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Abstract

Decision makers, such as doctors and judges,
make crucial decisions such as recommending
treatments to patients, and granting bail to de-
fendants on a daily basis. Such decisions typi-
cally involve weighing the potential benefits of
taking an action against the costs involved. In
this work, we aim to automate this task of learn-
ing cost-effective, interpretable and actionable
treatment regimes. We formulate this as a prob-
lem of learning a decision list – a sequence of
if-then-else rules – that maps characteristics of
subjects (eg., diagnostic test results of patients)
to treatments. This yields an end-to-end individ-
ualized policy for tests and treatments. We pro-
pose a novel objective to construct a decision list
which maximizes outcomes for the population,
and minimizes overall costs. Since we do not
observe the outcomes corresponding to counter-
factual scenarios, we use techniques from causal
inference literature to infer them. We model the
problem of learning the decision list as a Markov
Decision Process (MDP) and employ a variant
of the Upper Confidence Bound for Trees (UCT)
strategy which leverages customized checks for
pruning the search space effectively. Experimen-
tal results on real world observational data cap-
turing judicial bail decisions and treatment rec-
ommendations for asthma patients demonstrate
the effectiveness of our approach.

1 Introduction
Medical and judicial decisions can be complex: they in-
volve careful assessment of the subject’s condition, analyz-
ing the costs associated with the possible actions, and the
nature of the consequent outcomes. Further, there might be
costs associated with the assessment of the subject’s condi-
tion itself (e.g., physical pain endured and monetary costs
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If Spiro-Test=Pos and Prev-Asthma=Yes and Cough=High then C

Else if Spiro-Test=Pos and Prev-Asthma =No then Q

Else if Short-Breath =Yes and Gender=F and Age≥ 40 and Prev-Asthma=Yes then C

Else if Peak-Flow=Yes and Prev-RespIssue=No and Wheezing =Yes, then Q

Else if Chest-Pain=Yes and Prev-RespIssue =Yes and Methacholine =Pos then C

Else Q

Figure 1: Regime for treatment recommendations for
asthma patients output by our framework; Q refers to
milder forms of treatment used for quick-relief, and C
corresponds to more intense treatments such as controller
drugs (C is higher cost than Q); Attributes in blue are least
expensive.

of medical tests etc.). For instance, a doctor first diagnoses
the patient’s condition by studying the patient’s medical
history and ordering a set of relevant tests that are cru-
cial to the diagnosis. In doing so, she also factors in the
physical, mental, and monetary costs incurred due to each
of these tests. Based on the test results, she carefully de-
liberates various treatment options, analyzes the potential
side-effects as well as the effectiveness of each of these op-
tions. Analogously, a judge deciding if a defendant should
be granted bail studies the criminal records of the defen-
dant, and enquires for additional information (e.g., defen-
dant’s socio-economic status) if needed. She then recom-
mends a course of action that trades off the risk with grant-
ing bail to the defendant (the defendant may commit a new
crime when out on bail) with the cost of denying bail (ad-
verse effects on defendant or defendant’s family, cost of jail
to the county).

In practical situations, human decision makers often lever-
age personal experience to make decisions, without consid-
ering data, even if massive amounts of it exist for the prob-
lem at hand. There exist domains where machine learn-
ing models could potentially help – but they would need to
consider all three aspects discussed above: predictions of
counterfactuals, costs of gathering information, and costs
of treatments. Further, these models must be interpretable
in order to create any reasonable chance of a human deci-
sion maker actually using them. In this work, we address
the problem of learning such cost-effective, interpretable
treatment regimes from observational data.
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Prior research addresses various aspects of the problem at
hand in isolation. For instance, there exists a large body
of literature on estimating treatment effects (namely the
causal inference literature), recommending optimal treat-
ments (see, e.g., [1, 33, 7]), and learning intelligible mod-
els for prediction (e.g., [18, 15, 21, 4]). However, an ef-
fective solution for the problem at hand should ideally in-
corporate all of the aforementioned aspects. Furthermore,
existing solutions for learning treatment regimes neither ac-
count for the costs associated with gathering the required
information, nor the treatment costs. The goal of this work
is to propose a framework which jointly addresses all of the
aforementioned aspects.

