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Abstract. Local covariant feature detection, namely the problem of
extracting viewpoint invariant features from images, has so far largely
resisted the application of machine learning techniques. In this paper,
we propose the first fully general formulation for learning local covariant
feature detectors. We propose to cast detection as a regression problem,
enabling the use of powerful regressors such as deep neural networks.
We then derive a covariance constraint that can be used to automati-
cally learn which visual structures provide stable anchors for local feature
detection. We support these ideas theoretically, proposing a novel analy-
sis of local features in term of geometric transformations, and we show
that all common and many uncommon detectors can be derived in this
framework. Finally, we present empirical results on translation and rota-
tion covariant detectors on standard feature benchmarks, showing the
power and flexibility of the framework.

1 Introduction

Image matching, i.e. the problem of establishing point correspondences between
two images of the same scene, is central to computer vision. In the past two
decades, this problem stimulated the creation of numerous viewpoint invariant
local feature detectors. These were also adopted in problems such as large scale
image retrieval and object category recognition, as a general-purpose image rep-
resentations. More recently, however, deep learning has replaced local features
as the preferred method to construct image representations; in fact, the most
recent works on local feature descriptors are now based on deep learning [10,46].

Differently from descriptors, the problem of constructing local feature detec-
tors has so far largely resisted machine learning. The goal of a detector is to
extract stable local features from images, which is an essential step in any match-
ing algorithm based on sparse features. It may be surprising that machine learn-
ing has not been very successful at this task given that it has proved very useful
in many other detection problems. We believe that the reason is the difficulty of
devising a learning formulation for viewpoint invariant features.

To clarify this difficulty, note that the fundamental aim of a local fea-
ture detector is to extract the same features from images regardless of effects
such as viewpoint changes. In computer vision, this behavior is more formally
called covariant detection. Handcrafted detectors achieve it by anchoring fea-
tures to image structures, such as corners or blobs, that are preserved under a
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Fig. 1. Detection by regression. We train a neural network φ that, given a patch x|p
around each pixel p in an image, produces a displacement vector hp = φ(x|p) pointing
to the nearest feature location (middle column). Displacements from nearby pixels are
then pooled to detect features (right column). The neural network is trained in order to
be covariant with transformations g of the image (bottom row). Best viewed on screen.
Image data from [4].

viewpoint change. However, there is no a–priori list of what visual structures
constitute useful anchors. Thus, an algorithm must not only learn the appear-
ance of the anchors, but needs to determine what anchors are in the first place.
In other words, the challenge is to learn simultaneously a detector together with
the detection targets.

In this paper we propose a method to address this challenge. Our first con-
tribution is to introduce a novel learning formulation for covariant detectors
(Sect. 2). This is based on two ideas: (i) defining an objective function in term of
a covariance constraint which is anchor-agnostic (Sect. 2.1) and (ii) formulating
detection as a regression problem, which allows to use powerful regressors such
as deep networks for this task (Fig. 1).

Our second contribution is to support this approach theoretically. We show
how covariant feature detectors are best understood and manipulated in term of
image transformations (Sect. 2.2). Then, we show that, geometrically, different
detector types can be characterized by which transformations they are covariant
with and, among those, which ones they fix and which they leave undetermined
(Sect. 2.3). We then show that this formulation encompasses all common and
many uncommon detector types and allows to derive a covariance constraint for
each one of them (Sect. 2.4).

Our last contribution is to validate this approach empirically. We do so by
first discussing several important implementation details (Sect. 3), and then by
training and assessing two different detector types, comparing them to off-the-
shelf detectors (Sect. 4). Finally, we discuss future extensions (Sect. 5).
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1.1 Related Work

Covariant detectors differ by the type of features that they extract: points [6,11,
16,36], circles [17,19,23], or ellipses [2,18,22,24,35,42]. In turn, the type of fea-
ture determines which class of transformations that they can handle: Euclidean
transformations, similarities, and affinities.

