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Abstract 

Learning curves show how a neural network is improved as the 
number of t.raiuing examples increases and how it is related to 

the network complexity. The present paper clarifies asymptotic 

properties and their relation of t.wo learning curves, one concerning 
the predictive loss or generalization loss and the other the training 

loss. The result gives a natural definition of the complexity of a 

neural network. Moreover, it provides a new criterion of model 
selection. 

1 INTRODUCTION 

The leal'lI ing Cl1l've shows how well t hE' behavior of a neural network is improved as 

t.he nurnber of training examples increast"'s and how it is I'elated with the complexity 
of neural net.works. This provides liS with a criterion for choosing an adequate 

network ill relat.ion t.o the number 

of training examples. Some researchers have attacked this problem by using sta

tistical mechanical met.hods (see Levin et al. [1990], Seung et al. [1991]' etc.) 
and some by informat.ion theory and algorithmic methods (see Baum and Haussler 
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[1989], et.c.). The present. paper elucidates asympt.otic properties of the learning 
CUl"ve from the statistical point of view, giving a new criterion for model selection. 

2 STATEMENT OF THE PROBLEM 

Let us consider a stochastic neural network, which is parameterized by a set of m 

weights 0 = (0 1 , ..• ,om) and whose input-output relation is specified by a condi

tional probability p(ylx, 0). In other words, for an input signal is x E R"·n, the 

probability distribution of output y E R"oU! is given by p(ylx, 0). 

A typical form of the stochastic neural network is as follows: let us consider a 
multi-layered network !(x, 0) where 0 is a set of m parameters 0 = (0 1 , ••• , om) and 
its components correspond to weights and thresholds of the network. When some 
input x is given, the network produce an output 

y = /(x,() + TJ(X), (1 ) 

where TJ(x) is noise whose conditional distribut.ion is given by a(TJlx). Then the 
condit.ional dist.ribution of the net.work. which specifies the input-output relation, 

is given by 

p(yl1.·,O) = a(y - /(x, ()Ix). (2) 

\Ve define a t.raining sample e = {(Xl, Yd, .. " (Xt, Yt)} as a set of t examples 

generated from the true conditional distribution q(ylx), where Xi is generated from 

a probability distribution 1'(X) independently. We should note that both r(x) and 
q(ylx) are unknown and we need not assume the faithfulness of the model, that is, 
we do not a'3sume that there exists a parameter 0* which realize the true distribution 

q(ylx) such that p(Ylx, 0·) = q(ylx). 

Our purpose is t.o find an appropriate parameter () which realizes a good approxi

mation IJ(ylx, 0) t.o q(yl:r). For this purpose, we use a loss function 

L(O) = D(1'; qlp(O)) + 8(0) (3) 

as a Cl'it.erioll t.o be minimized, where D( 1'; qlp( 0) represent.s a general divergence 

measure between t.wo conditional probabilit.ies q(ylx) and p(ylx, 0) in the expecta
t.ion form under t.he true input-output probability 

D(1'; qlp(O») = J 1'(x)q(Ylx)k(x, y, O)dxdy (4) 

and S(O) is a regulal'ization t.erm to fit. the smoothness condition of outputs (Moody 
[1992]), So t.he loss functioll is rewritten as a expectation form 

L(O)= j1'(J;)Q( Y1 X)d(x,y'(l)dxd y , d(x,y,()=k(x,y,O)+S(O), (5) 

and d(:t,!I, 0) is raIled t.he pointwise loss funct.ioll. 

A typical rase of the divergence D of t.he multi-layered network f( X, 0) with noise 
is the squared error 

D( 1'; qllJ( 0») = j 1'( X )q( ylx )lly - /( x, 0)11 2dxdy, (6) 
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The error function of an ordinary multi-layered network is in this form, and the 

conventional Back-Pr'opagation met.hod is derived from this type of loss function. 