We address the problem at hand by formulating it as a task
of learning a decision list that maps subject characteristics
to tests and treatments (such as the one shown in Figure 1)
such that it: 1) maximizes the expectation of a pre-specified
outcome when used to assign treatments to a population of
interest 2) minimizes costs associated with assessing sub-
jects’ conditions and 3) minimizes costs associated with the
treatments themselves. Note that for each subject in our
data, we observe only the outcome for the treatment as-
signed to that subject, not the counterfactual. We use the
doubly robust estimation technique to infer the counter-
factuals. We chose decision lists to express the treatment
regime because they are interpretable, and allow for tests
to be performed sequentially. We propose a novel objective
function to learn a decision list optimized with respect to
the criteria discussed above. We prove that the proposed
objective is NP-hard by reducing it to the weighted exact
cover problem. We then optimize this objective by model-
ing it as a Markov Decision Process (MDP) and employing
a variant of the Upper Confidence Bound for Trees (UCT)
strategy which leverages customized checks for pruning the
search space effectively.

We empirically evaluate the proposed framework on two
real world datasets: 1) judicial bail decisions 2) treatment
recommendations for asthma patients. Our results demon-
strate that the regimes output by our framework result in
improved outcomes compared to state-of-the-art baselines
at much lower costs. The treatment regimes we found are
not complicated and require few diagnostic checks to de-
termine the optimal treatment.

2 Related Work
Below, we provide an overview of related research on
learning treatment regimes, subgroup analysis, and inter-
pretable models.

Treatment Regimes. The problem of learning treat-
ment regimes has been extensively studied in the con-
text of medicine and health care. Along the lines of
[39], literature on treatment regimes can be categorized as:
regression-based methods and policy-search-based meth-

ods. Regression-based methods [27, 31, 28, 32, 43, 27, 25]
model the conditional distribution of the outcomes given
the treatment and characteristics of patients and choose the
treatment resulting in the best possible outcome for each in-
dividual. Policy-search-based methods [28, 42, 41, 38, 39]
search for a policy (a function which assigns treatments to
individuals) within a pre-specified class of policies such
that the resulting expected outcome is maximized across
the population of interest. Furthermore, recent research
in personalized medicine has also focused on develop-
ing dynamic treatment regimes [14, 40, 33, 7] where the
goal is to learn treatment regimes that maximize outcomes
for patients in a given population by recommending a se-
quence of appropriate treatments over time, based on the
state of the patient. Very few of the aforementioned so-
lutions [39, 24, 40] produce regimes that are intelligible.
None of the aforementioned approaches explicitly account
for treatment costs and costs associated with gathering in-
formation pertaining to patient characteristics.

While most work on learning treatment regimes has been
done in the context of medicine, the same ideas apply to
policies in other fields. To the best of our knowledge, this
work is the first attempt in extending work on treatment
regimes to judicial bail decisions.

Subgroup Analysis. The goal of this line of research is
to find out whether there exist subgroups of individuals in
which a given treatment exhibits heterogeneous effects, and
if so, how the treatment effect varies across them. This
problem has been well studied [30, 8, 19, 3, 9, 34]. How-
ever, identifying subgroups with heterogeneous treatment
effects does not readily provide us with regimes.

Interpretable Models. A large body of machine learning
literature focuses on developing interpretable models for
classification [18, 35, 15, 21, 4] and clustering [11, 17, 16].
To this end, various classes of models such as decision
lists [18], decision sets [15, 36], prototype (case) based
models [4], and generalized additive models [21] were
proposed. These classes of models were not conceived
to model treatment effects. There has been recent work
on leveraging decision lists to describe estimated treat-
ment regimes [34, 24, 13, 39]. These solutions do not ac-
count for the treatment costs or costs involved in gather-
ing patient characteristics. Several of these techniques use
greedy methods, which causes issues with the quality of
the models. Lastly, there has also been some work on cost-
sensitive learning of classification models such as decision
trees [20, 10]. This is, however, not applicable to the prob-
lem at hand because it does not model treatment effects.

3 Our Framework
First, we formalize the notion of treatment regimes and dis-
cuss how to represent them as decision lists. We then pro-
pose an objective function for constructing cost-effective
and interpretable treatment regimes.
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3.1 Input Data and Cost Functions

Consider a dataset D = {(x1, a1, y1), (x2, a2, y2) · · ·
(xN , aN , yN )} comprised of N independent and identi-
cally distributed observations, each of which corresponds
to a subject (individual), potentially from an observa-
tional study. Let F = {f1, f2 · · · fp} denote the set
of all the characteristics in D. Consequently, xi =[
x
(1)
i , x

(2)
i , · · ·x(p)i

]
∈ [V1,V2, · · · Vp] is a vector capturing

the values assumed by subject i for each of the characteris-
tics in F . Vq denotes the set of all possible values that the
characteristic fq can take. In the medical setting, example
characteristics include patient’s age, BMI, gender, glucose
level etc. Let A denote the set of all possible treatments.
ai ∈ A and yi ∈ R represent the treatment assigned to
subject i and the corresponding outcome respectively. We
assume that yi is defined such that higher values indicate
better outcomes. For example, the outcome of a patient can
be regarded as a wellness improvement score that indicates
the effectiveness of the assigned treatment.

