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Bayesian network structure learning is a useful tool for elucidation of regula-
tory structures of biomolecular pathways. The approach however is limited by
its acyclicity constraint, a problematic one in the cycle-containing biological do-
main. Here, we introduce a novel method for modeling cyclic pathways in biology,
by employing our newly introduced Generalized Bayesian Networks (GBNs). Our
novel algorithm enables cyclic structure learning while employing biologically rele-
vant data, as it extends our cycle-learning algorithm to permit learning with singly
perturbed samples. We present theoretical arguments as well as structure learning
results from realistic, simulated data of a biological system. We also present results
from a real world dataset, involving signaling pathways in T-cells.

1. Introduction

Since the seminal work by Pe’er and Friedman, 8, Bayesian networks (BNs)
have been used extensively in biology, to model regulatory pathways both
in the genetic13,8 and in the signaling pathway domain10,14. Bayesian net-
work models encode probabilistic relationships among random variables in
a domain, providing a framework for tasks such as structure learning. In a
biological setting, the random variables represented are biologically impor-
tant entities such as genes, small molecules and activated or phosphorylated
proteins. The structure learning task consists of searching the space of pos-
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sible structures to find the one that bests reflects probabilistic relationships
in a biological dataset.

In spite of their usefulness, Bayesian network models are limited in their
applicability in this domain because they are constrained to be acyclic,
while positive and negative feedback loops abound in biological pathways.
In particular, Bayesian network structure learning will always yield an in-
accurate structure for any cycle containing pathway and, as a result, will
fail in its predictive capacity (at minimum) for variables downstream of an
incorrectly directed edge. When time course data are available, it is feasible
to represent cycles by unrolling them in time, using a Dynamic Bayesian
networks (DBNs), or Continuous Time Bayesian networks (CTBNs).12,4

However, DBNs suffer from various computational challenges and necessi-
tate timecourse data, which in some domains are not feasibly attainable in
an applicable form (e.g.10). Therefore, it would be useful to find an ap-
proach for learning cyclic structures from static ’snapshot’ data, collected
at a single timepoint from a dynamic system.

We have recently developed a formalism for representing cyclic struc-
tures using Generalized Bayesian networks (GBNs), a form of Bayesian
networks that we have generalized to encompass cycles.1 This formalism en-
ables structure learning in a cyclic domain, relying on perturbations which
break the cyclic structure. Far from requiring an exhaustive set of pertur-
bations, the algorithm is designed to minimize the number of interventions
needed, requiring as few as merely one intervention per cycle for accurate
structure learning.

Here, we present the first ever application of GBNs to biological sig-
naling pathways. We apply the algorithm to realistic, biologically relevant
data from a differential equation model of IGF signaling. Next, we sub-
stantially modify the structure learning algorithm to bring it incrementally
closer to applicability in a biological domain, by minimizing the algorithm’s
data requirements. We then test this new algorithm on a reduced set of
the synthetic data and compare its results. Finally, we perform structure
learning on real data in which T-cell signaling molecules were measured
using multidimensional flow cytometry from10, and demonstrate that our
new algorithm is able to elucidate cyclic structures in signaling pathways.

2. Background and Methods

We present background on BNs and GBNs, as well as the synthetic data
used in this study.
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2.1. Bayesian networks

Bayesian networks15, represent probabilistic dependence relationships
among multiple interacting components, illustrating the effects of pathway
components upon each other in the form of an influence diagram- a graph
(G), and a joint probability distribution. In the graph, the nodes represent
variables (the biomolecules) and the (lack of) edges represent (conditional
in)dependencies15. For each variable, a conditional probability distribution
(CPD) quantitatively describes the form and magnitude of its dependence
on its parent(s). Due to the factorization of the joint probability distribu-
tion, the graph must be acyclic, meaning that it must not be possible to
follow a path from any node back to itself.15

2.2. Generalized Bayesian Networks

When building models of pathways, Bayesian network models have a num-
ber of strong advantages. They are flexible and interpretable, they can
handle interactions of arbitrary complexity (given sufficient data), and they
can smoothly incorporate both prior knowledge and interventional data in
a principled way. However, they have one serious drawback for modeling
biological systems: they are unable, as described above, to handle cycles
in a static model. Because cycles abound in biological pathways, a static
Bayesian network model usually cannot hope to capture all influence con-
nections.