Anot.her t.ypical case is the Kullhaek-Leibler divergence 

J q(ylx) 
D(I';qlp(O)) = r(.r)lJ(ylx)log dxdy. 

p(ylx,B) 
(7) 

The integration J 1'(x)q(ylx) logq(ylx)dxdy is a constant called a conditional en

tropy, and we usually use the following abbreviated form instead of the previous 

divergence: 

D(7'; qlp((})) = - J 1'(x)q(ylx) logp(y/x, B)dxdy. (8) 

Next, we define an optimum of the parameter in the sense of the loss function that 

we introduced. We denote by B* the optimal parameter that minimizes the loss 

function L( 0), that is, 

L(O*) = min L(O), 
(J 

and we regard p(ylx, 0*) as the best realization of the model. 

(9) 

\t\'hen a trailling sample e is given, we can also define an empirical loss function: 

1.(0) = D(1'; qlp(B)) + S((n, (10) 

where i', If are the empirical distribut.ions given by the sample e, that is, 

1 t 

D(l·;tj/p(O)) = t Lk(Xi'Yi,(}), (xi,yd E e. (11) 
i=l 

In practical case, we consider t.he empirical loss function and search for the quasi

optimal paramet.er 0 defined hy 

L(O) = min L(O), 
(J 

(12) 

because the trw·' distribut.ions 1'{x) and q(ylx) are unkllown and we can only use 

examplps (XidJd observed from t.he tl'lle distribution ,,(x)IJ(ylx), We should note 

that. the quasi-optilllal paramet.er 0 is a rallc\OI1l variable depending on the sample 

e, each element of which is chosen randOlnly. 

The following lemma guarantees that we can use the empirical loss function instead 

of the actual loss funct.ion when t.he number of examples t is large. 

Lenllna 1 If fhe 11'11111ber of examples t is large e1lough, it is shown that the quasi

optimal pam7llcier 0 -is lIormally dist7'ib 'utcd al'ound the optimal parameter B*, that 

lS, 

where 

( -. 
•. 1 

Q 

/ r(.t)I/(yl;L')\'c!(.l', y. 0* )'Vd(;L', V, 0* )Td.tdy, 

J l'(x)IJ(ylx)'V'Vd(x,y,O*)dxdy, 

and 'V denote~ fhe di.fJer·en/utl oper'ator with respect to B, 

(13) 

( 14) 

(15) 
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This lemma is proved hy using t.he uSllal statistical methods. 

3 LEARNING PROCEDURE 

In many cases, however, it is difficult to obtain the quasi-optimal parameter 9 by 

minimizing the equation (10) direct.ly. VVe therefore often use a stochastic descent 

method to get an approximation to the quasi-optimal parameter 9. 

Definition 1 (Stochastic Descent Method) In each learning step, an example 

is re-sampled from the given sample e randomly, and the following modification is 
applied to the parameter On at step 71, 

(16) 

where c is a positit,e value called a learni7lg coefficient and (Xi(n), Yi(n)) 2S the re

sampled example at step 71. 

This is a sequent.ial learning method and the operations of random sampling 

frol11 e in eacll lcarning step is called the re-sampling plan. The parameter 

011 at. st.ep 11 is a random variable as a function of the re-sampled sequence 

...; = {( J'i( 1) • .lJi( 1) ) •.•. , (J: i( ,t!, lji( Il d }. However, if the initial value of 0 is appropriate 

(this assumpt.ion prevent.s being stuck in local minima) and if the learning step n 

is large enough, it. is shown that the learned parameter On is normally distributed 

around the qnasi-opt.imal parameter . 

Lenuua 2 If the learning step n is large enough and the learning coefficient c is 

small enough, the parameter 0" is normally distributed asymptotically, that is, 

Oil '" N(O,EV), (17) 

where' \I satisfies the followi7lg T"Clatio71 

G = QF + VQ, (18) 

t 

(,' = f L \1 d ( J ' / , Yi , 0 rv d ( .l: i , !Ii , 0) T , 

, It 
Q = t L V' V' d ( Xi, Yi , 0) . 

i= I i==l 

In the following discussion, we assume that. 11 is large enough and c is small enough, 

and we denot.e the learned parameter by 

(19) 

The dist.ribut.ion of t.he randolll variable 0, therefore, can be regarded a<; the normal 

distribllt.ioll N(O.EV). 