It can be much more expensive to determine certain subject
characteristics compared to others. For instance, a patient’s
age can be easily retrieved either from previous records or
by asking the patient. On the other hand, determining her
glucose level requires more comprehensive testing, and is
therefore more expensive in terms of monetary costs, time
and effort required both from the patient as well as the clin-
icians. We assume access to a function d : F → R which
returns the cost of determining any characteristic in F (as-
sessment cost). The cost associated with a given character-
istic f ∈ F is assumed to be the same for all the subjects
in the population, though the framework can be extended
to have patient-specific costs. Analogously, each treatment
a ∈ A incurs a cost (treatment cost) and we assume access
to a function d′ : A → R that returns the cost associated
with treatment a ∈ A.

3.2 Treatment Regimes

A treatment regime is a function that takes as input the
characteristics of any given subject x and maps them to
an appropriate treatment a ∈ A. As discussed, prior
studies [29, 23] suggest that decision makers such as doc-
tors and judges who make high stake decisions are more
likely to trust, and, therefore employ models that are inter-
pretable. We thus employ decision lists to express treat-
ment regimes (see example in Figure 1). A decision list
is an ordered list of rules embedded within an if-then-else
structure. A treatment regime1 expressed as a decision list
π is a sequence of L + 1 rules [r1, r2, · · · , rL+1]. The
last one, rL+1, is a default rule which applies to all those
subjects who do not satisfy any of the previous L rules.

1We use the terms decision list and treatment regime inter-
changeably from here on.

Each rule rj (except the default rule) is a tuple of the form
(cj , aj) where aj ∈ A, and cj represents a pattern which
is a conjunction of one or more predicates. Each predicate
takes the form (f, o, v) where f ∈ F , o ∈ {=, 6=,≤,≥
, <,>}, and v denotes some value that can be assumed by
the characteristic f . Example of such a pattern is “Age ≥
40 ∧ Gender=Female”. A subject i is said to satisfy rule
j if his/her characteristics xi satisfy all the predicates in
cj . Let us formally denote this using an indicator function,
satisfy(xi, cj) which returns a 1 if xi satisfies cj and 0 oth-
erwise.

The rules in π partition the dataset D into L + 1 groups:
{R1,R2 · · ·RL,Rdefault}. A group Rj , where j ∈
{1, 2, · · ·L}, is comprised of those subjects that satisfy cj
but do not satisfy any of c1, c2, · · · cj−1:

Rj =

{
x ∈ [V1 · · · Vp] | satisfy(x, cj} ∧

j−1∧
t=1

¬ satisfy(x, ct)

}
.

(1)

The treatment assigned to each subject by π is determined
by the group that he/she belongs to. For instance, if subject
i with characteristics xi belongs to group Rj induced by
π i.e., xi ∈ Rj , then subject i will be assigned the corre-
sponding treatment aj under regime π i.e., π(xi) = aj .

Similarly, the cost incurred when we assign a treatment to
the subject i (treatment cost) according to regime π is:

φ(xi) = d′(π(xi)) (2)

where the function d′, defined in Section 3.1, takes as input
a treatment a ∈ A and returns its cost.

We can also define the cost incurred in assessing the con-
dition of a subject i (assessment cost) as per the regime π.
Recall that a subject i belongs to the group Rj if and only
if the subject does not satisfy the conditions c1 · · · cj−1, but
satisfies the condition cj (Refer Eqn. 1). To reach this con-
clusion, all the characteristics present in the corresponding
antecedents c1 · · · cj must have been measured for subject i
and evaluated against the appropriate predicate conditions.
This implies that the assessment cost incurred for this sub-
ject i is the sum of the costs of all the characteristics that
appear in c1 · · · cj . If Nl denotes the set of all the charac-
teristics that appear in c1 · · · cl, the assessment cost of the
subject i as per the regime π can be written as:

ψ(xi) =
L∑
l=1

[
1(xi ∈ Rl)×

(∑
e∈Nl

d(e)

)]
. (3)

where 1 denotes an indicator function that returns 1 if the
condition within the brackets is true and 0 otherwise.

3.3 Objective Function

We now formulate the objective function for learning a
cost-effective treatment regime. We first formalize the no-
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tions of expected outcome, assessment, and treatment costs
of a treatment regime π with respect to the dataset D.

