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Abstract

Many applications involve multiple-modalities such as

text and images that describe the problem of interest. In

order to leverage the information present in all the modali-

ties, one must model the relationships between them. While

some techniques have been proposed to tackle this prob-

lem, they either are restricted to words describing visual

objects only, or require full correspondences between the

different modalities. As a consequence, they are unable to

tackle more realistic scenarios where a narrative text is only

loosely related to an image, and where only a few image-text

pairs are available. In this paper, we propose a model that

addresses both these challenges. Our model can be seen

as a Markov random field of topic models, which connects

the documents based on their similarity. As a consequence,

the topics learned with our model are shared across con-

nected documents, thus encoding the relations between dif-

ferent modalities. We demonstrate the effectiveness of our

model for image retrieval from a loosely related text.

1. Introduction

Many real-world applications involve multi-modal data,

where information arises from different sources, such as im-

ages, text, or speech. In this paper, we focus on images with

loosely related narrative text descriptions, which are a nat-

ural way of providing rich information about the image, not

restricted to exploiting words associated to visible objects.

Figure 1 gives an example of this: Objects irrelevant to the

description of the image, such as sky and cranes, are not

present in the text, while non-visual words, such as launch,

maiden flight and accomplish, strongly help understanding

the image at a high level. Even though existing techniques

have tackled the problem of leveraging text associated with

images, they typically assume the text to contain mostly

words describing visible objects. As a consequence, they

are not able to exploit the entire information present in a

narrative text.

Combining multiple sources of information can be traced

back to multiple-kernel learning [9]. Recently, fusing text

“A timed exposure of the first Space 
Shuttle mission, STS-1, at Launch 
Pad A, Complex 39, turns the space 
vehicle and support facilities into a 
night-time fantasy of light. To the left 
of the Shuttle are the fixed and the 
rotating service structures.”

Figure 1. Example of an image with a loosely related, narrative

description from wikipedia.

and image information has received much attention. Several

approaches [1, 3, 22, 20, 2] have proposed general proba-

bilistic models to tackle the multi-modal scenario for tasks

such as object detection, recognition, and scene understand-

ing. However, these approaches are restricted to using only

words matching visual objects in the images. These words

typically correspond to category labels, or tags, and richer

information in the text is discarded.

In the text processing community, topic models, such as

Latent Dirichlet Allocation (LDA) [5], have proved effec-

tive at discovering the underlying topics in text documents,

and thus at modeling more than single words. To this end,

they learn the groups of semantically consistent words that

generate the training data. Topic models were extended to

the image domain by replacing text words with local image

descriptors [19, 18]. The resulting models have been suc-

cessfully applied to problems such as scene classification

and content-based image retrieval. Modeling spatial inter-

actions across topics in an LDA model has recently been

addressed for image segmentation [23] by defining a spatial

graph over the topic activations of local image patches.

While LDA is effective in these single modality scenar-

ios, it does not directly apply to the multi-modal case. In

particular, LDA does not provide a mechanism to model the

relationships between topics coming from different modal-

ities. To address this issue, other models have been devel-

oped. For instance, Correspondence LDA (Corr-LDA) [3]

was proposed to capture the topic-level relations between

images and text annotations. Corr-LDA assumes a one-to-

one correspondence between the topics of each modality. In

other words, each image topic must have a corresponding

text topic. To generalize over this, a topic regression multi-



modal LDA was recently proposed [13]. This model learns

a regression from the topics in one modality to those in the

other. As a result, it does not have a one-to-one correspon-

dence between each individual topic, but between the sets

of topics describing each modality in a document. Unfortu-

nately, this still assumes that each image is associated with

a text description. Furthermore, in practice, these types of

models have only been applied to the case where all the

words in the description have a visual interpretation. In

more realistic scenarios where images and text are loosely

related, these models would therefore neglect most of the

text information.

