an implicit form of communication between the predators and all predators
are assumed to be homogeneous.A1 is the grouped methodology referred to in Section 2.1.
Note that the results for the trials are not those reported in (Haynes, et al., 1996). Rather,
new simulations were performed using the coordination strategies that were described. This
allowed the methods to be compared using the same test cases.

The first MPHC trial started off with a default mapping that had all the predators go
north regardless of the relative position of the prey. On the other hand, MPHC-R had a
random default mapping. The MPHC trials were parameterized as follows:ε=4 (for both
stages),N0=50, andδ=0.4. Since there are eight states and four agents, the total number
of hill-climbing steps was bounded by 32. The resultingδ was evenly allocated over both
stages.

MPHC performed better thanSTGP, both in terms of the number of captures, and the
average number of steps to capture. This is surprising given the implicit communication

LEARNING MULTIAGENT COORDINATION STRATEGIES 171

between predators. TheA1 strategy failed to capture the prey during all trials, reaching
the cutoff limit of 200 moves. This is in line with results reported in (Haynes, et al., 1996)
where the average number of captures was 0.115 out of 30 test cases over 26 trials. The
average path length of 200 forA1 was included to indicate that it failed to capture. From
the table, it can be seen that the average solution lengths for all strategies are similar.

In terms of sample complexity, MPHC-R required 170988 samples to terminate. The
experimental setup forSTGP is unknown butA1 used a population size of 600 for 1000
generations (Haynes, et al., 1996). This implies 600000 samples. However, direct compar-
isons between these results are not very meaningful since the numbers for PHC are based
on random default strategies while those forA1 are arbitrary.

It is also interesting to compare the strategies generated by genetic programming to those
produced by probabilistic hill-climbing. A visualization of the strategies is shown in Figures
7 to 10.P indicates the prey and the arrows indicate the direction that a predator would move
given its current relative position to the prey. For instance, in theSTGP strategy, if the prey
is to the east of a predator then the predator will always move east. The perturbations at the
edges ofSTGP andA1 strategies are probably the result of the low level representation
used in GP. They were reproduced in the runs.

P

Figure 7. STGP Strategy

The strategies generated byMPHC-N are similar to those ofSTGP except that they
exhibit a higher degree of specialization. Predator 1 only approaches from the south.
Predator 2 only approaches from the east. Predator 3 approaches from the north, south,
and west; while predator 4 approaches again, only from the north. The best results are for
MPHC-R, which also shows specialization, except for the case of predator 2. From Figure
10 it can be seen that this predator does not approach the prey at all. An examination of the
pursuit paths suggests that predator 2 is “luring” the prey by staying on the diagonal before
finally moving into position. This exploits the prey’s weakness in that it moves away from
the closest predator. Since Manhattan distances are computed, predators on diagonals seem
farther away. The combination of strategies produce the pre-capture configuration is shown
in Figure 11. Given that predators 1, 3, and 4 are all one unit away from the prey, it can
only move south. However, predator 2 also wants to move into the same square and thus

172 F. HO AND M. KAMEL

P P

Agent 1 Agent 2

P P

Agent 3 Agent 4

Figure 8. Strategies forA1

LEARNING MULTIAGENT COORDINATION STRATEGIES 173

P P

Agent 1 Agent 2

P P

Agent 3 Agent 4

Figure 9. Strategies forMPHC-N

174 F. HO AND M. KAMEL

P P

Agent 1 Agent 2

P P

Agent 3 Agent 4

Figure 10.Strategies forMPHC-R

LEARNING MULTIAGENT COORDINATION STRATEGIES 175

1

2

4

3

Figure 11.Before Capture

the agents stay in position. The deadlock is broken by the fact that the predators are faster
than the prey. Eventually, the 10% probability that the prey will not moved is realized and
predator 2 finally moves into position.