Expected Outcome Recall that the treatment regime π
assigns a subject i with characteristics xi to a treatment
π(xi). The quality of regime π is partly determined by
the expected outcome when all the subjects in D are as-
signed treatments according to regime π. The higher the
value of such an expected outcome, the better the quality
of π. There is, however, one caveat to computing the value
of this expected outcome – we only observe the outcome yi
resulting from assigning xi to ai in the data D, and not any
of the counterfactuals. If the regime π assigns a different
treatment a′ 6= ai to xi, we cannot readily determine the
corresponding outcome from the data.

The solutions proposed to compute expected outcomes in
settings such as ours can be categorized as: adjustment
by regression modeling, adjustment by inverse propensity
score weighting, and doubly robust estimation. A de-
tailed treatment of each of these approaches is presented
by Lunceford et al. [22]. The success of regression-based
modeling and inverse weighting depends heavily on the
postulated regression model and the postulated propensity
score model respectively. In either case, if the postulated
models are not identical to the true models, we have biased
(inconsistent) estimates of the expected outcome. On the
other hand, doubly robust estimation combines the above
approaches in such a way that the estimated value of the
expected outcome is unbiased as long as one of the postu-
lated models is identical to the true model and there are no
unmeasured confounders. The doubly robust estimator for
the expected outcome of regime π, denoted by g1(π), can
be written as:

g1(π) =
1

N

N∑
i=1

∑
a∈A

o(i, a), where (4)

o(i, a) =[
1(ai = a)

ω̂(xi, a)
(yi − ŷ(xi, a)) + ŷ(xi, a)

]
1(π(xi) = a).

ω̂(xi, a) denotes the probability that the subject iwith char-
acteristics xi is assigned to treatment a in the data D. ω̂
represents the propensity score model. In practice, we fit
a multinomial logistic regression model on D to learn this
function. Similarly, ŷ(xi, a) denotes the predicted outcome
when a subject characterized by xi is assigned to a treat-
ment a. ŷ is learned in our experiments by fitting a linear
regression model onD prior to optimizing for the treatment
regime. Note that our framework does not impose any con-
straints on the functional forms of ŷ and ω̂ i.e., ŷ and ω̂
could be modeled using any suitable technique.

Expected Assessment Cost Recall that there are assess-
ment costs associated with each subject. These costs are

governed by the characteristics that will be used in assess-
ing the subject’s condition and recommending a treatment.
The assessment cost of a subject i treated using the regime
π is given in Eqn. 3. The expected assessment cost across
the entire population can be computed as:

g2(π) =
1

N

N∑
i=1

ψ(xi). (5)

It is important to ensure that our learning process favors
regimes with smaller values of expected assessment cost.
Keeping this cost low also ensures that the learned decision
list is sparse, which assists with interpretability.

Expected Treatment Cost The treatment cost for a sub-
ject i who is assigned treatment using a regime π is given
in Eqn. 2. The expected treatment cost across the entire
population can be computed as:

g3(π) =
1

N

N∑
i=1

φ(xi). (6)

The smaller the expected treatment cost of the regime, the
more desirable it is in practice. We present the complete
objective function below.

Complete Objective We assume access to the follow-
ing inputs: 1) the observational data D; 2) a set FP of
frequently occurring patterns in D. Recall that each pat-
tern corresponds to a conjunction of one or more pred-
icates. An example of such a pattern is “Age ≥ 40 ∧
Gender=Female”. In practice, such patterns can be ob-
tained by running a frequent pattern mining algorithm such
as Apriori [2] on the set D; 3) a set of all possible treat-
ments A.

We define the set of all possible (pattern, treatment) tuples
as L = {(c, a) |c ∈ FP, a ∈ A}, and C(L) as the set of
the permutations of all possible subsets (excluding the null
set) of L. An element in L can be thought of as a rule in
a decision list and an element in C(L) can be thought of
as a list of rules in a decision list (without the default rule).
We then search over all elements in the set C(L) × A to
find a regime that maximizes the expected outcome (Eqn.
4) while minimizing the expected assessment (Eqn. 5), and
treatment costs (Eqn. 6) all of which are computed over D.
Our objective function can be formally written as:

argmax
π∈C(L)×A

λ1g1(π)− λ2g2(π)− λ3g3(π) (7)

where g1, g2, g3 are defined in Eqns. 4, 5, 6 respectively,
and λ1 and λ2 are non-negative weights that scale the rela-
tive influence of the terms in the objective.

Theorem 1 The objective function in Eqn. 7 is NP-hard.
(Please see appendix for details.)
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Figure 2: Sample Observational Data and the correspond-
ing Markov Decision Process Representation

Note that NP-hardness is a worst case categorization only;
with an efficient search procedure, it is practical to obtain a
good approximation on most reasonably-sized datasets.