In this paper, we introduce a model that addresses the

two above-mentioned issues. In particular, our model is

able to leverage the information of non-visual words in a

text loosely related to an image. Furthermore, we do not

require to be given pairs of corresponding image and text,

but only employ the notion of similarities between two doc-

uments containing a single modality. As a consequence, our

model can exploit the availability of only a few image-text

pairs, together with image-image and text-text similarities,

to learn the intrinsic relationships between images and text.

More specifically, our model can be seen as a Markov

random field (MRF) over LDA topic models. Each node of

the MRF represents the topic model for a particular docu-

ment, which contains a single modality. The edges in the

graph encode the similarity between two documents con-

taining either the same modality, or different ones. Each

document is then generated not only from its own topics,

but also from the topics of the documents connected to it.

Learning our model therefore yields topics that are shared

across several documents. As a consequence, when two

linked documents contain different modalities, our model

learns the relations between these modalities. We name our

model Multi-modal Document Random Field (MDRF).

We demonstrate the benefit of our approach over existing

multi-modal LDA models on the task of retrieving images

from loosely related text descriptions.

2. Modeling Multi-modal Data

In this section, we first briefly review LDA and its multi-

modal extensions, and then explain the generative process

of our model.

2.1. LDA and Corr­LDA Revisited

Latent Dirichlet Allocation [5] is a generative probabilis-

tic model for collections of discrete data. In general, LDA

aims to discover the topics that generate the documents in a

corpus, as well as the topic proportion for each document.

More specifically, following the notation in Figure 2, the

topic proportion θd for a particular document d follows a

Dirichlet distribution with parameter α. Given θd, a par-

ticular topic zdn is drawn from a multinomial distribution,
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Figure 2. Graphical models of LDA (left) and Corr-LDA (right).

and in turn, a word wdn from the corresponding topic-word

multinomial distribution φk, which is drawn from a Dirich-

let distribution with prior β. This defines the marginal prob-

ability for a document as

p(wd|α, β) =

∫

p(θd|α) (1)

×

(

N
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β)

)

dθd ,

The probability distribution for the whole document corpus

is taken as the product of the probability of each document.

Correspondence LDA [3] was introduced to account for

the availability of multiple modalities in the LDA frame-

work. In particular, it tackles the problem of modeling an-

notated images. The image part is modeled using standard

LDA. To generate the text, a region indicator ydn′ is drawn

from a uniform distribution over {1, · · · , N}, and used in

conjunction with the image topic assignment zdn to draw

the text words w′
dn from a multinomial distribution with

dirichlet prior β′. From this, it can be seen that Corr-LDA

treats the two modalities differently: The text topics are

sampled from the empirical distribution of the image top-

ics. Thus if a topic is not discovered from the images, this

topic won’t be available to generate the text. As mentioned

before, this limits the applicability of Corr-LDA in scenar-

ios where the text is more loosely related to the images.

To generalize over this requirement for one-to-one topic

correspondence, the topic regression multi-modal LDA

model was recently proposed [13]. In essence, this model

learns a linear mapping between the topics proportions for

one modality and the topics proportions for the other. As in

Corr-LDA, the text modality can then be generated from the

topic proportions computed for the image modality. How-

ever, the dependencies between the topics is weaker than

in the Corr-LDA case. Instead of relying on a multinomial

distribution to generate the topics, the model uses a logistic

normal distribution, as the correlated topic model [4]. This

generalizes over the Corr-LDA model, but has the draw-

back of making inference more complicated, since there are

O(K2) additional parameters to learn. More importantly,

this still assumes that image-text pairs are available for all
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Figure 3. The Graphical model of the Multi-modal Document Ran-

dom Field model. The dashed edges denote the similarities be-

tween different documents.

the documents. As described below, our model addresses

this issue by considering the notion of similarities between

two documents, thus having weaker requirements for the

documents available at training.