Another differentiating factor is the type of visual structures used as anchors.
For instance, early approaches used corners extracted from an analysis of image
edglets [8,29,34]. These were soon surpassed by methods that extracted corners
and other anchors using operators of the image intensity such as the Hessian
of Gaussian [3] or the structure tensor [7,11,47] and its generalizations [40].
In order to handle transformations more complex than translations and rota-
tions, scale selection methods using the Laplacian/Difference of Gaussian oper-
ator (L/DoG) were introduced [19,23], and further extended with affine adap-
tation [2,24] to handle full affine transformations. While these are probably the
best known detectors, several other approaches were explored as well, including
parametric feature models [9,28] and using self-dissimilarity [13,38].

All detectors discussed so far are handcrafted. Learning has been mostly
limited to the case in which detection anchors are defined a-priori, either by
manual labelling [14] or as the output of a pre-existing handcrafted detetc-
tor [5,12,31,39], with the goal of accelerating detection. Closer to our aim, [32]
use simulated annealing to optimise the parameters of their FAST detector for
repeatability. To the best of our knowledge, the only line of work that attempted
to learn repeatable anchors from scratch is the one of [25,41], who did so using
genetic programming; however, their approach is much more limited than ours,
focusing only on the repeatability of corner points.

More recently, [44] learns to estimate the orientation of feature points using
deep learning. Contrary to our approach, the loss function is defined on top of
the local image feature descriptors and is limited to estimating the rotation of
keypoints. The work of [27,37,45] also use Siamese deep learning architectures
for local features, but for local image feature description, whereas we use them
for feature detection.

2 Method

We first introduce our method in a special case, namely in learning a basic
corner detector (Sect. 2.1), and then we extend it to general covariant features
(Sects. 2.2 and 2.3). Finally, we show how the theory applies to concrete examples
of detectors (Sect. 2.4).

2.1 The Covariance Constraint

Let x be an image and let Tx be its version translated by T ∈ R
2 pixels. A corner

detector extracts from x a (small) collection of points f ∈ R
2. The detector is

said to be covariant if, when applied to the translated image Tx, it returns the
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Fig. 2. Left: an oriented circular frame f = gf0 is obtained as a unique similarity
transformation g ∈ G of the canonical frame f0, where the orientation is represented
by the dot. Concretely, this could be the output of the SIFT detector after orientation
assignment. Middle: the detector finds feature frames fi = gif0, gi = φ(xi) in images
x1 and x2 respectively due to covariance, matching the features allows to recover the
underlying image transformation x2 = gx1 as g = g2 ◦ g−1

1 . Right: equivalently, then
inverse transformations g−1

i normalize the images, resulting in the same canonical view.

translated points f + T . Most covariant detectors work by anchoring features
to image structures that, such as corners, are preserved under transformation.
A challenge in defining anchors is that these must be general enough to be found
in most images and at the same time sufficiently distinctive to achieve covariance.

Anchor extraction is usually formulated as a selection problem by finding the
features that maximize a handcrafted figure of merit such as Harris’ cornerness,
the Laplacian of Gaussian, or the Hessian of Gaussian. This indirect construction
makes learning anchors difficult. As a solution, we propose to regard feature
detection not as a selection problem but as a regression one. Thus the goal is to
learn a function ψ : x �→ f that directly maps an image (patch1) x to a corner f .
The key advantage is that this function can be implemented by any regression
method, including a deep neural network.

This leaves the problem of defining a learning objective. This would be easy
if we had example anchors annotated in the data; however, our aim is to dis-
cover useful anchors automatically. Thus, we propose to use covariance itself
as a learning objective. This is formally captured by the covariance constraint
ψ(Tx) = T + ψ(x). A corresponding learning objective can be formulated as
follows:

min
ψ

1

n

n∑

i=1

‖ψ(Tixi) − ψ(xi) − Ti‖
2 (1)

where (xi, Ti) are example patches and transformations and the optimization is
over the parameters of the regressor ψ (e.g. the filter weights in a deep neural
network).

2.2 Beyond Corners

This section provides a first generalization of the construction above. While
simple detectors such as Harris extract 2D points f in correspondence of

1 As the function ψ needs to be location invariant it can be applied in a sliding window
manner. Therefore x can be a single patch which represents its perception field.



