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Abstract— We present algorithms for inferring the cost func-
tion and reference trajectory from human demonstrations of
hand-writing tasks. These two key elements are then used,
through optimal control, to generate an impedance-based con-
troller for a robotic hand . The key novelty lies in the flexibility
of the feature design in the composition of the cost function,
in contrast to the traditional approaches that consider linearly
combined features. Cross-entropy-based methods form the core
of our learning technique, resulting in sample-based stochastic
algorithms for task encoding and decoding. The algorithms are
validated using an anthropomorphic robot hand. We assess that
the correct compliance is well encapsulated by subjecting the
robot to perturbations during task reproduction.

Index Terms— learning from demonstrations, stochastic op-
timization, impedance control

I. INTRODUCTION

The efficient acquisition of skills is of general interest

to robotics, and in particular to high degrees of freedom

(DOFs) anthropomorphic robots, for which complex pro-

gramming is required. By enabling human experts to teach

robots via demonstrating the task intuitively, learning from

demonstrations, also called imitation learning, offers a fun-

damental framework for addressing this challenge. To robot

agents, it is essential to develop approaches for encoding

and decoding the demonstrated skills. Much research work

proposes to represent and execute task policies in a direct

way: by exploiting supervised learning techniques, the policy

is encoded by a regressor or dynamical system [1][2][3]

trained on demonstrated state and action dataset. Then the

robot executes the policy by following the learned model in

a straightforward way.

In contrast to direct approaches, another way is to im-

plicitly represent and derive a policy with a cost function.

And the demonstrated behavior is assumed to be optimal

or suboptimal in terms of the cost function. This is formu-

lated as an inverse optimal control problem, that provides

a more succinct representation of the underlying task and

a possibility to derive a policy for the robot with distinct

embodiments in novel task scenarios. Most inverse opti-

mal control [4] research assumes that the cost function to

learn is linear with unknown parameters. Also, gradient-

based methods are widely used [5][6] to solve the resulting

optimization problem. In this paper, we consider the problem

of extracting a tracking trajectory as well as the deviance
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Fig. 1. Learning robotic writing through encoding and decoding task cost

penalty defined in the local frame of reference, which leads to

a nonlinear parameterization. Gradient-based methods are ill-

suited for solving such non-convex optimization problem as

they tend to end up with poor local optima. Also, derivation

of gradients to explore the feature design for each model

is error-prone and not applicable for model-free problems.

Thus there is a desire to develop other approaches to deal

with these challenges.

With a learned cost function, we can derive a policy

through optimal control or reinforcement learning. We cast

this as the decoding of a learned task. Plenty of policy

search and trajectory optimization approaches have been pro-

posed. Among these approaches, sampling-based stochastic-

optimization methods are gaining momentum [7][8][15]. The

advantage of sampling-based methods lies in their strength in

model-free learning and fast convergence to good solutions.

We base our trajectory optimization on a similar concept,

but in the context of a high-dimensional multi-manipulator

system.

In this paper, we propose to use the cross-entropy method,

a stochastic optimization algorithm to learn the cost function

with the parameterization that encodes trajectory tracking,

based upon the maximum-entropy principle. The method is

also used to derive an optimal motion trajectory for learned

costs on a multi-manipulator system. The method relies the

evaluation of samples without knowing the explicit model,

which demonstrates the potential of the algorithm as a model-

free approach. Furthermore, from a model-based perspective,

we show how the proposed cost parameterization encapsu-

lates demonstrated behavior in terms of motion compliance.

Figure 1 illustrates overall flow of our approach. The main

contributions of this paper are highlighted as below.

• A cross-entropy-like method is developed to deal with

the challenge of learning cost function with a nonlinear



parameterization form, as in this case that the features

are not linear independent;

• The sampling schema of original algorithms is extended

to allow sampling in the nullspace of parameters with

a feature representation. This extension can be used

to embed features and prior knowledge to facilitate

trajectory optimization in the phase of task decoding.