To address this problem and enable the use of Bayesian network models
in a cyclic domain, we recently introduced Generalized Bayesian Networks
(GBNs), a generalization of Bayesian networks to the cyclic domain.1 In
1 we also present an algorithm in which the GBN formalism is used to
recover causal structure given interventional (static) data, in acyclic or
cyclic domains. The algorithm is briefly presented below.

GBN structure learning
Call the set of variables V and the subset of variables with

interventions available I. Note that the inhibitors are activ-
ity inhibitors, typically small molecule inhibitors which perturb
the activity- rather than the abundance- of a protein.

Algorithm: Learn Causal GBN structure
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0: Start with a Causal GBN and an intervention set I.

1: [Probing experiments] Collect sets of i.i.d. samples under no-intervention and
single-intervention data, i.e. when node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes
in I. Based upon response of variables to perturbations, further explained in
subroutine below.

3: Identify cycles. Based upon perturbations which affect the abundance of the target
variable. Because the inhibitors affect protein activity, an effect on abundance
must be due to a loop from the target back to itself.

4: Do Bayesian Network learning with the cycles broken (by interventions on nodes
we call “cycle breakers”- a set of variables that include at least one representative
from each cycle) and integrating the descendant information.

5: Determine the correct edges needed to close the cycles, by detecting the children
of the cycle breakers.

6: Recover all missing edges in the DAG, and complete the Directed Cyclic Graph
structure of the Causal GBN.

The subroutine used in step 2 is an important subroutine that uses the
sensitivity of descendants to perturbations on their ancestors. This sensitiv-
ity can be described as the assumption that if a distribution of the parents
of a variable change, then the distribution of the variable itself will change
too. This idea was introduced in the context of GBNs1. To test whether
a node was affected by a perturbation on another node (and thus deduce
the anscestor/descendant relation), the following subroutine is used:

Subroutine: Detect descendants

0: Start with sets of n i.i.d. samples generated by a GBN, under no interventions as
well as single-interventions at each i in I. Initialize a binary |V | × |I| descendant
information matrix.

1: For each j ∈ V :

2: Compute P̂n(Xj), the empirical marginal of Xj under no interventions.

3: For each i ∈ I:

4: Compute P̂i(Xj), the empirical marginal of Xj under the single-
intervention i.

5: Evaluate some distance between P̂(Xj) and P̂i(Xj).

6: If the distance exceeds a threshold, mark j as a descendant of i.

7: Next i.

8: Next j.

9: Compute the transitive closure of the descendant information matrix, and return
it.

The details of this algorithm are presented in1 and it is proven that given
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enough data and interventions, this algorithm is guaranteed to recover the
causal structure of the data. Note that step 4 removes all cycles to enable
structure learning using standard BN. The algorithm developed in this work
avoids this step, to avoid the requirement for conditions involving inhibitor
combinations. As such, this modified algorithm is far better suited to the
logistic reality of limited experimental data.

2.3. Synthetic Data and Model of IGF Signaling

To produce synthetic data, we use a mass action kinetic model describing
the dynamics of the Insulin-like growth factor (IGF) signaling pathway.5,6

IGF signaling is important in normal cell physiology, as well as pathological
states such as cancer. A schematic representation is shown below. Mass
action kinetic equations were used to create the model in MATLAB Sim-
Biology v2.1.

Figure 1. True structure of the underlying dynamic system in IGF signaling. Each node
represents the active “on state” of the protein. Stars indicate phosphatases acting on
the target molecules. Perturbations in the form of small molecule inhibitors are available
for Mek, Akt, Pi3k, IGFR and mTor. The simulated data mimics these inhibitors by
blocking enzyme activity.