2.2. Multi­modal Document Random Field Model

Our paper focuses on learning a generative

topic model from a set of documents D =
{(y1,w1), (y2,w2), · · · , (yD,wD)}. Each document

(yd,wd) contains an index yd ∈ {1, 2, · · · ,M} selecting

one modality among M possible ones, and a set wd

of words drawn from the vocabulary of this particular

modality. Without loss of generality, we assume that

each word wdn (1 ≤ n ≤ Nd) takes a discrete value

in {1, 2, · · · , Vm}, where Vm is the vocabulary size of

the m-th modality. Note that as opposed to Corr-LDA

and other existing multi-modal topic models, we do not

assume a full set of corresponding documents across the

different modalities. In other words, we do not assume

that there exists a corresponding text document for each

image document. Instead, we assume that we are given a

document-level similarity graph G = (D, E), where E is a

set of edges modeling the similarity between different doc-

uments. If there is an edge e = (i, j) between document i

and document j, the two documents are considered similar.

Note that this is a weaker requirement than one-to-one

correspondences, since the graph might not contain all

image-text pairs, and allows for more general similarities,

such as image-image ones. As we show below, this serves

as a weakly-supervised information to help us discover the

topics shared across documents and modalities.

Figure 3 depicts the graphical model of our approach,

where α and β1...M are the hyperparameters for the Dirich-

let priors. In this graphical model, each document is repre-

sented with an LDA model. In addition to this, we model

the relationships between pairs of documents with the sim-

ilarity graph G. This graph defines a Markov random field

over the documents. For each edge e = (i, j) in the graph,

we define the potential function

ψ(θi,θj) = exp (−λf(θi,θj)) , (2)

where f(θi,θj) is a distance measure between two docu-

ments, and λ is the parameter that controls the peakyness

of the potential function, which can be interpreted as the

strength of the similarity. Several distance measures can be

employed, the simplest of which is the Euclidean distance.

Here, we choose the symmetric KL-divergence defined as

f(θi,θj) =
1

2
(DKL(θi||θj) +DKL(θj ||θi)) (3)

=
1

2

K
∑

k=1

(

θik log
θik

θjk
+ θjk log

θjk

θik

)

. (4)

From a generative perspective, each document d in modeled

by first generating a topic distribution θd, and then sampling

the words of that document given θd. Similarly as in LDA,

we generate θd, from a Dirichlet prior. However, in addi-

tion to this prior, the topic distribution also depends on the

random field. More specifically, given the hyperparameters,

the number of topics K, the graph G, and the vocabulary

size Vm for each modality, the generative procedure goes

through the following steps:

1. For each topic k in each modality m, sample the Vm
dimensional word distribution φmk ∼ Dir(φ|βm).

2. Sample the D topic proportions θ1...D from the distri-
bution

p(θ1...D|α,G) =
1

Z
exp(−λ

∑

i,j∈E

f(θi,θj))

D
∏

d=1

Dir(θd|α),

where Z is a normalization constant.

3. For each document d, sample its modality yd from a

uniform distribution over {1, · · · ,M}.

4. For each word wdn:

(a) Sample a topic zdn ∼ Multi(z|θd);

(b) Sample a word wdn ∼ Multi(w|φydzdn
).

From this procedure, and by defining Φ as the set of word-
distribution parameters, the joint probability of a document
corpus given similarities between the documents can be
written as

p(D,θ1...D, z1...D,Φ|α, β1...M ,G)

=
1

Z

M
∏

m=1

K
∏

k=1

Dir(φmk|βk) exp

(

−λ
∑

i,j∈E

f(θi,θj)

)

(5)

×

D
∏

d=1

Dir(θd|α)

(

Nd
∏

n=1

Multi(zdn|θd)Multi(wdn|φydzdn
)

)

.



(a) Previous Models (b) Our Model

Figure 4. Comparison of existing multi-modal LDA models with

our model. While previous models define documents in a “su-

perdocument” fashion, our model assumes a single modality per

document.