Apart from the work reviewed above, [9] also proposes an

intrinsic cost with a similar quadratic parameterization. And,

a stochastic method is employed to learn the parameters. The

difference lies in that our weight matrix is defined in the

local reference frame of the tracking trajectory. Moreover, the

policy derivation in [9] is realized with AICO [10], whereas

we use a trajectory sampling method. AICO relies on the

duality between optimal estimation and control. It performs

probabilistic inference with extended Kalman smoothing,

thus a local linearization is desirable for Gaussian message

propagation. In our work, the cross-entropy-based method

requires only forward trajectory evaluations and can hence

use non-differentiable objectivities or constraints without

explicit model knowledge. Finally and most importantly, [9]

requires access to an extrinsic task cost as a critic to the

internal planning system. Our approach, which is situated in

the context of imitation learning, holds no assumption of the

extrinsic cost but requires demonstrations from an expert.

II. PROBLEM DEFINITION

We consider the problem of transferring skills to a robot

with given demonstrated trajectories {x∗
t }, where {x∗

t }
denotes the state trajectory of interest. Following implicit

learning from demonstrations, it is assumed that {x∗
t } is

optimal or suboptimal with respect to an unknown cost

C(x,θ), where θ denotes the parameters to learn. Note that

the time parameter t is omitted for the brevity of notations.

In order to mimic the demonstrator, the robot is required to

derive its own favorable behavior {q∗
t } by minimizing the

sum of C(x,θ) along the optimal state trajectory.

The problem can be divided into two phases. The first part

which aims to reveal unknown costs can be formulated as

an inverse optimal control problem. In general, this problem

is ill-posed as there are ambiguous results (e.g., constant

cost) that always fulfill the optimality of demonstrations. One

elegant way to address this is with the maximum-entropy

framework (MaxEnt) [5], where trajectories are assumed to

be subject to a Boltzmann distribution. By exploiting this

concept, we can estimate cost parameters by maximizing the

likelihood of demonstrations under this distribution:

θ∗ = argmax
θ

P (τ∗|θ) = argmax
θ

exp(−J(τ∗,θ))
∫

τ
exp(−J(τ,θ))

(1)

where τ∗ = {x∗
1:T } and τ = {x1:T } denote demonstrated

and all possible trajectories with a time horizon of T ,

respectively. J(τ) =
∑T

t=1 C(xt,θ) defines the accumulated

cost along trajectory τ .

The second part of the problem is to derive robot optimal

trajectory τ∗q = {q∗
1:T } given the established cost. This is a

typical optimal control problem, and we formulate it as finite

horizon trajectory optimization as follows:

τ∗q = argmin
τq

J(τq) = argmin
τq={q1:T }

T
∑

t=1

C(κ(qt),θ) (2)

where τq denotes trajectory applied on robot and κ is a

kinematic function. Some remarks are given for the problems

formulated in (1) and (2):

• The state trajectory and system can also be indexed with

a phase variable z for the generality of the model.

• Dynamics can be introduced for both (1) and (2). They

can be either known as xt+1 = f(xt,ut) or learned

from set {xt,ut}, where {ut} denotes the control to

the dynamics.

• Robot state trajectory {qt} does not necessarily appear

as direct features in the task cost. For instance, the

robot trajectory might be featured in joint space but the

feature of cost might be the trajectory of the end-effector

or manipulated objects. We assume there is a mapping

function κ (not necessarily known to the algorithm) to

convert {qt} to {xt}.

III. PROPOSED METHODS

In this section, we present approaches for addressing the

problems formulated above. We first give a detailed parame-

terization of the cost function and highlight its difference and

challenges compared with other work. Then we introduce the

general cross-entropy method as a core technique for dealing

with these challenges. We also propose to sample in the

nullspace of parameters in the cross-entropy method. Finally,

the algorithms for encoding and decoding tasks, as well as

the development of compliance behavior, are discussed and

listed.