3.4 Optimizing the Objective

We optimize our objective by modeling it as as a Markov
Decision Process (MDP) and then employing Upper Con-
fidence Bound on Trees (UCT) algorithm to find a treat-
ment regime which maximizes Eqn. 7. We also propose
and leverage customized checks for guiding the exploration
of the UCT algorithm and pruning the search space effec-
tively.

Markov Decision Process Formulation. Our goal is to
find a sequence of rules that maximize the objective func-
tion in Eqn. 7. To this end, we formulate a fully observable
MDP such that the optimal policy of the posited formula-
tion provides a solution to our optimization problem.

A fully observable MDP is characterized by a tuple
(S,A,T,R) where S denotes the set of all possible states,
A denotes the set of all possible actions, T and R represent
the transition and reward functions respectively. Below we
define each of these in the context of our problem. Figure
2 shows a snapshot of the state space and transitions for a
small dataset.

State Space. Conceptually, each state in our state space
captures the effect of some partial or fully constructed de-
cision list. To illustrate, let us consider a partial decision list
with just one rule “if Age ≥ 40 ∧ Gender = Female, then
T1”. This partial list enforces that: (i) all those subjects
that satisfy the condition of the rule are assigned treatment
T1, and (ii) age and gender characteristics will be required
in determining treatments for all the subjects in the popula-
tion.

To capture such information, we represent a state s̃ ∈ S by
a list of tuples [(τ 1(s̃), σ1(s̃)), · · · (τN (s̃), σN (s̃))] where
each tuple corresponds to a subject in D. τ i(s̃) is a bi-
nary vector of length p defined such that τ (j)i (s̃) = 1 if the
characteristic j will be required for determining subject i’s

treatment in state s̃, and 0 otherwise. Further, σi(s̃) cap-
tures the treatment assigned to subject i in state s̃. If no
treatment has been assigned to i, then σi(s̃) = 0.

Note that we have a single start state s̃0 which corresponds
to an empty decision list. τ i(s̃0) is a vector of 0s, and
σi(s̃0) = 0 for all subjects i in D indicating that no treat-
ments have been assigned to any subject, and no charac-
teristics were deemed as requirements for assigning treat-
ments. Furthermore, a state s̃ is regarded as a terminal state
if for all i, σi(s̃) is non-zero indicating that treatments have
been assigned to all the subjects.

Actions. Each action can take one of the following forms:
1) a rule r ∈ L, which is a tuple of the form (pattern, treat-
ment). Eg., (Age≥40 ∧ Gender=Female, T1). This spec-
ifies that subjects who obey conditions in the pattern are
prescribed the corresponding treatment. Such action leads
to a non-terminal state. 2) a treatment a ∈ A, which corre-
sponds to the default rule leading to a terminal state.

Transition and Reward Functions. We have a determinis-
tic transition function which ensures that taking an action
ã = (c̃, t̃) from state s̃ will always lead deterministically to
a state s̃′. Let U denote the set of all those subjects i for
which treatments have already been assigned in state s̃ i.e.,
σi(s̃) 6= 0 and let U c denote the set of all those subjects
who have not been assigned treatment in the state s̃. Let U ′

denote the set of all those subjects i that do not belong to
the set U and that satisfy the condition c̃ of action ã. Let
Q denote the set of all those characteristics in F that are
present in the condition c̃ of action ã. If action ã corre-
sponds to a default rule, then Q = ∅ and U ′ = U c. With
this notation in place, the new state s̃′ can be characterized
as follows: 1) τ (j)i (s̃′) = τ

(j)
i (s̃) and σi(s̃′) = σi(s̃) for all

i ∈ U , j ∈ F ; 2) τ (j)i (s̃′) = 1 for all i ∈ U c, j ∈ Q; 3)
σi(s̃

′) = t̃ for all i ∈ U ′.

The immediate reward obtained when we reach s̃′ by taking
action ã = (c̃, t̃) from the state s̃ can be written as:

λ1
N

∑
i∈U ′

o(i, t̃)− λ2
N

∑
i∈Uc,j∈Q

d(j)− λ3
N

∑
i∈U ′

d′(t̃)

where o is defined in Eqn. 4, d and d′ are cost functions
for characteristics and treatments respectively (see Section
3.1).

UCT with Customized Pruning. The basic idea behind
the Upper Confidence Bound on Trees (UCT) [12] algo-
rithm is to iteratively construct a search tree for some pre-
determined number of iterations. At the end of this proce-
dure, the best performing policy or sequence of actions is
returned as the output. Each node in the search tree corre-
sponds to a state in the MDP state space and the links in
the tree correspond to the actions. UCT employs the UCB-
1 metric [6] for navigating through the search space.