There are three directed cycles in the model: IRS → PI3K → AKT →
mTOR → IRS, GRB2/SOS → RasGTP → MEK → ERKp → ERK →
GRB2/SOS, and GRB2/SOS → RasGTP → MEK → Erk → GRB2/SOS.

The stimulus employed is IGF, in addition, up to five perturbations are
employed, at IGFR, MEK, PI3K, AKT, and mTOR, corresponding to ac-
tual existing small molecule inhibitors. All of the perturbations are activity
inhibitions, that is, they inhibit the protein’s activity, not permitting the
targeted protein to phosphorylate other proteins. We generated measure-
ments from four different time points, under 17 total conditions composed

Pacific Symposium on Biocomputing 14:63-74 (2009)



September 20, 2008 19:17 Proceedings Trim Size: 9in x 6in Sachs˙camerareadyPSB09

of IGF stimulus plus various combinations of inhibitors. For each condition,
1000 unique, randomly selected initial conditions (i.e. molecule concentra-
tions) were employed- the equivalent of collecting 1000 unique cells in a
flow cytometry experiment, or performing western blots on 1000 samples.
Simulated “measurement noise” was also added.

The model was created by Jonathan Fitzgerald and colleagues at Merri-
mack Pharmaceuticals. It is a highly accurate imitation of the true biologi-
cal system19, and, accordingly, provides us with synthetic but realistic data,
similar to the data one might acquire from a high throughput measurement
technology (as in 10). It is a flexible and realistic source of ‘true to life’ syn-
thetic data, which, because it has a known ground truth model, provides
an invaluable tool for assessing success of structure learning efforts.

3. Algorithm Description

In this section, we detail an algorithm for structure learning of cyclic net-
works with single perturbation data. This algorithm depends on first de-
tecting the cycles in the network using perturbations, then using the data
where each cycle is broken to recover its structure.

Algorithm: Learn Structure

0: Start with a set of variables V and a set of single-intervention variables I ⊂ V .

1: [Experiments] Collect sets of i.i.d. samples under no-intervention and single-
intervention data, i.e. when node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes
in I.

3: Identify one node per cycle from I, and the set of such nodes IC . Nodes in IC are
detected as self-descendants.

4: Apply a BN structure learning algorithm to recover a DAG representation of the
dependencies.

5: ∀ i ∈ IC
6: Apply a BN algorithm on data with i inhibited.

7: Use conditional independency tests to prune out edges and determine path
structure between nodes and their descendants.

8: Compare the different sub-graphs pertaining to i to recover the cycle structure.

9: Next i.

10: Integrate all of the cycle structures with the result from step 4, and call the resulting
structure G.
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4. Algorithm Analysis

In this section we aim to study the algorithm we presented is Section 3,
mainly focusing on the reasons it can be expected to have good performance
as well as where it is expected to have limitations.

The main assumption needed for the algorithm to recover the true struc-
ture is that the BN structure learning algorithm recovers the correct struc-
ture of the non-cyclic part of the graph whenever it is applied. This means
that the existence of a cycle shouldn’t interfere with the conditional inde-
pendencies between variables outside the cycle itself.

From the study in 18, it can be seen that the cycle does not usually affect
the rest of the graph dramatically. This is mainly because the structure of
the d-separation in a cycle (what dependencies/independencies conditioning
on every set of variables induce) is the same as that of a loop with the same
structure of the cycle except for one reversed edge. Thus the BN learning
algorithm would tend to recover the whole structure with some reversed or
missing edges from the cycle, and usually nodes that are outside the cycle
will not be affected.

We therefore expect this algorithm to perform well, even compared to
algorithms that use multiple-perturbation data. This is mainly because this
algorithm reinforces and corrects the structure recovered by the BN algo-
rithm. It does so using the descendant information from the perturbation
analysis and the conditional independency analysis (step 7).