A. Parameterization of Cost Function

The cost function defined in (1) and (2) is of a general

form. The concrete parameterization of C(θ) determines the

parameters to infer and the features captured to encode the

underlying task. Much work proposes to use a form that con-

sists of linear combination of features. This is advantageous

as (1) turns out to be a convex problem. Here, for the purpose

of trajectory tracking, we propose a different form with an

unknown trajectory and weight matrices as parameters. This

can be formulated as a quadratic form similar to [9] such as

C(x,θ) = (x− x
ref
t )TQ

t,{xref
t }(x− x

ref
t ) (3)

where θ = {xref
t ,Q

t,{xref
t }}. {x

ref
t } denotes a state tra-

jectory (e.g., letter calligraphy in a 2D case) to track and

{Q
t,{xref

t }} is a trajectory of positive definite matrices that

possibly depend on {xref
t }. In the following sections, we

use Qt to denote Q
t,{xref

t } for brevity.

In [9], Qt is diagonal. This implies the error of reference

tracking will be independently penalized by the diagonal

weights along axes of a fixed global reference frame. In

contrast to such form, we propose to define Qt in a local

frame with respect to the reference trajectory. This enables us
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to weight the errors in a moving reference frame that captures

local geometrical features (e.g., normal direction of reference

trajectory). From the perspective of the global frame, this

weight matrix Qt can be illustrated by a hyper-ellipsoid

with varying principle axes length, as well as orientation in

alignment with the reference trajectory (See Figure 2).

The difference on the definition of Qt between [9] and our

work can be further demonstrated in Figure 3. In [9], there

is no prior assumption about the dependency between Qt

and x
ref
t . The resulting model is comparatively sparse such

that the inference of unknown parameters might be straight-

forward (e.g., using mean trajectory as the reference under

the Gaussian assumption). While in our case (right graph in

Figure 3), defining Qt with respect to x
ref
t introduces a prior

dependency. Such dependency implies a constraint between

the parameters to infer. The parameterization of the resulting

cost function is a nonlinear combination of these unknown

variables.

B. Cross Entropy Method

The cost function (3) is of a parameterization with non-

linear composition. Gradient derivation for the resulting

problem is nontrivial and requires re-parameterization for a

specific model. This motivates us to exploit cross-entropy

(CE) method, a stochastic approach, to infer the unknown

parameters.

The CE method considers a general optimization l =
min J(x) as a sequence of rare-event probability estimation

problem, by seeking {li} and {qi} to evaluate

γi = Eqi(I{J(x)<li}) = Eqi+1
(I{J(x)<li}

qi(x)

qi+1(x)
) (4)

where I{·} is an indicator function and {qi} is assumed

to belong to a family of distributions as proposals. An

optimal importance sampler qi+1 can be found by solving

an empirical form

q̂i+1 = argmax
q

1

N

N
∑

j=1

I{J(xj)<li} ln(q(xj)) (5)

where {xj} are N instances sampled from qi. We give a

brief description about the iteration procedure of CE method

and some remarks related to our application below. For more

detailed derivation, interested readers can refer to [11].

i. With an initial density q as sampling distribution,

generate a set of samples {xj}, j = 1, ..., N ;

ii. Assign weights to sampled instances to construct an

elite set, e.g., define the membership of the set by

evaluating J(xj) < li where li can be (1−ρ)-quantile

of evaluated performance;

iii. Estimate density q̂ through (5) and use q̂ as the new

sampling distribution;

iiii. Iterate steps i. through iii. until stop condition is

fulfilled;

We choose to use a multivariate Gaussian as the sampling

distribution q, as it yields a closed form solution for (5).

Also, a soft version of membership function I{·} is used.

The standard CE method, as in ii., uses a hard threshold

to classify samples (either elite or not), and then elite

samples are indiscriminately treated in the estimation of the

new sampling distribution. Other variants consider assigning

importance to each sample according to their performance

evaluation. For instance, in Covariance Matrix Adaptation

(CMA-ES), it is suggested to use weight that is proportional

to the inverse of performance within the elite set. We adopt

a membership function similar to [8], that all samples are

taken into account by weighing the normalized exponential

values of their relative performance.

Although the CE method globally explores the state space

of x, its global optimality is guaranteed in a probabilistic

manner. In practice, the routine will converge to a local

solution if no sample is generated in the vicinity of the global

optimum.