4 LEARNING CURVES 

It. is import.allt. to evalll<:l\.t> the difl'crellce bet.ween two quantities L(O) and 1.(0). The 

quantit.y 1.(0) is calkd the predict.ive loss or the generalization error, which shows 
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t.he average loss of t.he tl"ained network when a novel example is given. On the other 

hand, the quant.ity L(O) is called the training loss or the training error, which shows 

the average loss evaluated by the examples used in tl·aining. Since these quantities 

depend all t.he sample e and the I'e-sampled sequence w, we take the expectation 

E and the variance Val' with respect to the sample e and the re-sampling sequence 

w. 

First., let. us consider the predictive loss which is t.he average loss of the trained 

network when a new example (which does not belong to the sample e) is given. 

This averaging operation is replaced by averaging all over the input-output pairs, 

because the measure of the sample e is z€'ro. Then the predictive loss is written as 

L(O) = J 1·(x)q(Ylx)d(x,y,O)dxdy. (20) 

From the properties of ° and B, we can prove the following important relations. 

Theorem 1 Th.e predictive loss asymptotically satisfies 

1 E 
E[L(O)] L(()*) + 2t trCQ-1 + '2trQv, (21) 

I ['2 -

\lar[L(O)] 21.'.! t)'{,'Q-I(,'Q-1 + 2"trQ VQV + 7t.rG\I. (22) 

Roughly speaking, thel'!' exist t.wo raudOll1 values Y1 and }"~. and the predictive loss 

can he writ t.en as t.he following forl1l: 

1 E 
L(O) L(O·) + 2tt.rCQ-l + 2t.rQll 

+fYl + EY2 + Op(~) + Op(E), (23) 

where Y1 aud Y2 satisfy 

E[Yd = 0, 

E[Y'.!] = o. 

Cov[Y) }''.!] 

Var[Yd = ~t.rCQ-1CQ-l, 
. I 

Vad}":!] = 1t.rQV QV, 

'.rGV, 

E, Val' and Cov dellol.e t.he I'xp ect.al.ioll, t.he variance and the covariance respectively. 

Next, we consider t.he> t.railling loss, i.e., t.lw average loss evaluated by the examples 

used ill t.l'<lining . .Just. as we did in t.he previolls theorem, we can get the following 

re la.tions. 

ThCOl'Clll 2 The training loss aSY1l71ltotically satisfy 

1 E 
L(O·) - 2t t.I'GQ-I + 2 t.l'Q V, (24) 

1(/' " f . 1'(J:)q(YI ·t)d(J:,y,O*)-dxdy 

- (./ /'(.1: )q( Y IJ: )d( x, y, o· )d.tdy) :!) . (25) 
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Intuitively speaking like the predictive loss, the training loss can be expanded as 

(26) 

where Y3 satisfies 

0, 

/ r(x)q(ylx)d(x,y,O*)2dxdy- (/ r(x)q(Ylx)d(x,y,O*)dxdy)2. 

When we look at two curves E[L(O)] and E[L(o)] as functions of t, they are called 

learning curves which represent the characteristics of learning. The expectations of 
the predictive loss and the training loss look quite similar. They are different in 
the sign of the term lit. As the learning coefficient £ increases, the expectations 

E[L(lJ)] and E[L(o)] increase, but as the number of examples t increases, the average 

predictive loss E[L(O')] dec.reases and t.he average training loss E[.L(8)] conversely 
increases. Moreover, their variances are different in the Ol·der of t. The coefficients 

trGQ-l, trQV, etc. are calculated from the matrices G, Q and V, which reflect 

the architecture of the network and the loss criterion t.o be minimized. We can 
consider t.hese mat.rices as representing the complexity of the network. In earlier 
work, Amari and tvillrata [1991] introduced an effective complexity of the network, 
trCQ-l, by analogy to Akaike's Information Criterion (AIC) (see Akaike [1974]). 