We employ a UCT-based algorithm for finding the optimal
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Bail Dataset Asthma Dataset

# of Data Points 86152 60048

Characteristics & Costs age, gender, previous offenses, prior arrests, age, gender, BMI, BP, short breath, temperature,
current charge, SSN (cost = 1) cough, chest pain, wheezing, past allergies, asthma history,

family history, has insurance (cost 1)
marital status, kids, owns house, pays rent peak flow test (cost = 2)

addresses in past years (cost = 2)
spirometry test (cost = 4)

mental illness, drug tests (cost = 6) methacholine test (cost = 6)

Treatments & Costs release on personal recognizance (cost = 20) quick relief (cost = 10)
release on conditions/bond (cost = 40) controller drugs (cost = 15)

Outcomes & Scores no risk (score = 100), failure to appear (score = 66) no asthma attack for≥ 4 months (score = 100)
non-violent crime (score = 33) no asthma attack for 2 months (score = 66)

violent crime (score = 0) no asthma attack for 1 month (score = 33)
asthma attack in less than 2 weeks (score = 0)

Table 1: Summary of datasets.

policy of our MDP formulation, though we leverage cus-
tomized checks to further guide the exploration process and
prune the search space. Recall that each non-terminal state
in our state space corresponds to a partial decision list. We
exploit the fact that we can upper bound the value of the ob-
jective for any given partial decision list. The upper bound
on the objective for any given non-terminal state s̃ can be
computed by approximating the reward as follows: 1) all
the subjects who have not been assigned treatments will
get the best possible treatments without incurring any treat-
ment cost 2) no additional assessments are required by any
subject (and hence no additional assessment costs levied)
in the population. The upper bound on the incremental re-
ward is thus:

upper bound(U c) =
λ1
N

∑
i∈Uc

max
t
o(i, t).

During the execution of UCT procedure, whenever there is
a choice to be made about which action needs to be taken,
we employ checks based on the upper bound of the ob-
jective value of the resulting state. Consider a scenario in
which the UCT procedure is currently in state s̃ and needs
to choose an action. For each possible action ã (that does
not correspond to a default rule) from state s̃, we deter-
mine the upper bound on the objective value of the result-
ing state s̃′. If this value is less than either the highest value
encountered previously for a complete rule list, or the ob-
jective value corresponding to the best default action from
the state s̃, then we block the action ã from the state s̃. This
state is provably suboptimal. Note that we can compute
exact values of the objective function if the action is a de-
fault rule because the corresponding decision list is fully
constructed.

4 Experimental Evaluation
Here, we discuss the detailed experimental evaluation of
our framework. First we analyze the outcomes obtained
and costs incurred when recommending treatments using
our approach. Then, we present an ablation study which
explores the contributions of each of the terms in our ob-
jective, followed by an analysis on real world data.

Dataset Description. Our first dataset consists of infor-
mation pertaining to the bail decisions [37, 15] of about
86K defendants collected from various state courts in the
U.S. between 1990-2009 (Table 1). It captures informa-
tion about various characteristics for each of the 86K de-
fendants. The decisions made by judges in each of these
cases (release without/with conditions) and the correspond-
ing outcomes (e.g., if a defendant committed another crime
when out on bail) are also available. We assigned costs to
characteristics, and treatments based on discussions with
subject matter experts. The characteristics that were harder
to obtain were assigned higher costs compared to the ones
that were readily available. Similarly, the treatment that
placed a higher burden on the defendant (release on con-
dition) was assigned a higher cost. We assigned each out-
come a numerical score and higher score indicates a better
outcome. Thus, undesirable scenarios (e.g., violent crime
when released on bail) received lower scores.

Our second dataset (Table 1) captures details of about 60K
asthma patients collected by a web-based electronic health
record company [15]. For each of these 60K patients, vari-
ous attributes such as demographics, symptoms, past health
history, test results have been recorded. Each patient was
prescribed either quick relief medications or long term con-
troller drugs. Further, the outcomes in the form of time
to the next asthma attack (after the treatment began) were
recorded. The longer this interval, the better the outcome,
and the higher the outcome score. We assigned costs to
characteristics, and treatments based on the inconvenience
(physical/emotional/monetary) they caused patients.