C. Feature Representation and Nullspace Sampling

The CE method requires sampling in the parameter space

to explore solution. For high-dimension space such as trajec-

tory, it might be more efficient to sample in the feature space

that is rich enough for sampling good solutions. In order to

encode the reference trajectory and varying diagonals of Qt

in (1), as well as the optimized trajectory in (2), we propose

to use a function approximator to represent trajectories and

to sample in the corresponding feature space. For instance,

a trajectory can be approximated with a linear combination

of M normalized Radial Basis Function (RBF) features

xref (t) = ωT
Φ(t) =

M
∑

i=1

ωi

exp(−α(t− ti)
2)

∑M
j=1 exp(−α(t− ti)2)

(6)

where t can also be replaced with a phase variable z to have

a general representation.

Sometimes we might expect sampled trajectories to fulfill

some constraints, e.g., to pass through a specific point. This

is especially useful in trajectory optimization when we expect

to have all the samples start from initial state x0 or fix both

boundary points. We propose to address this by sampling

in the nullspace of the feature parameter space. Concretely,

suppose ω is required to generate trajectories constrained on

xconst
ref

ωT [Φ1, ...,Φc] = xconst
ref = [xconst

1 , ...,xconst
c ] (7)

We can find a linear transformation matrix R through

Singular Value Decomposition (SVD) to ensure

(ω +Rδω)T [Φ1, ...,Φc] = [xconst
1 , ...,xconst

c ] (8)
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Fig. 4. Nullspace trajectory sampling: fixing starting and boundary points

holds for any δω sampled in the subspace of the feature

parameter space. Sampling in this nullspace has two advan-

tages. It is possible to efficiently explore trajectories without

needing to reject those that violate the constraints. Figure

4 shows sampled trajectories with fixed end points. Also,

because R is a linear transformation, perturbed parameter

ω +Rδω is still subject to a normal distribution, given δω
is sampled as Gaussian noise.

D. Algorithms

1) Learning Cost Function for Task Encoding: To learn

the task cost by solving (1), we can employ the CE method

and feature sampling presented above. A typical challenge to

solving inverse optimal control problem as (1) is to evaluate

the denominator. This is indeed to calculate the partition

function of a Boltzmann distribution, and it is related to solv-

ing an optimal control problem. We estimate this term with

K locally sampled trajectories from a proposal distribution γ
(e.g., a Gaussian centered at the optimal solution)1. Also, we

rewrite (1) as minimizing the negative log likelihood, thus

(1) is converted to

θ∗ = argmin
θ

−
D
∑

i=1

log
exp(−J(τ∗,θ))

∑K
k=1

1
γ(τ̂k)

exp(−J(τ̂k,θ))
(9)

where τ̂k = {x̂k
1:T } is the locally sampled trajectory, θ =

{xref
t ,Qt} are the learning parameters and D denotes the

number of demonstrations. With an initial guess of parame-

ters and its distribution p, we can iterate Algorithm 1 to find

parameters that encode task costs. Here, Gaussian sampling

is used, thus the distribution can be denoted as p(µ,Σ). We

present some remarks about the algorithm arguments and

implementation in practice:

• θ and p(µ,Σ) can be initialized with some uninfor-

mative values, such as a straight line for the reference

trajectory.

• Larger number of samples for the CE method and the

partition function evaluation lead to a better estimation,

if more computational budget is available for each

iteration step.

• The update of distribution parameters can be smoothed

by introducing a proportional factor as suggested in

[11], which leads to more stable iterations in general.

1For a Gaussian distribution, a closed-form solution can be calculated in
this case. A sample-based evaluation is used here for the generality of the
algorithm.