104 K. Lenc and A. Vedaldi

corners, others such as SIFT extract circles in correspondence of blobs, and
others again extract even more complex features such as oriented circles (e.g.
SIFT with orientation assignment), ellipses (e.g. Harris-Affine), oriented ellipses
(e.g. Harris-Affine with orientation assignment), etc. In general, due to their role
in fixing image transformations, we will call the extracted shapes f ∈ F feature
frames.

The detector is thus a function ψ : X → F , x �→ f mapping an image patch
x to a corresponding feature frame f . We say that the detector is covariant with
a group of transformations2 g ∈ G (e.g. similarity or affine) when

∀x ∈ X , g ∈ G : ψ(gx) = gψ(x) (2)

where gf is the transformed frame and gx is the warped image.3

Working with feature frames is intuitive, but cumbersome and not very flexi-
ble. A much better approach is to drop frames altogether and replace them with
corresponding transformations. For instance, in SIFT with orientation assign-
ment all possible oriented circles f can be expressed uniquely as a similarity gf0
of a fixed oriented circle f0 (Fig. 2left). Hence, instead of talking about oriented
circles f , we can equivalently talk about similarities g. Likewise, in the case of
the Harris’ corner detector, all possible 2D points f can be expressed as transla-
tions T + f0 of the origin f0, and so we can talk about translations T instead of
points f .

To generalize this idea, we say that a class of frames F resolves a group of
transformations G when, given a fixed canonical frame f0 ∈ F , all frames are
uniquely generated from it by the action of G:

F = Gf0 = {gf0 : g ∈ G} and ∀g, h ∈ G : gf0 = hf0 ⇒ g = h (uniqueness).

This bijective correspondence allows to “rename” frames with transformations.
Using this renaming, the detector ψ can be rewritten as a function φ that outputs
directly a transformation ψ(x) = φ(x)f0 instead of a frame.

With this substitution, the covariance constraint (2) becomes

φ(gx) ◦ φ(x)−1 ◦ g−1 = 1 . (3)

Note that, for the group of translations G = T (2), this constraint corresponds
directly to the objective function (1). Figure 2 provides two intuitive visualiza-
tions of this constraint.

It is also useful to extend the learning objective (1) as follows. As train-
ing data, we consider n triplets (xi, x̂i, gi), i = 1, . . . , n comprising an image

2 Here, a group of transformation (G, ◦) is a set of functions g, h : R
2 → R

2 together
with composition g ◦ h ∈ G as group operation. Composition is associative; further-
more, G contains the identity transformation 1 and the inverse g−1 of each of its
elements g ∈ G.

3 The action gx of the transformation g on the image x is to warp it: (gx)(u, v) =
x(g−1(u, v)).
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(patch) xi, a transformation gi, and the transformed and distorted image
x̂i = gxi + η. Here η represents additive noise or some other useful distortion
such as a random rescaling of the intensity which allows to train a more robust
detector. The learning problem is then given by:

min
φ

1

n

n∑

i=1

d(ri, 1)2, ri = φ(x̂i) ◦ φ(xi)
−1 ◦ g−1

i (4)

where d(ri, 1)2 is the “distance” of the residual transformation ri from the
identity.

2.3 General Covariant Feature Extraction

The theory presented so far is insufficient to fully account for the properties
of many common detectors. For this, we need to remove the assumptions that
feature frames resolve (i.e. fix) completely the group of transformations G. Most
detectors are in fact covariant with transformation groups larger than the ones
that they can resolve. For example, the Harris’s detector is covariant with rotation
and translation (in the sense that the same corners are extracted after the image
is roto-translated), but, by detecting 2D points, it only resolves translations.
Likewise, SIFT without orientation assignment is covariant to full similarity
transformations but, by detecting circles, only resolves dilations (i.e. rotations
remains undetermined; Fig. 3).