2.3. Relation to Existing Models

In general, our model is a natural extension of LDA to

the multi-modal case. The key contribution of our model

is the document random field, which enables us to capture

the similarities between documents from different modali-

ties. Note that our definition of a document is different from

existing multi-modal LDA models, who define a document

to be a super-document that contains one sub-document

for each modality. As depicted in Fig. 4, defining docu-

ments to be single-modal enables us to utilize those with-

out cross-modality correspondences, or supervised intra-

document similarities. We will show in the experiments that

such flexibility is particularly helpful when correspondence

information is scarce.

The idea of fusing the Markov Random Field and LDA

has been shown in [23]. However, in this approach, a ran-

dom field is built within each document on the topic level,

in order to capture the spatial relationships between topic

assignments. Our model builds the random field on the doc-

ument level instead, and tackles the problem of multi-modal

data and document similarities.

From a different perspective, our model can be seen as

learning a joint latent space for documents containing dif-

ferent modalities. The similarities between documents are

enforced in the joint latent space in a weakly supervised

manner. Learning shared latent spaces across modalities

has been an active research topic in human pose estimation

[17, 6, 16] and image domain transfers [15]. However, the

existing methods focus on dense, real-valued feature spaces

and are typically designed for Gaussian distributions. Our

work, on the other hand, explores the possibility of finding

shared information in the context of integer-valued multi-

nomial distributions.

In the single-modality case, several methods such as the

Hierarchical Dirichlet Process [21] and Pachinko Alloca-

tion [10] have shown that a deeper topic structure may bet-

ter capture the underlying semantics of the corpus. The po-

tential discrepancy between image topics and text topics, as

raised by [13], can be tackled by assuming topic correspon-

dence at a deeper level. While our model uses LDA as the
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Figure 5. Empirical-MDRF for efficient inference.

generative procedure of the data, a deep topic model can be

naturally employed. This will be the topic of future work.

3. Learning the Model

In this section we describe our learning strategy for the

MDRF model. The hidden variables of the model are the

multinomial distribution parameters Φ and the topic as-

signments for all the documents. We assume a symmet-

ric Dirichlet prior for the topic distribution and word distri-

bution, and take β1...M to be identical for all the modal-

ities. Similarly as in LDA, exact inference is in general

intractable. We therefore need to resolve to one of the

usual approximate inference methods, such as variational

inference [5], expectation propagation [11], or Gibbs sam-

pling [7]. Here, we use Gibbs sampling, since it has proved

effective at avoiding local optima, while yielding relatively

simple algorithms.

3.1. Empirical­MDRF for Efficient Inference

The general MDRF model is able to capture the docu-

ment similarities via the random field. However, inference

with this random field is generally difficult as the topic dis-

tributions for multiple documents are coupled. Inspired by

Corr-LDA, instead of enforcing similarity on θds, we in-

troduce an empirical topic distribution θ̂d for each docu-

ment d, and construct the graph on these distributions. This

yields the generative model depicted in Figure 5. We call

this model the Empirical-MDRF and will use it for all the

experiments in this paper.

Specifically, given a set of topic assignments zd in docu-

ment d, the empirical topic distribution θ̂d is computed as

θ̂dk =
n
(d)
dk + α

∑K

k=1 n
(d)
dk +Kα

, (6)

where n
(d)
dk is the number of occurrences of topic k in docu-

ment d. Note that we introduced a smoothness factor in the

computation of θ̂d. This leads to a more robust estimation in



practice, when we need to compare the similarity between

two documents. In fact, θ̂d is the maximum likelihood es-

timate of the underlying multinomial distribution given the

observation zd sampled from the Dirichlet-multinomial dis-

tribution

p(z|α) =

∫

θ

Multi(z|θ)Dir(θ|α)dθ . (7)

The joint distribution of this empirical model is similar to

that of the original MDRF model. However, as we will show

in the next subsection, inference in the empirical MDRF

model can be performed via an efficient collapsed Gibbs

sampling algorithm.

3.2. Gibbs Sampling

For an excellent discussion about Gibbs sampling for

LDA-like probabilistic models, we refer the reader to [8].