Algorithm 1 Encoding - Iteration for Learning Cost Func-

tion based on Cross Entropy Stochastic Optimization

Require: θ = {xref
t ,Qt}, p(µθ,Σθ), γ, C(x,θ),K,N -

Number of samples, D - Demonstrations of T length

Ensure: θNew, p(µθ
New,Σθ

New)
for all i in 1:N do

θ̂i ← p(µθ,Σθ) ⊲ Sample parameters according

to current distribution. Apply projection from nullspace

if necessary

for all j in 1:K do

τ̂j = {x
k
t , t = 1, ..., T} ← γ ⊲ Sample locally

perturbed trajectories for evaluating partition function,

see Figure 5

end for

Li ← −
∑D

i=1 log
exp(−J(τ∗,θ))

∑
K
k=1

1
γ(τ̂k)

exp(−J(τ̂k,θ))

end for

{θ̂j}elite ← EliteSet({θ̂i, Li}) ⊲ Construct elite set

θNew,µθ
New ← Mean({θ̂j}elite)

Σθ
New ← Covar({θ̂j}elite) ⊲ Update parameters
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2) Generating Motion Trajectory as Task Decoding:

Given the learned cost function, we can derive motion

trajectories for a robot, which can be considered to decode

the task. Taking the view of [12], this is equivalent to infer

a latent state trajectory on a factored graph. The trajectory is

featured in joint space as {qt}, and can be converted to the

state space of the cost function through κ(qt). Note that the

complexity of κ depends on the robot embodiment as well

as the task environment. It can be a kinematic function for

the free motion of a single manipulator, or other nontrivial

forms, e.g., consider κ that correlates the joint trajectory

of a anthropomorphic hand to the motion of a manipulated

object. Sample-based inference, such as the CE method, can

approach the problem without an explicit access to κ. Thus it

works as a model-free method. A single iteration step is given

as Algorithm 2. The trajectory is optimized by searching β,

which parameterizes a function approximator with feature Φ

for each DOF. Here we denote the parameters and features

with notations different from (6), as the algorithm is also

open to parameterize the trajectory with other features.



Algorithm 2 Decoding - Iteration for Deriving Trajectory

based on Cross Entropy Stochastic Optimization

Require: β,Ψ, p(µβ,Σβ), C(κ(qt)), N - Number of sam-

ples

Ensure: βNew, p(µβ
New,Σβ

New)
for all i in 1:N do

β̂j ← p(µβ,Σβ) ⊲ Sample trajectory parameters

{qt}i ← β̂
T

i Ψ ⊲ Evaluate robot DOF trajectory.

Apply projection from nullspace if necessary

J(i)←
∑T

t=1 C(κ(qt))
end for

{β̂j}elite ← EliteSet({β̂i, Ji}) ⊲ Construct elite set

βNew,µβ
New ← Mean({β̂j}elite)

Σβ
New ← Covar({β̂j}elite) ⊲ Update parameters

3) Deriving Impedance Controller through Model-based

Optimal Control: The varying weight matrix Qt encodes

the necessity of rejecting disturbance in specific directions

during the motion. This encapsulated feature can be straight-

forwardly used to derive the compliant behavior of a robot in

the framework of model-based optimal control. Suppose the

motion of tooltip can be modeled as a discrete-time linear

stochastic dynamical system, such as

x̄t+1 = Atx̄t +Btut + νt (10)

where x̄t = (xt, ẋt)
T is the augmented state vector that

incorporates velocity, and νt ∼ N (0,Σ) models the white

noise of the system. At and Bt are system parameters and

ut denotes the input signal to the system. The time index is

retained as it can also be used to represent the linearization

of a general nonlinear system.

The learned cost (x−xref )
TQt(x−xref ) is applied by

adding a term that penalizes large input as

C̄(x̄t,ut, t) = (x̄t−x̄ref )
T Q̄t(x̄t−x̄ref )+uT

t Rut (11)

where Q̄t is an augmented matrix with Qt and small values

(e.g., 10−4 in our experiment) as diagonals if only xref

needs to be tracked.

Solving {ut} with respect to (10) and (11) can be cast as

a classic Linear-Quadratic-Gaussian (LQG) optimal control

or inference on a Dynamical Bayesian Network, where

both system transition and emission distributions are linear

Gaussian. By exploiting the linearity and quadratic form of

learned cost, an exact solution can be obtained as

u∗
t = Lt(x̄t − x̄ref ) (12)

where Lt is the feedback gain that can be recursively

evaluated by following Riccati equation

St = Q̄t +AT
t (BtR

−1BT
t + S−1

t+1)
−1At (13)

Lt = −R
−1BT

t (BtR
−1BT

t + S−1
t+1)

−1 (14)

where ST = Q̄T for a problem terminates at T .