Fig. 3. Left: a (unoriented) circle identifies the translation and scale component of a
similarity transformation g ∈ G, but leaves a residual rotation q ∈ Q undetermined.
Concretely, this could be the output of the SIFT detector prior orientation assignment.
Right: normalization is achieved up to the residual transformation q.

Next, we explain how Eq. (3) must be modified to deal with detectors that
(i) are covariant with a transformation group G but (ii) resolve only a subgroup
H ⊂ G. In this case, the detector function φ(x) ∈ H returns a transformation
in the smaller group H, and the covariance constraint (3) is satisfied up to a
complementary transformation q ∈ Q that makes up for the part not resolved
by the detector:

∃q ∈ Q : φ(gx) ◦ q ◦ φ(x)−1 ◦ g−1 = 1. (5)

This situation is illustrated graphically in Fig. 3.
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For this construction to work, given H ⊂ G, the group Q ⊂ G must be chosen
appropriately. In Eq. (5), and following Fig. 3, call h1 = φ(x) and h2 = φ(gx).
Rearranging the terms, we get that h2q = h1g, where h2 ∈ H, q ∈ Q and h1g ∈ G.
This means that any element in G must be expressible as a composition hq, i.e.
G = HQ = {hq : h ∈ H, q ∈ Q}. Formally (proofs in appendix):

Proposition 1. If the group G = HQ is the product of the subgroups H and Q,
then, for any choice of g ∈ G and h1 ∈ H, there is always a decomposition

h2qh
−1
1 g−1 = 1, such that h2 ∈ H, q ∈ Q. (6)

In practice, given G and H, Q is usually easily found as the “missing trans-
formation”; however, compared to (2), the transformation q in constraint (5) is
an extra degree of freedom that complicates optimization. Fortunately, in many
cases the following proposition shows that there is only one possible q:

Proposition 2. If H ⊳ G is normal in G (i.e. ∀g ∈ G,h ∈ H : g−1hg ∈ H)
and H ∩ Q = {1}, then, given g ∈ G, the choice of q in the decomposition (5) is
unique.

The next section works through several concrete examples to illustrate these
concepts.

2.4 A Taxonomy of Detectors

This section applies the theory developed above to standard detectors. Con-
cretely, we limit ourselves to transformations up to affine, and write:

hi =

[
Mi Pi

0 1

]

, q =

[
L 0
0 1

]

, g =

[
A T
0 1

]

.

Here Pi can be interpreted as the centre of the feature in image xi and Mi as
its affine shape, (A, T ) as the parameters of the image transformation, and L as
the parameter of the complementary transformation not fixed by the detector.
The covariance constraint (5) can be written, after a short calculation, as

M2LM−1
1 = A, P2 − AP1 = T. (7)

As a first example, consider a basic corner detector that resolves translations
H = G = T (2) with no (non-trivial) complementary transformation Q = {1}.
Hence M1 = M2 = L = A = I and (5) becomes:

P2 − P1 = T. (8)

This is the same expression found in the simple example of Sect. 2.1 and requires
the detected features to have the correct relative shift T .

The Harris corner detector is similar, but is covariant with rotations too.
Formally, H = T (2) ⊂ G = SE(2) (Euclidean transforms) and Q = SO(2)
(rotations). Since T (2) ⊳SE(2) is a normal subgroup, we expect to find a unique
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choice for q. In fact, it must be Mi = I, A = L = R, and the constraint
reduces to:

P2 − RP1 = T. (9)

In SIFT, G = S(2) is the group of similarities, so that A = sR is the com-
position of a rotation R ∈ SO(2) and an isotropic scaling s ∈ R+. SIFT prior to
orientation assignment resolves the subgroup H of dilations (scaling and trans-
lation), so that Mi = σiI (scaling) and the complement is a rotation L ∈ SO(2).
Once again H ⊳ G, so the choice of q is unique, and in particular L = R. The
constraint reduces to:

P2 − sRP1 = T, σ2/σ1 = s. (10)

When orientation assignment is added to SIFT, the similarities are completely
resolved H = G = S(2), Mi = σiRi is a rotation and scaling, and the constraint
becomes:

P2 − sRP1 = T, σ2/σ1 = s, R2R
⊤
1 = R. (11)