In this paper, we employ a collapsed Gibbs sampling algo-

rithm. To this end, we marginalize out θ and Φ, and only

perform Gibbs sampling on the zs. More specifically, we

sample a topic assignment for one word based on its con-

ditional probability given the observations and the topic as-

signments for the other words, and by integrating out the

multinomial distributions with parameters θ and Φ. For

document d containing modality yd = m, the probability

of the topic assignment of word w being k given the corpus

D, the parameters α and β, and the topic assignments for

the other words z−w is expressed as

P (z = k|D, z−w, α, β) ∝

n
(d)
dk + α

∑K

k=1 n
(d)
dk +Kα

×
n
(m)
kw + βy

∑Vm

w=1 n
(m)
kw + Vmβm

(8)

×
∏

d′,(d,d′)∈E

exp
(

λf(θ̂d,−z, θ̂d′)− λf(θ̂d,z=k, θ̂d′)
)

,

where n
(m)
kw is the number of occurrences of wordw in topic

k for modality m, both excluding the current word. θ̂d,−z

is the empirical topic distribution for document d excluding

the current word, and θ̂d,z=k is the empirical topic distribu-

tion for document dwhen the topic for the current word is k.

The first two terms in this equation are identical to those in

LDA, and the last term encodes the conditional probability

introduced by the random field.

3.3. Parameter Estimation

For all the topic models, determining the hyperparam-
eters of the Dirichlet distributions is an important issue.
While empirically optimal parameter settings are available
for LDA [7] when applied to text processing, such parame-
ter settings might not be optimal for other modalities such
as images. Finding the optimal parameters for our method
by performing a grid-search is also prohibitive. Therefore,

“world, species, united, states, found, north, american,

image, convert, common, large, long, located, city, war,

native, small, family, century, largest, national, water,

time, light, river, plant, popular, designed”

Figure 6. Representative subset of the images in the POTD dataset,

and of the words that appear most frequently in the text corpus.

we seek to automatically learn these parameters from the
training data. This has been shown to be possible when
the latent topic assignments are fixed (i.e., in a slice dur-
ing the Gibbs sampling procedure) [12]. For instance, for
fixed latent variables, the hyperparameter α is obtained by
iteratively carrying out the update rule

α←
α
[(

∑D

d=1

∑K

k=1 Ψ(n
(d)
dk + α)

)

−DKΨ(α)
]

K
[(

∑D

d=1 Ψ(
∑K

k=1(n
(d)
dk + α))

)

−DΨ(Kα)
] , (9)

where Ψ(·) is the digamma function Ψ(x) = d
dx

ln Γ(x).
The other parameters, β1...M , are updated in a similar fash-

ion. In practice, hyperparameter update is performed every

few Gibbs sampling steps. To prevent over-fitting to the

current slice, we only run a limited number of iterations for

each update (1 in our experiments).

4. Experiments

In this section, we empirically show the effectiveness of

our model on the task of multi-modal image retrieval. Since

most existing multi-modal datasets are limited to annota-

tions that describe visible object names only, we collected

a new dataset containing richer and looser text descriptions

of the images. We first describe this dataset and the exper-

imental settings, and then present our results and compare

them against those obtained with LDA and Corr-LDA.

4.1. The Wikipedia POTD Dataset

The wikipedia “Picture of the day” website1 provides a

collection of daily featured pictures. Together with the im-

ages, a short paragraph of about 100 words gives a brief and

1http://en.wikipedia.org/wiki/Wikipedia:Picture of the day
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Figure 7. Average error rate as a function of the percentage of the

ranked list considered for retrieval. Curves closer to the axes rep-

resents better performance. See the text for more details.

Method AUC value

LDA-NN 43.15± 1.95
LDA-CCA 39.44± 2.27
Corr-LDA 26.94± 1.87
MDRF 23.14± 1.49

Table 1. Average area under the curve (AUC) (in percentage) and

standard deviations for the curves in Figure 7. A smaller value

indicates a better performance.

loose description of the picture. Figure 6 shows several rep-

resentative images and words from the dataset. Note that

both the pictures and the descriptions cover a wide variety

of topics ranging from celestial pictures to historical pho-

tos. Furthermore, the words are beyond the scope of simple

visual objects present in the images.