The control input is linked to a tracking error and a

varying gain in (12). This can be considered as an impedance

controller, with Lt as the impedance parameter. It is observed

from (13) and (14) that the impedance co-varies with Q̄t,

thus it implies that the robot needs to be stiff when Qt is

large, and vice versa.

IV. EXPERIMENTS

A. A Simple Example

We first validate our algorithm for learning cost function

on a simple synthetic example. In this experiment, the motion

of a particle is simulated as a second-order dynamical system

and the particle is expected to track a straight horizontal line.

As the particle proceeds, perturbations are applied within a

small time window along vertical direction. The amplitude

of perturbations is modeled as Gaussian noise, where the

variance varies in different sections. As all resultant trajec-

tories are taken as good demonstrations, it is expected to find

a cost function that can capture the information of varying

perturbations in weight matrices.

The dynamical system is described with parameters of

mass, stiffness and damping as Mp = 0.2, Kp = 200,

and Dp =
√

Kp/2, respectively. In total, 1000 time steps

are simulated and perturbations are applied during T1 =
[300, 350] and T2 = [700, 750] with noise N (0, 50) and

N (0, 10), respectively. 8 trajectories are collected as demon-

strations and the results are shown in Figure 6.

In Figure 6, the gray curve tracked by the regulation

point is the resulting reference trajectory. It is not surprising

that the trajectory is almost a straight line, as demonstrated

trajectories are symmetrically perturbed. By evaluating the

exponential values of minus cost over the whole 2D space,

the weight matrix is visualized by the heating ellipse. As

the cost is a quadratic form, the heating shape is actually an

unnormalized Gaussian. The steep degree of slope indicates

the sensitivity of the cost with respect to the deviance in

corresponding directions. It is shown that the heating ellipse

varies the length of the axis in the direction orthogonal to

the reference trajectory. The axis is longer within the section

where demonstrated trajectories are diverse. This indicates

that varying Qt tends to tolerate error such that perturbed

trajectories are still of good quality in terms of the learned

cost.

B. Letter Trajectories

In this experiment, we apply Algorithm 1 to a more practi-

cal scenario that learns trajectories of handwritten letters. The

purpose of this experiment is to extract from demonstrations

an informative cost as the task representation. The cost will

be further exploited to derive robot motion for reproducing

the writing task.

The letter trajectories are collected from dataset [13]. Only

position coordinates are considered, thus the data consists of

a series of 2D coordinates. In the dataset, the trajectories

are aligned to the same time horizon by curve fitting and

subsampling. All letter coordinates are within a comparable

range and defined with respect to the trajectory end points.

See Figure 5 for typical demonstrated trajectories.
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(b) t = 125

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.04

−0.02

0

0.02

0.04

0.06

 

 

Demonstrated Trajectories

Learned Reference Trajectory

Current Regulate Point

(c) t = 375

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.04

−0.02

0

0.02

0.04

0.06

 

 

Demonstrated Trajectories

Learned Reference Trajectory

Current Regulate Point

(d) t = 625

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.04

−0.02

0

0.02

0.04

0.06

 

 

Demonstrated Trajectories

Learned Reference Trajectory

Current Regulate Point

(e) t = 750

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.04

−0.02

0

0.02

0.04

0.06

 

 

Demonstrated Trajectories

Learned Reference Trajectory

Current Regulate Point
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Fig. 6. Result of simple particle example: reference trajectory and weight
matrix as time evolves from 0 to 1000. The matrix Qt is illustrated with
heating ellipse by evaluating cost value over the whole state space.