Affine detectors such as Harris-Affine (without orientation assignment) are
more complex. In this case G = A(2) are affinities and H = UA(2) are upright
affinities, i.e. affinities where the linear map Mi ∈ LT+(2) is a lower-triangular
matrix with positive diagonal (these affinities, which still form a group, leave the
“up” direction unchanged). The residual Q = SO(2) are rotations and HQ = G
is still satisfied. However, UA(2) is not normal in A(2), Proposition 2 does not
apply, and the choice of Q is not unique.4 The constraint has the form:

P2 − AP1 = T, M−1
2 AM1 ∈ SO(2). (12)

For affine detectors with orientation assignment, H = G = A(2) and the con-
straint is:

P2 − AP1 = T, M2M
−1
1 = A. (13)

The generality of our formulation allows learning many new types of detec-
tors. For example, by setting H = T (2) and G = A(2) it is possible to train a
corner detector such as Harris which is covariant to full affine transformations.
Furthermore, a benefit of working with transformations instead of feature frames
is that we can train detectors that would be difficult to express in terms of geo-
metric primitives. For instance, by setting H = SO(2) and G = SE(2), we can
train a orientation detector which is covariant with rotation and translation. As
for affine upright features, in this case H is not normal in G so the comple-
mentary translation q = (I, T ′) ∈ Q is not uniquely fixed by g = (R, T ) ∈ G;
nevertheless, a short calculation shows that the only part of (5) that matters in
this case is

R⊤
2 R1 = R (14)

where hi = (Ri, 0) are the rotations estimated by the regressor.

4 Concretely, from M2L = AM1 the complement matrix L is given by the QR decom-
position of the r.h.s. which is a function of M1, i.e. not unique.
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3 Implementation

This section discusses several implementation details of our method: the para-
metrization of transformations, example CNN architectures, multiple features
detection, efficient dense detection, and preparing the training data.

Transformations: Parametrization and Loss. Implementing (4) requires para-
metrizing the transformation φ(x) ∈ H predicted by the regressor. In the most
general case of interest here, H = A(2) are affine transformations and the sim-
plest approach is to output the corresponding matrix of coefficients:

φ(x) =

[
a b p

0 0 1

]

=

⎡

⎣

au bu pu

av bv pv

0 0 1

⎤

⎦ .

Here p can be interpreted as the feature center and a and b as the feature affine
shape. By rearranging the terms in (2), the loss function in (4) takes the form

d2(r, 1) = min
q∈Q

‖gφ(x) − φ(gx)q‖2
F , (15)

where ‖ · ‖F is the Frobenius norm. As seen before, the complementary trans-
formation q is often uniquely determined given g and the minimization can be
removed by substituting this fixed value for q. In practice, g and q are also
represented by matrices, as described in Sect. 2.4.

When the resolved transformations H are less general than affinities, the
parametrization can be adjusted accordingly. For instance, for the basic detector
of Sect. 2.1, where H = T (2), on can fix a = (1, 0), b = (0, 1), q = I and
g = (I, T ), which reduces to Eq. (1). If, on the other hand, H = SO(2) are
rotation matrices as for the orientation detector (14),

φ(x) =
1

√

a2
u + a2

v

⎡

⎣

au −av 0
av au 0
0 0 1

⎤

⎦ . (16)

Table 1. Network architectures. The DetNet-S and DetNet-L CNN architectures used
which consist of a small number of convolutional layers applied densely and with no
padding. The filter sizes and number is specified in the top part of each cell. Filters
are followed by ReLU layers and, where indicated, by 2 × 2 max pooling and/or LRN.