For our experiment, we collected the daily pictures and

their corresponding descriptions from Nov 1, 2004 to Oct

30, 2010. After removing non-image data (e.g., movie files)

and text that could not be parsed, we obtained a total of

1987 image-text pairs. We used rainbow2 to tokenize the

text and kept the words that appeared more than 3 times

in the whole corpus. This resulted in a vocabulary of 3562

words. For the images, we computed densely sampled SIFT

features over 16× 16 grids. Each image was resized so that

approximately 400 features were sampled per image. We

randomly chose a subset of 50,000 SIFT features and ran k-

means to obtain 1,000 clusters. These clusters were used

to vector-quantize the SIFT features, thus yielding 1,000

discrete visual words. The dataset can be downloaded at

http://www.eecs.berkeley.edu/∼jiayq/wikipedia potd/.

2http://www.cs.cmu.edu/∼mccallum/bow/rainbow/

Method Percentage

LDA-NN 30.10
LDA-CCA 30.98
Corr-LDA 53.30
MDRF 58.84

Table 2. Percentage of images correctly retrieved in the first 20%

of the ranked list.

4.2. Retrieval Protocol

To test our model and to compare it against existing

methods, we consider the problem of multi-modal image

retrieval. More specifically, given a text query, we aim to

find images that are most relevant to it. For each text in the

test set, we rank the test images using either our approach,

or a competing method. To this end, for Corr-LDA and for

our method, we learn the topic distributions θi for each test

image. Given a text query w = w1, w2, · · · , wN , the score

for each image is then defined as

si = p(w|θi) =

N
∏

n=1

p(wn|θi) . (10)

Note that the marginal probabilities p(wn|θi) for all words

can be pre-computed for each image during learning time,

so no marginalization is necessary during query time. An

alternative to this would be to compute the text-topic dis-

tribution and measure the KL-divergence between this dis-

tribution and the image-topic distribution. However, this

requires an inference step for each query, which is time-

consuming. Instead, the score described above is determin-

istic and can be performed in O(N) time.

Since there is only one ground-truth match for each im-

age/text, to evaluate the performance we rely on the position

of the ground-truth image in the ranked list obtained. More

specifically, an image is considered correctly retrieved if it

appears in the first t percent of the list created from its corre-

sponding text. Sweeping through all the text queries gives

us an error rate that is dependent on t, which is shown in

Figure 7.

To obtain statistically valid error measures, we split the

data into 10 folds, and test on each fold with the remaining

9 as training data. For LDA and Corr-LDA, all the hyper-

parameters can be learned directly from the training data

as described in Section 3.3. Our method uses an additional

parameter λ for the document random field. To set this pa-

rameter, we performed a grid-search using cross validation

on the first 9 folds. The optimal value for λ was kept un-

changed for all the other partitions. For all the methods, we

fixed the number of topics to 64. This number was found to

work best for LDA and Corr-LDA, while our method was

not significantly affected by the number of topics. We set

the burn-in period for Gibbs sampling to 1,000 iterations.



“A Hansom cab is a kind of horse-drawn

carriage first designed and patented in 

1834 by Joseph Hansom, an architect

from Leicestershire, England. Its purpose

was to combine speed with safety, with a 

low center of gravity that was essential 

for safe cornering. The Hansom Cab was 

introduced to the United States during 

the late 19th century, and was most 

commonly used there in New York City.”

The night skyline of Frankfurt, showing

the Commerzbank Tower (centre) and the 

Maintower (right of centre). Frankfurt is 

the fifth-largest city in Germany, and the 

surrounding Frankfurt Rhein-Main 

Region is Germany's second-largest

metropolitan area.

“A barn at the Grand Teton National 

Park. The United States National Park, 

named after Grand Teton of the Teton 

Range, is located in western Wyoming, 

south of Yellowstone. The park is located

in the heart of the Greater Yellowstone

Ecosystem, one of the largest intact 

temperate zone ecosystems remaining on 

the planet.”