Figure 7 illustrates some particular iteration steps of the

learning process for letter ”G”, where seven demonstrations

are used as training data. The reference trajectory is naively

initialized as a straight line, and the initial sampling distri-

bution is set with a variance of 0.05 to ensure that a large

enough parameter space is explored. The learned reference

trajectory {xref
t } , which is encoded by the mean parameter

of sampling distribution, rapidly converges to similar profile

with demonstrated trajectories. The variance of the sampled

trajectories decreases as the iteration evolves. This implies

that the sampling distribution shrinks near to a Dirac function

thus generated samples tend to be identical.

A more complete result for the letter ”G” is shown in

Figure 8. Here, the varying weight matrix Qt is highlighted.

The positive definite matrix is illustrated by a heating ellipse

whose center is located at the current reference point, and the

axes represent principle directions and weights. The direction

of the principle axes varies as it is defined with respect to a

local reference frame along the tracking trajectory. Also, it

is observed that the length of principle axes, which indicates

weight parameter in the corresponding direction, captures

the sensitivity of deviance from reference trajectory at each

regulation point. Similar to the simple synthetic example

presented above, the ellipse expands its length of axis along

the radial direction of the curve in 8(b), where demonstrated

trajectories spread over a relatively larger space. On the

contrary, in 8(c), the ellipse shrinks its axis length along

the radial direction as the demonstrated trajectories are more
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(c) Iteration Step = 3

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 

 

Demonstrations

Average Reference Trajectory

Sampled Reference Trajectory

(d) Iteration Step = 10

Fig. 7. Evolution of reference trajectory as learning algorithm iterates from
step 1 to 10. The iterations begin with a tentative straight line solution.
The average trajectory evolves towards demonstrated profile to increase the
likelihood of demonstrations. Sampled trajectories converge as covariance
of sampling distribution shrinks at the final stage.

consistent within these sections. Thus the deviance along this

direction will incur a large cost penalty and the reference

trajectory is expected to be well tracked. This indeed encodes

a compliant behavior that the robot should adopt under

disturbances. We will show that, based upon learned costs

and optimal control, it is natural to develop varying stiffness

behavior. The exploitation of motion feature Qt will be

further discussed in the following section.

C. Decoding Motion on a Multi-fingered Hand

In this experiment, to derive writing motion on an anthro-

pomorphic robot hand, we show an example of the use of

Algorithm 2. We attempt to derive joint motion trajectories

on a 16-DOFs Allegro multi-fingered hand (Figure 9). In

the writing task, only three fingers (12 DOFs) are involved.

One question about applying the learned cost is that we need

to simulate a mapping function κ to get features from the

joint motion of multiple manipulators. We resolve this by

employing a virtual frame that is commonly used in the

grasping and dexterous manipulation community.

As shown in Figure 10, the virtual frame is statically

defined by the position vector of the tips. For the case of

three fingers, the origin (O in Figure 10) of the virtual frame

is the average position of involved end-effectors, and the

orthogonal axes can be determined with the cross products

of relative position vectors. The pen tip (O′ in Figure 10) is

assumed to be fixed, with respect to this virtual frame via a

known transformation. Note that κ is designed for evaluating

the cost and it is not known to the algorithm. We refer to

[14] for more details about the definition of virtual frame

and its application on multi-fingered manipulation task.

In practice, N = 15 samples are sufficient for exploring

an optimal result. A cost that encodes writing motion of
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Fig. 8. Result of learning letter ”G”: reference trajectory and weight
matrix as time evolves. The matrix Qt is illustrated with heating ellipse
by evaluating cost value over the whole state space. The time horizon is
scaled between 0 and 1.0.

Fig. 9. Allegro Multi-
fingered Hand

𝑂 

𝑂 ′ 

Virtual frame 

Tooltip frame 

𝑂𝑂′ 

Fig. 10. Virtual frame and local tooltip refer-
ence point definition

letter ”e” is used here. The candidate trajectories are again

initialized as straight lines in the joint space. The evolution

of cost values within 1000 iterations is shown in Figure 11.

The cost monotonically decreases to a relatively stable level

within a few hundred iterations. Also, the variability (gray

area) of the costs of sampled trajectories decreases as the

samples tend to be identical: implies that the exploration

variance vanishes so that a convergence to a near optimal

solution is achieved.