4.3. Analysis of Intermediate Results

Examining the intermediate steps between hill-climbs uncovers aspects of the system’s
behavior that cannot be seen from looking at the final results. For instance, is the multiagent
credit assignment a problem in this domain? If so, this may explain the poor performance of
A1 since it uses grouped learning. Within probabilistic hill-climbing, the credit assignment
problem can be seen by comparing the intermediate results of a sequence of climbs. Abusing
notation, let the predators return the followingA∗’s, {A∗1=A, A∗2=B, A∗3=C, A∗4=D}, after
stage one. Here the indices represent the predator. Stage two then returns{A∗1=A,A∗3=C}
as the interacting subset with the largest expected payoff. At a later point, let stage two
return the group,{A∗2=K ,A∗4=L}. A multiagent credit assignment problem would have
occured if predator 2 had committed to it’sA∗ during the previous step.

During the experiments, the multiagent credit assignment problem was observed in several
instances. For example, during the MPHC-N trial, predator 1 returned an assignment that
changed the strategy for the southwest direction during stage one. This change was “filtered
out” by stage two. Individually, the∆-utility of this assignment was -8.47. Four climb steps
later, a change in the southwest direction was again returned in stage one. This change was
accepted. The action assignment would not have been available if the initial “southwest”
assignment had been implemented. Since the problem cropped up using the all north initial
condition, it was decided to rerun the experiment without stage two while using the same
δ1 value. The resulting strategy had a capture rate of only 51% in an average capture time
of 78.5 steps.

176 F. HO AND M. KAMEL

5. Summary and Conclusions

This paper has presented a novel solution to the problem of learning coordination strategies
for multiagent systems. Compared to existing techniques, multiagent probabilistic hill-
climbing has advantages in terms of convergence, complexity and in performance.

1. Convergence
Unlike some of the previous approaches, multiagent probabilistic hill-climbing is guar-
anteed to converge and to return a solution. This is done using a well-founded rather
than ad-hoc termination criteria.

2. Complexity
Unlike completely grouped techniques that are also guaranteed to converge, MPHC
uses a mixture of independent and group learning. This reduces sample complexity but
at the potential cost of performance.

3. Performance
Although MPHC sacrifices optimality for reduced complexity, it has been empirically
shown to produce better results than genetic programming on the well-studied predator
and prey domain. In the symbol domain, the approach was able to returnε-optimal
results with a high success rate given the appropriate parameters.

In summary, MPHC combines features of both independent and grouped approaches to
learning multiagent coordination strategies. The key is a probabilistic criteria that ensures
the convergence of independent learning and that allows for the quantification of beneficial
interactions in the joint action assignments.

Currently, work is being performed to determine the effect of adding an additional predator
to the predator and prey domain1 In particular, the ability of the approach to incrementally
deal with the presence of the new agent, without resorting to complete re-learning, is being
examined.

Notes

1. Suggested by Prof. M. Huhns, 1997.

References

Berry, D. & Fristedt, B. (1985). Bandit Problems: Sequential Allocation of Experiments. London: Chapman and
Hall.

Cammarata, S., McArthur, D. & Steeb, R. (1983). Strategies of Cooperation in Distributed Problem Solving.
Proceedings of IJCAI-83(pp. 767-770). Karlsruhe, FDR: William Kaufmann.

Chien, S., Gratch, J. & Burl, M. (1995). On the Efficient Allocation of Resources for Hypothesis Evaluation: A
Statistical Approach.IEEE Transactions on PAMI, 17(7), 652-665.

Dowell, M. L. & Stephens, L. (1996). Mage: Additions to the AGE Algorithm for Learning in Multiagent Systems.
unpublished manuscript.

Durfee, E., Lesser, V. & Corkill, D. (1987). Coherent Cooperation Among Communicating Problem Solvers.
IEEE Transactions on Computers, 36, 1275-1291.

Durfee, E., H. (1988).Coordination of Distributed Problem Solvers. Boston: Kluwer Academic.

LEARNING MULTIAGENT COORDINATION STRATEGIES 177

Fong, W. L. (1995). A Quantitative Study of Hypothesis Selection.Proceedings of ML-95(pp. 226-234) Morgan
Kaufmann.