Baselines. We compared our framework to the following
state-of-the-art treatment recommendation approaches: 1)
Outcome Weighted Learning (OWL) [42] 2) Modified Co-
variate Approach (MCA) [31] 3) Interpretable and Parsi-
monious Treatment Regime Learning (IPTL) [39]. OWL
addresses the problem of treatment recommendation by
formulating it as a weighted classification problem where
each subject is weighted proportional to his/her outcome
value. MCA generates modified covariates which cap-
ture the interactions between characteristics of subjects and
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Bail Dataset Asthma Dataset

Avg. Avg. Avg. Avg. # of List Avg. Avg. Avg. Avg. # of List
Outcome Assess Cost Treat Cost Characs. Len Outcome Assess Cost Treat Cost Characs. Len

CITR 79.2 8.88 31.09 6.38 7 74.38 13.87 11.81 7.23 6
IPTL 77.6 14.53 35.23 8.57 9 71.88 18.58 11.83 7.87 8
MCA 73.4 19.03 35.48 12.03 - 70.32 19.53 12.01 10.23 -

OWL (Gaussian) 72.9 28 35.18 13 - 71.02 25 12.38 16 -
OWL (Linear) 71.3 28 34.23 13 - 71.02 25 12.38 16 -

CITR - No Treat 80.5 8.93 34.48 7.57 7 77.39 14.02 12.87 7.38 7
CITR - No Assess 81.3 13.83 32.02 9.86 10 78.32 18.28 12.02 8.97 9
CITR - Outcome 81.7 13.98 34.49 10.38 10 79.37 18.28 12.88 9.21 9

Human 69.37 - 33.39 - - 68.32 - 12.28 - -

Table 2: Results for Treatment Regimes. Our approach: CITR; Baselines: IPTL, MCA, OWL; Ablations of our approach:
CITR - No Treat, CITR - No Assess, CITR - Outcome; Human refers to the setting where judges and doctors assigned
treatments.

treatments and then uses these modified covariates to fit
a model for predicting the outcomes. The treatments of
subjects are then determined based on the values of the
predicted outcomes. The IPTL framework produces inter-
pretable decision lists which map subject characteristics to
treatments such that the resulting outcomes are maximized.
IPTL, however, does not account for assessment or treat-
ment costs. While MCA and IPTL minimize the number
of characteristics/covariates required for deciding the treat-
ment of any given subject, OWL utilizes all the character-
istics available in the data when assigning treatments.

Experimental Setting. The objective function that we
proposed in Eqn. 7 has three parameters λ1, λ2, and λ3.
These parameters could either be specified by an end-user
or learned using a validation set. We set aside 5% of each of
our datasets as a validation set to estimate these parameters.
We automatically searched the parameter space to find a set
of parameters that produced a decision list with the maxi-
mum average outcome on the validation set (discussed in
detail later) and satisfied some simple constraints such as:
1) average assessment cost≤ 4 on both the datasets 2) aver-
age treatment cost≤ 30 for the bail data; average treatment
cost ≤ 12 for the asthma data. We then used a coordinate
ascent strategy to search the parameter space and update
each parameter λj while holding the other two parameters
constant. The values of each of these parameters were cho-
sen via a binary search on the interval (0, 1000). We ran
the UCT procedure for 50K iterations to generate our de-
cision list. We used both Gaussian and linear kernels for
OWL and employed the tuning strategy discussed in Zhao
et. al. [42]. In case of IPTL, we set the parameter that limits
the number of the rules in the treatment regime to 20. We
evaluated the performance of our model and other baselines
using 10 fold cross validation.

4.1 Quantitative Evaluation

We analyzed the performance of our approach CITR (Cost-
effective, Interpretable Treatment Regimes) on various as-
pects such as outcomes obtained, costs incurred, and intel-
ligibility. We computed the following metrics:

Avg. Outcome Recall that a treatment regime assigns a
treatment to every subject in the population. We used the
prediction model ŷ (defined in Section 3.3) to obtain an out-
come score given the characteristics of the subject and the
treatment assigned (we used ground truth outcome scores
whenever they were available in the data). We computed
the average outcome score of all the subjects in the popula-
tion.
Avg. Assess Cost We determined assessment costs in-
curred by each subject based on what characteristics were
used to determine their treatment. We then averaged all
such per-subject assessment costs to obtain the average as-
sessment cost.
Avg. # of Characs We determined the number of charac-
teristics that are used when assigning a treatment to each
subject in the population and then computed the average of
these numbers.
Avg. Treat Cost We computed the average of the treatment
costs incurred by all the subjects in the population.
List Len Our approach CITR and the baseline IPTL ex-
press treatment regimes as decision lists. In order to com-
pare the complexity of the resulting decision lists, we com-
puted the number of rules in each of these lists.

While higher values of average outcome are preferred,
lower values on all of the other metrics are desirable.