The decoded joint motion trajectory is applied on a

simulated Allegro hand. The writing motion in simulation

is shown as snapshots in Figure 12. To manipulate the

orientation of the virtual frame and ensure letter profile is

tracked, the generated motion exploits the redundancy of

finger DOFs. The resultant trajectory is deposited from the

movement of a tooltip that is rigidly attached to the virtual

frame.

D. Exploiting Qt in Developing Compliant Behavior

Here we develop the compliant behavior for a robot by

following the steps of the model-based optimal control.

Concretely, we consider the end-effector motion in Cartesian

Fig. 11. Cost of sampled trajectories in throughout learning iterations

Fig. 12. Snapshots of generated writing motion on simulated Allegro hand

space of a 7-DOFs KUKA LWR robot. The derived trajectory

and gain are realized with a Cartesian impedance controller.

The encapsulated compliance is validated by subjecting the

robot to disturbance during its writing execution. Figure 13

shows robot’s compliant behavior with the developed varying

impedance parameter. As the stiffness of robot is expected

to co-vary with Qt, the robot exhibits relatively compliant

behavior to perturbation, in Figure 13(b). We can compare

this property with Figure 8(b). Note that in Figure 8, a

smaller heating ellipse implies a larger Qt as the evaluated

values are shown as an unnormalized Gaussian. Similarly,

the robot is comparatively stiff in the radial direction in

Figure 13(c) and we observe even more resistance under

perturbation in Figure 13(d). This is due to a larger Qt

in these sections thus increased impedance parameters are

developed.

We also validate the generality of the learned weight

matrices. As is shown in Figure 14, letters ”N” and ”W”

are written with the impedance trajectory, which is derived

by exploiting Qt learned from ”G”. Because Qt is locally

defined along the reference trajectory, it encapsulates the

knowledge of shaping stiffness ellipse to align with the

direction of movement. This enables the robot to successfully

track the modified trajectory by overcoming the friction,

which is the main disturbance along the motion direction. It

is expected to encapsulate more general task characteristics

by incorporating other interesting features such as local

geometrical parameters of the reference trajectory.



(a) Start writing (b) Large deviance under perturbation

(c) Small deviance under perturbation (d) End of writing

Fig. 13. Snapshots of motion of writing ”G” with developed impedance
parameters: (b) Low stiffness along radial direction - large deviance and
vibration incurred under perturbation; (c) and (d) High stiffness - small
oscillation amplitude under perturbation; Reference trajectory is illustrated
as red dash line and the perturbed sections are shown in detail in (d). Note
to compare with the shape of Qt in Figure 8

Fig. 14. Generalization of derived parameters to other letters: Writing ”N”
and ”W” with impedance derived by exploiting Qt learned from ”G”.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed two algorithms based

upon the CE method for learning and reproducing robotic

writing task. We have shown that the proposed cost encoding

algorithm successfully learns the given parameterization,

which is nonlinear with learning parameters. To decode the

task cost by deriving a robot control policy, the algorithm

for trajectory optimization has been validated as an effective

approach on a challenging problem of planning motion for

an anthropomorphic robotic hand. Moreover, the compliant

behavior encapsulated in learned cost function is assessed in

a robot writing experiment.

Note that the proposed algorithms are applicable to other

forms of cost function, as the CE method imposes no

restrictions on the exact form of objectivity to optimize. One

aspect of the algorithm that needs improvement is the quality

of the partition function evaluation in the cost learning. This

is a kind of regularization and a common computational

challenge to the general probabilistic inference problem. We

expect to increase the performance of the proposed algorithm

by introducing advanced methods for efficient calculation of

the partition function.

Another possible extension would be employing sampling

distributions other than a single Gaussian. In [7] and [15],

mixture of Gaussians is used to guide the policy search.

Exploring in a richer family of distributions promises more

accurate rare-event probability estimation. This is expected

as a better sampling schema, though it also leads to a non-

trivial parameter update in the KL divergence minimization.

Finally, the proposed methods are open to the incor-

poration of intrinsic and environment dynamics, that can

encapsulate more task-specific knowledge for the transfer of

underlying skills.
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