5 AN APPLICATION FOR MODEL SELECTION 

These results nat.urally leads us to a model selection criterion, which is like the AlC 

criterion of statistical model selection and which is related those proposed by some 
researchers (see Murata et a1. [1991], Moody [1992]). From the previous relations, 
we can easily show the following relation 

(27) 

where c is a quant.it.y of order 1/ Jl and common to all the net.works of the same 
archit.ecture. We compare the abilities of two different networks, which have the 
same al'chitecture and are tl'ained by the same sample, but differ in the number of 

weights or nemons (see Fig.l). We can use a quantity, NIC (Network Information 
Criterion), 

(28) 

where 

(29) 

fO!" selecting an opt.imal net.work model. Note that. this quantity NIC is directly 

calculable, since all elements of it. L(O). G, Q, are given by summing over the 
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sample e. When we have two models 1111 and M2, and the NIC of A11 is smaller 
than that of .Hz, the predictive loss of Afl is expected smaller than that of M 2 , so 

All can be l'egal'ded as a better model in the sense of the loss function. 

This criterion cannot he used when we compare two networks of different architec

tures, for example a multi-layered network and a radial basis expansion network. 

This is because the value c of the order 1/ Vi term is common only to two networks 

in which one is included in the other as a submodel. The criterion is in general 

valid only for such a family of networks (see Fig.2). 

6 CONCLUSIONS 

In this paper, we show that. there is nice relation between the expectation of the 

predictive loss and that of the training loss. This result naturally leads us to a new 

model selection criterion. 

We will consider the application of this result as an algorithm for automatically 

changing the number of hidden units in the learning as future work. 

References 

H. Aka.ike. (1974) A new look at the statistical model identification. IEEE Trans. 

AC,19(6):716-723. 

S. Amari. (1967) Theol'Y of adaptive pattern classifiers. IEEE Trans. EC, 

16(3}:29U-:307. 

S. Amari and N. l'vI urata.. (1991) Stat.ist.ical theory of learning curves under entropic 

loss criterioll. Technical Report METR 91-12, University of Tokyo, Tokyo, Japan. 

E. B. Baum and D. Haussler. (1989) What size net gives valid generalization? 

Neural Computation, 1:151-160. 

E. Levin, N. Tishby, and S. A. Solla. (1990) A statistical approach to learning and 
generalization in layered neural networks. Proc. of IEEE, 78(1O}:1568-1574. 

J . E. l\'Ioody. (1992) The effective number of parameters: An analysis of generaliza
tion alld regularization in nonlinear learning systems. In J . E . Moody, S. J. Hanson, 

and R. P. Lippmann, (eds.), Advances ill Neural JlIfonnation Processing Systems 4-
San Mateo, CA: Morgan Ka.ufmanll . 

N. Murata. (1992) Statistical aSY17l1liotic study on learning (In Japanese). PhD 

thesis, University of Tokyo, Tokyo, Japan . 

N. Murata, S. Yoshizawa, and S. Amari. {1991} A criterion for determining the 

number of paramet.ers in an artificial neural network model. In T. Kohonen et al., 

(eds.), Artificial Ne 'ural Networks, 9-14. Holland: Elsevier Science Publishers. 

H. S. Seung, H. Sompolinsky, and N. Tishby. (1991) Statistical mechanics of learning 

from examples II. quenched theory a.nd unrealizable rules. Submitted to Physical 

Review A. 



614 Murata, Yoshizawa, and Amari 
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Figure 1: Geomet.rical represent.ation of hierarchical models: the solid lines between 

q(vlx) and Oi show predictive losses, anel the dashed lines between q(Ylx) and OJ show 
t.raining losses. The large variance of t.he trailling loss originated in the discrepancy 

of q(YI.r) alld q(yl.l'). Whell we est.illiatt' I,he I)l"('dinion loss from t.he t.ra.ining loss, 

the large variallef' st.ill ,'('maills. Bllt. ill t.he case t.hat t.he model M 1 includes the 

model IIf:!, t.his variance is common to two models, so we do not have to take care 

of it. 

variance 

Figure 2: Geomet.rical representat.ion of non-hierarchical models: the solid lines 

bet.ween q(Ylx) and Oi show predictive losses, and the dashed lines between q(ylx) 

and OJ show t.raining losses. The discrepancy of (J(ylx) and q(Ylx) works differently 

on two models M I alld 11-12 ill est.imating predict.ivf' losses. 