Results. Table 2 (top panel) presents the values of the met-
rics computed for our approach as well as the baselines. It
can be seen that the treatment regimes produced by our ap-
proach result in better average outcomes with lower costs
across both the datasets. While IPTL and MCA do not
explicitly reduce costs, they do minimize the number of
characteristics required for determining treatment of any
given subject. Yet, our approach produces regimes with
the lowest values of the average number of characteristics
(Avg. # of Characs). Our approach also produces more
concise lists with fewer rules compared to the baselines.
While the treatment costs of all the baselines are similar,
there is some variation in the average assessment costs and
the outcomes. IPTL turns out to be the best performing
baseline in terms of the average outcome, average assess-
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ment costs, and average number of characteristics. The last
line of Table 2 shows the average outcomes and the average
treatment costs computed empirically on the observational
data. Both of our datasets are comprised of decisions made
by human experts. It is interesting to note that the regimes
learned by algorithmic approaches possibly result in better
outcomes compared to the decisions made by human ex-
perts on both the datasets.

4.1.1 Ablation Study
We also analyzed the effect of various terms of our ob-
jective function on the outcomes, and the costs incurred.
To this end, we experimented with three different ablations
of our approach: 1) CITR - No Treat, obtained by exclud-
ing the term corresponding to the expected treatment cost
in our objective (g3(π) in Eqn. 7). 2) CITR - No Assess,
obtained by excluding the expected assessment cost term
in our objective (g2(π)) in Eqn. 7) 3) CITR - Outcome,
obtained by excluding both assessment and treatment cost
terms from our objective.

Table 2 (second panel) shows the values of the metrics dis-
cussed earlier in this section for various ablations of our
model. Naturally, removing the treatment cost term in-
creases the average treatment cost on both datasets. Fur-
thermore, removing the assessment cost term of the objec-
tive results in regimes with much higher assessment costs
(8.88 vs. 13.83 on bail data; 13.87 vs. 18.28 on asthma
data). The length of the list also increases for both datasets
when we exclude the assessment cost term. These results
demonstrate that each term in our objective function is cru-
cial to producing cost-effective interpretable regimes.

4.2 Qualitative Analysis
The treatment regimes produced by our approach on
asthma and bail datasets are shown in Figures 1 and 3 re-
spectively.

It can be seen in Figure 3 that the methacholine test, which
is more expensive, appears at the end of the regime. This
ensures that only a small fraction of the population (8.23%)
is burdened by its cost. Furthermore, it turns out that
though the spirometry test is slightly expensive compared
to patient demographics and symptoms, it would be harder
to determine the treatment for a patient without this test.
This aligns with research on asthma treatment recommen-
dations [26, 5]. It is interesting to note that the regime not
only accounts for test results on spirometry and peak flow
but also evaluates whether the patient has a previous his-
tory of asthma or respiratory issues. If the test results are
positive and the patient has no previous history of asthma
or respiratory disorders, then the patient is recommended
quick relief drugs. On the other hand, if the test results are
positive and the patient suffered previous asthma or respi-
ratory issues, then controller drugs are recommended.

In case of the bail dataset, the constructed regime is able

If Gender=F and Current-Charge =Minor and Prev-Offense=None then RP

Else if Prev-Offense=Yes and Prior-Arrest =Yes then RC

Else if Current-Charge =Misdemeanor and Age≤ 30 then RC

Else if Age≥ 50 and Prior-Arrest=No, then RP

Else if Marital-Status=Single and Pays-Rent =No and Current-Charge =Misd. then RC

Else if Addresses-Past-Yr≥ 5 then RC

Else RP

Figure 3: Treatment regime for bail data; RP refers to
milder form of treatment: release on personal recogni-
zance, and RC is release on condition which is compara-
tively harsher.

to achieve good outcomes without even using the most
expensive characteristics such as mental illness tests and
drug tests. Personal information characteristics, which are
slightly more expensive than defendant demographics and
prior criminal history, appear only towards the end of the
list and these checks apply only to 21.23% of the popula-
tion. Note that the regime uses defendants’ criminal his-
tory as well as personal and demographic information to
make treatment recommendations. For instance, females
with minor current charges (such as driving offenses) and
no prior criminal record are typically released on bail with-
out conditions such as bonds or checking in with the police.
On the other hand, defendants who have committed crimes
earlier are only granted conditional bail.

5 Conclusions

In this work, we proposed a framework for learning cost-
effective, interpretable treatment regimes from observa-
tional data. To the best of our knowledge, this is the first
solution to the problem at hand that addresses all of the fol-
lowing aspects: 1) maximizing the outcomes 2) minimiz-
ing the treatment costs, and costs associated with gathering
information required to determine the treatment 3) express-
ing regimes using an interpretable model. We modeled the
problem of learning a treatment regime as a MDP and em-
ployed a variant of UCT which prunes the search space us-
ing customized checks. We demonstrated the effectiveness
of our framework on real world data from criminal justice
and health care domains.
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