Findler, N. V. & Lo, R. (1986). An Examination of Distributed Planning in the World of Air Traffic Control.
Journal of Parallel and Distributed Computing, 3, 411-431.

Gratch, J. (1993). Composer: A Decision-theoretic Approach to Adaptive Problem Solving. UIUCDCS-R-93-
1806. University of Illinois at Urbana-Champaign.

Grefenstette, J. (1992). The evolution of strategies for multi-agent environments.Adaptive Behavior, 1, 65-90.
Greiner, R. (1996). PALO: a probabilistic hill-climbing algorithm.Artificial Intelligence, 84, 177-208.
Haynes, T. & Sen, S. (1995). Evolving behavioral strategies in predators and prey. In S. Sen (Ed),Working notes

of the Adaptation and Learning in Multiagent Systems Workshop, ICJAI-95.
Haynes, T., Sen, S., Schoenefeld, D. & Wainwright, R. (1996). Evolving a Team.AAAI Fall Symposium on

Genetic Programming.
Haynes, T. & Sen. S. (1996). Learning Cases to Resolve Conflicts and Improve Group Behavior.Working Notes

of the AAAI Agent Modeling Workshop.
Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random Variables.American Statistical

Association Journal, 13-30.
Ishida, T. (1994).Parallel, distributed, and multiagent production systems. Berlin: Springer-Verlag.
Jennings, N. R. (1996). Coordination Techniques for Distributed Artificial Intelligence. In G. M. P. O’Hare & N.

R. Jennings (Eds.),Foundations of Distributed Artificial Intelligence. New York, NY: John Wiley.
Kaelbling, L. P. (1993).Learning in Embedded Systems. Cambridge, MA.: MIT Press.
Kamel, M.& Syed, A. (1994). A multiagent task planning method for agents with disparate capabilities.Journal

of Advanced Manufacturing Technology, 9, 408-420.
Kirkpatrick, E. (1974).Introductory Statistics and Probability for Engineering, Science and Technology. Engle-

wood Cliffs, NJ: Prentice-Hall.
Mataric, M. (1995). Designing and Understanding Adaptive Group Behavior.Adaptive Behavior, 4, 51-80.
Newell, A. & Steier, D. (1993). Intelligent control of external software systems.Artificial Intelligence in Engi-

neering, 8, 3-21.
Parker, L. (1995). L-ALLIANCE: A Mechanism for Adaptive Action Selection in Heterogeneous Multi-Robot

Teams. ORNL/TM-13000, Oak Ridge National Labs.
Rivest, R. L. & Yin, Q. (1994). Simulation Results for a New Two-armed Bandit Heuristic. In S. J. Hanson,

G. A. Drastal & R. L. Rivest (Eds.),Computational Learning Theory and Natural Learning Systems Vol. 1:
Constraints and Prospects. Cambridge, MA.: MIT Press.

Sandholm, T. & Crites, R., H. (1995). Multiagent Reinforcement Learning in the Iterated Prisoner’s Dilemma.
Biosystems: Special Issue on the Prisoner’s Dilemma.

Sen, S., Sekaran, M. & Hale, J. (1994). Learning to coordinate without sharing information.Proceedings of
AAAI-94(pp. 426-431). Seattle, WA: AAAI Press.

Sen, S. & Sekaran, M. (1995). Multiagent coordination with learning classifier system.Working Notes of
Adaptation and Learning in Multiagent Systems Workshop, ICJAI-95.

Tennenholtz, M. (1995). On computational social laws for dynamic non-homogeneous social structures.J. Expt.
Theor. Artif. Intell., 7, 379-390.

Weiß, G. (1993). Learning to Coordinate Actions in Multi-agent Systems.Proceedings of IJCAI-93(pp. 311-316).
Chambéry France: Morgan Kaufmann.

Received February 5, 1997
Accepted April 23, 1998
Final Manuscript April 10, 1998