Model Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

DetNet-S 5 × 5 × 40 5 × 5 × 100 4 × 4 × 300 1 × 1 × 500 1 × 1 × 500 1 × 1 × 2

Pool ↓ 2 Pool ↓ 2

DetNet-L 5 × 5 × 60 5 × 5 × 150 4 × 4 × 450 1 × 1 × 600 1 × 1 × 600 1 × 1 × 600 1 × 1 × 2

Pool ↓ 2 Pool ↓ 2 + LRN
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Network Architectures. One of the benefits of our approach is that it allows to use
deep neural networks in order to implement the feature regressor φ(x). Here we
experiment with two such architectures, DetNet-S and DetNet-L, summarized
in Table 1. For fast detection, these resemble the compact LeNet model of [15].
The main difference between the two is the number of layers and filters. The loss
(15) is differentiable and easily implemented in a network loss layer. Note that
the loss requires evaluating the network φ twice, once applied to image x and
once to image gx. Like in siamese architectures, these can be thought of as two
networks with shared weights.

When implemented in a standard CNN toolbox (in our case in MatConvNet
[43]), multiple patch pairs are processed in parallel by a single CNN execution in
what is known as a minibatch. In practice, the operations in (15) can be imple-
mented using off-the-shelf CNN components. For example, the multiplication by
the affine transformation g in (15), which depends on which pair of images in
the batch is considered, can be implemented by using convolution routines, 1×1
filters, and so called “filter groups”.

From Local Regression to Global Detection. The formulation (4) learns a function
ψ that maps an image patch x to a single detected feature f = ψ(x). In order
to detect multiple features in a larger image, the function ψ is simply applied

DETNET
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d
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Fig. 4. Training and validation patches. Example of training triplets (x1,x2, g) (x1

above and x2 = gx1 below) for different detectors. The figure also shows “easy” and
“hard” patch pairs, extracted from the validation set based on the value of the loss (16).
The crosses and bars represent respectively the detected translation and orientation,
as learned by DetNet-L and RotNet-L.
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convolutionally at all image locations (Fig. 1). Then, due to covariance, partially
overlapping patches x that contain the same feature are mapped by ψ to the
same detection f . Such duplicate detections are collapsed and their number,
which reflects the stability of the feature, is used as detection confidence.

For point features (G = T (2)), this voting process is implemented efficiently
by accumulating votes in a map containing one bin for each pixel in the input
image. Votes are accumulated using bilinear interpolation, after which non-
maxima suppression is applied with a radius of two pixels. This scheme can
be easily extended to more complex features, particularly under the reasonable
assumption that only one feature is detected at each image location.

Note that some patches may in practice contain two or more clearly visible
feature anchors. The detector ψ must then decide which one to select. This is
not a significant limitation at test time (as the missed anchors would likely be
selected by a translated application of ψ). Its effect at training time is discussed
later.

Efficient Dense Evaluation. As most CNNs, architectures DetNet-S and DetNet-
L rapidly downsample their input for efficiency. In order to perform dense feature
detection, the easiest approach is to reapply the CNNs to slightly shifted versions
of the image, filling the “holes” left in the downsampled output. An equivalent
but much more efficient method, which reuses significant computations in the
denser early layers of the network, is the à trous algorithm [21,26].

We propose here an algorithm equivalent to à trous which is just as effi-
cient and more easily implemented. Given a CNN layer xl = φl(xl−1) that
downsamples the input tensor xl−1 by a factor of, say, two, the downsampling
factor is changed to one, and the now larger output xl is split into four parts

x
(k)
l , k = 1, . . . , 4. Each part is obtained by downsampling xl after shifting it

by zero or one pixels in the horizontal and vertical directions (for a total of
four combinations). Then the deeper layers of the networks are computed as
usual on the four parts independently. The construction is repeated whenever
downsampling needs to be performed.

Detection speed can be improved with evaluating the regressor with stride 2
(at every second pixel). We refer to these detector as DetNetS2. Source code
and the DetNetmodels are freely available5.

Training Data. Training images are obtained from the ImageNet ILSVRC 2012
training data [33], extracting twenty random 57 × 57 crops per image, for up to
6M crops. Uniform crops are discarded since they clearly cannot contain any
useful anchor. To do so, the absolute response of a LoG filter of variance σ = 2.5
is averaged and the crop is retained if the response is greater than 1.5 (image
intensities are in the range [0, 255]). Note that, combined with random selection,
this operation does not center crops on blobs or any other pre-defined anchors,
but simply discards uniform or very low contrast crops.