Figure 8. Three typical image retrieval results. For each example, we show the query text, the top 5 images returned by our algorithm

(top row), and the top 5 images returned by Corr-LDA (bottom row). The words that are in the vocabulary are colored in blue. For space

consideration, the results of the LDA baselines are not shown here.

We compare our method against Corr-LDA and two

LDA-based baselines3. In the two latter cases, LDA mod-

els are trained separately for images and text. Retrieval is

then performed using either nearest-neighbors (LDA-NN),

or CCA (LDA-CCA) [14]. For LDA-NN, we compute the

nearest neighbor of the query text among the training texts,

take the corresponding training image, and build the ranked

list of test images using the symmetric KL-divergence be-

tween the image topic distributions. LDA-CCA learns the

individual projections of the image and text topic distribu-

tions to a joint latent space in which the correlation between

those distributions is maximum. The ranked list is then ob-

tained from the distances between the test images and the

query text in this latent space. For each experiment, we

searched for the dimensionality of the CCA latent space that

3No reference implementation of the topic regression MMLDA [13] is

available. We implemented a Gibbs sampling version of the algorithm,

which performed worse than Corr-LDA. Since our implementation might

be different from the original one that uses variational inference, we do not

report its performance here. A potential explanation is that topic regression

MMLDA has a large number of parameters to learn, making it less robust

on small training sets such as ours.

gave the best results.

4.3. Results

We now present our results on the POTD dataset. Figure

7 depicts the retrieval errors averaged over the 10 partitions

for all the methods. In Table 1, we report the area under the

curve (AUC) values for those errors. A t-test with thresh-

old 0.01 revealed that the difference between our results and

the others is significant. Since in information retrieval, it is

always valuable to have related documents appear as early

as possible in the ranked list, we also report the percent-

age of the images correctly retrieved in the first 20% of the

ranked list in Table 2. Compared to Corr-LDA, about 5%

more documents on average are accurately retrieved by our

method.

Figure 8 shows several illustrative examples of the re-

trieval results, using text from the POTD pages. Qualita-

tively, it can be observed that our model captures the general

topics represented in both the images and the text better than

Corr-LDA. For instance, in the third query, our model cap-

tures the fact that the national parks mentioned in the text

are closely related to nature and outdoor scenes. In the first
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Figure 9. Average AUC value as a function of the percentage of

missing correspondences.

query, our model relates the city names in the text to urban

images, whereas Corr-LDA cannot capture this connection,

since city names do not correspond to visible objects in an

image.

Finally, to test the robustness of our algorithm against

missing correspondence information, we removed a sub-

set of the correspondences between images and text when

learning the models. CorrLDA is not able to use the part of

data that do not have correspondence information present,

while our method can process sparse similarity informa-

tion inherently. More specifically, we assume that t per-

cent of the correspondence in the training corpus are un-

known, and vary t from 0 to 50 in our experiments. The

average AUC value versus the proportion of missing corre-

spondences is shown in Figure 9. It can be observed that our

method consistently outperforms CorrLDA. Furthermore,

note that in the limit where no correspondences are avail-

able, Corr-LDA could not be applied at all. In contrast, our

model would still learn topics that generate the documents

well, although they would not necessarily model the cross-

similarities.

5. Conclusion

In this paper, we have proposed a new probabilistic

model that learns cross-modality similarities from a doc-

ument corpus containing multinomial data. While existing

methods require full correspondence between the modali-

ties, our MDRF model defines a Markov random field on

the document level that allows modeling more flexible doc-

ument similarities. As a result, our model learns a set of

shared topics across the modalities. By applying our model

to the task of image retrieval from wikipedia data, where the

narrative text is only loosely related to the images, we have

shown that our method outperforms existing techniques,

which assume the text to contain visual objects only. In

the future, we intend to study the use of deeper topic struc-

tures, such as Pachinko Allocation [10], to better capture

the semantics shared among the documents.
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