5 https://github.com/lenck/ddet.

https://github.com/lenck/ddet
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Recall that the formulation Sect. 2.2 requires triplets (x1,x2, g). A triplet is
generated by randomly picking a crop and then by extracting 28 × 28 patches
x1 and x2 within 20 pixels of the crop center (Fig. 4). This samples two patches
related by translation, corresponding to the translation sampled in g, while guar-
anteeing that patches overlap by least 27%. Then the linear part of g is sampled
at random and used to warp x2 around its center. In order too achieve bet-
ter robustness to photometric transformations, additive (±8% of the intensity
range) and multiplicative (±40% of a pixel intensity) is added to the pixels.

Training uses batches of 64 patch pairs. An epoch contains 40 · 103 pairs,
and the data is resampled after each epoch completes. The learning rate is set
to λ = 0.01 and decreased tenfold when the validation error stops decreasing.
Usually, training converges after 60 epochs, which, due to the small size of the
network and input patches, takes no more than a couple of minutes on a GPU.

4 Experiments

We apply our framework to learn two complementary types of detectors in order
to illustrate the flexibility of the approach: a corner detector (Sect. 4.1) and an
orientation detector (Sect. 4.2).

Evaluation Benchmark and Metrics. We compare the learned detectors to stan-
dard ones: FAST [30,31] (using OpenCV’s implementation6), the Difference of
Gaussian detector (DoG) or SIFT [20], the Harris corner point detector [11] and
Hessian point detector [24] (all using VLFeat’s implementation7). All experi-
ments are performed at a single scale, but all detectors can be applied to a scale
space pyramid if needed.

For evaluation of the corner detector, we use the standard VGG-Affine bench-
mark dataset [24], using both the repeatability and matching score criteria. For
matching score, SIFT descriptors are extracted from a fixed region of 41 × 41
pixels around each corner. A second limitation in the original protocol of [24] is
that repeatability can be made arbitrarily large simply by detecting enough fea-
tures. Thus, in order to control for the number of features detected, we compute
repeatability and matching score as the feature detection threshold is increased;
we then plot the metrics as functions of the number of feature selected in the
first image.

VGG-Affine contains scenes related by homography. We also consider the
more recent DTU-Robots dataset [1] that contains 3D objects under changing
viewpoint. Matches in DTU dataset are estimated using the known 3D shape
of the objects and position of the camera. The data is divided in three “arcs”,
corresponding to three swipes of the robotic camera at different distances from
the scene (0.5, 0.65, and 0.8 m respectively). Due to the large number of images
in this dataset, only aggregated results for n = 600 are reported.

6 opencv.org.
7 www.vlfeat.org.

http://opencv.org
www.vlfeat.org
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Fig. 5. Repeatability on the DTU Dataset averaged over all 60 scenes, divided by arc.
Repeatability is computed over the top 600 detections for each detector.

4.1 Corner or Translation Detector

In this section we train a “corner detector” network DetNet. Using the formal-
ism of Sect. 2, this is a detector which is covariant with translations G = T (2),
corresponding to the covariance constraint of Eq. (1). Figure 4 provides a few
examples of the patches used for training, as well as of the anchors discovered
by learning.

Figure 5 reports the performance of the two versions of DetNet, small and
large, on the DTU data. As noted in [1], the Harris corner detector performs
very well on the first arc; however, on the other two arcs DetNet-L clearly
outperforms the other methods, whereas DetNet-S is on par or a little better
than standard detectors.

Figure 6 evaluates the method on the VGG-Affine dataset. Here the learned
networks perform generally well too, outperforming existing detectors in some
scenarios and performing less well on others. Note that our current implemen-
tation is the simplest possible and the very first of its kind; in the future more
refined setups may improve the learned detectors across the board (Sect. 5).

The speed of the tested detectors is shown in Table 2. While our goal is
not to obtain the fastest detector but rather to demonstrate the possibility of
learning detectors from scratch, we note that even an unoptimised MATLAB
implementation can achieve reasonable performance on a GPU, especially with
stride 2 with a slightly decreased performance compared to the dense evaluation
(see Fig. 6).

Table 2. The detection speed (in FPS) for different image sizes of all tested detectors,
computed as an average over 10 measurements. Please not that the DetNetdetectors
run on a GPU, other detectors run on a CPU.

DetNet-L DetNet-L S2 DetNet-S DetNet-S S2 Harris DoG Hessian FAST

320 × 240 9.16 33.14 27.26 83.16 144.39 88.64 150.34 439.68

800 × 600 1.45 5.87 4.68 19.32 15.65 8.00 17.45 328.20

1024 × 768 0.39 1.56 2.78 11.68 12.21 6.05 11.17 206.96
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Fig. 6. Repeatability and matching score on VGG dataset comparing two versions of
DetNet and standard detectors controlled for an increasing number of detected features.
Dashed line values are for DetNet with stride 2. Scores are computed as an average
over all 5 transformed images for each set (e.g. “wall”).

4.2 Orientation Detector

This section evaluates a network, RotNet, trained for orientation detection.
This detector resolves H = SO(2) rotations and is covariant to Euclidean trans-
formations G = SE(2), which means that translations Q = T (2) are nuisance
factor that the detector should ignore. The corresponding form of the covariance
constraint is given by Eq. (14). Training proceeds as above, using 28 × 28 pixels
patches and, for g, random 2π rotations composed with a maximum nuisance
translation of 0, 3, or 6 pixels, resulting in three different versions of the network
(Fig. 4).
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Fig. 7. Orientation detector evaluation. Left: versions of RotNet(RN) and the SIFT
orientation detector evaluated on recovering the relative rotation of random patch
pairs. Right: matching score on the VGG-Affine benchmark when the native SIFT
orientation estimation is replaced with RotNet(percentage of correct matches using
the DoG-Affine detector).
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The SIFT detector [20] contains both a blob detector as well as an orientation
detector, based on determining the dominant gradient orientation in the patch.
Figure 7 compares the average angular registration error obtained by the SIFT
orientation detector and different versions of RotNet, measured from pairs of
randomly-sampled image patches. We note that: (1) RotNetis sensibly better
than the SIFT orientation detector, with up to half the error rate, and that
(2) while the error increases with the maximum nuisance translation between
patches, networks that are trained to account for such translations are sensibly
better than the ones that do not. Furthermore, when applied to the output of the
SIFT blob detector, the improved orientation estimation results in an improved
feature matching score, as measured on the VGG-Affine benchmark.

5 Discussion

We have presented the first general machine learning formulation for covariant
feature detectors. The latter is supported by a comprehensive theory of covariant
detectors, and builds on the idea of casting detection as a regression problem.
We have shown that this method can successfully learn corner and orientation
detectors that outperform in several cases off-the-shelf detectors. The potential
is significant; for example, the framework can be used to learn scale selection
and affine adaptation CNNs. Furthermore, many significant improvements to
our basic implementation are possible, including explicitly modelling detection
strength/confidence, predicting multiple features in a patch, and jointly training
detectors and descriptors.

Acknowledgements. We would like to thank ERC 677195-IDIU for supporting this
research.

A Proofs

Proof (of Proposition 1). Due to group closure, gh1 ∈ G. Since HQ = G, then
there must be h2 ∈ H, q ∈ Q such that h2q = gh1, and so h2qh

−1
1 g−1 = 1.

Proof (of Proposition 2). Let h2q(h1)
−1 = h′

2q
′(h′

1)
−1 be two such decomposi-

tions and multiply to the left by (q)−1(h′
2)

−1 and to the right by h′
1:

q−1 [(h′
2)

−1h2] q
︸ ︷︷ ︸

∈H (due to normality)

h−1
1 h′

1
︸ ︷︷ ︸

∈H

= q−1q′

︸ ︷︷ ︸

∈Q

.

Since this quantity is simultaneously in H and in Q, it must be in the intersection
H ∩ Q, which by hypothesis contains only the identity. Hence q−1q′ = 1 and
q = q′.
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