5. Results

In this section, we present structure learning results for BNs and GBNs,
as well as the new GBN algorithm presented above. BN learning is imple-
mented as in10. Data was discretized to 4 levels using interval discretization.
We show the results obtained from the IGF-model based data with combi-
nations of inhibitors, 17 conditions total, followed by conditions employing
only single perturbations (6 conditions total), up to 1000 datapoints were
used per condition. Lastly, we show results using a flow cytometry dataset
of T-cell signaling molecules. The models presented are averaged over 20
individual results, edges with confidence > 0.8 are included. In the follow-
ing graphs a dotted edge is an incorrect edge that was predicted, a black
edge is a correct edge. For the GBN based algorithms, the degree of shifting
for which a variable is considered to be a child of the perturbed variable is
a model parameter. Here, we use a 20% shift as the cutoff, chosen based
on an observed bimodality among the candidate children. Another good
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approach would be to determine the cutoff by randomizing the data and
determining the magnitude of a null shift.

5.1. Multiple perturbations

The original GBN structure learning algorithm requires conditions in which
multiple perturbations are applied simultaneously. Results from the BNs
and the original GBN structure learning algorithm are shown below, both
use 17 different conditions, each with different combinations of the 5 in-
hibitors. The BN results, shown on the left, find most of the model edges
(missing the connection between mTor and IRS, as well as Ras/Raf and
Mek, and shifting the Erk → Grb2Sos connection to Erkp), however, the
model contains 10 additional, noncausal edges. The GBN results improve
on the BN results substantially, missing only the Erk → Grb2Sos edge,
which it too shifts to Erkp, and including only 2 extra noncausal edges.

Figure 2. BN and GBN results from synthetic data, using multiple perturbations per
sample. BN results are shown on the left, GBN results on the right. Broken arrows are
noncausal. Missed edges are not indicated; the BN model misses 2 edges and shifts the
Erk → Grb2Sos edge to Erkp, the GBN model misses no edges but shifts theErk →
Grb2Sos edge as well.

What causes the extraneous edges? We were originally surprised to
see them, as the data comes from a clean, well defined system which, we
had assumed, would be free of confounding elements that usually induce
noncausal edges. Upon a closer look, we uncovered two likely culprits.
One is the dynamics of the system, something we do not explicitly contend
with in single timepoint, ’static’ models, but which can have confounding
effects induced by the history of a molecule being best represented by a
different molecule, an effect called entanglement (see 7 for a discussion of
this topic). A second is technically a causal effect, though it does not
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result from enzymatic alteration of one molecule by another. This is an
effect that may be present when multiple molecules interact with the same
intermediate molecule. Consider for instance the edge between IGFR and
Pi3k, an extraneous, noncausal edge. Both IGFR and Pi3k interact with
IRS, an interaction that takes IRS out of the pool of available, free IRS.
Thus, if IGFR binds an IRS molecule, the IRS is no longer available to bind
Pi3k (though the total amount of active IRS is unaffected, since IRS can
be active while bound to its up or downstream partners). Though IGFR
is not causally affected by IRS, it is nevertheless competing with Pi3k for
IRS binding. IGFR binding affects the effective amount of available IRS
that Pi3k ”sees”, inducing a dependence between IGFR and Pi3k that is
independent of IRS abundance. We call this effect occupancy, because it
is the result of limited available occupancy on the intermediate molecule-
if the upstream molecule is bound, the downstream one cannot bind, and
vice versa. The impact of occupancy in terms of whether an edge is likely to
appear probably depends on the specifics of the interactions. for example,
the duration of binding of each molecule, and the extent to which the
intermediate molecule is present in excess or is in short supply.

5.2. Single perturbations

Above, we formulate a novel algorithm also based on GBNs, but able to per-
form structure learning from data with just one perturbation per sample.
We present BN and GBN results below, both use data from 6 total condi-
tions. The BN result includes many fewer edges than the one found with
17 conditions, possibly because the total number of datapoints is smaller
(the BN scoring scheme penalizes complexity, so some edges appear only
if sufficient data is available. Though we did not enforce that an equal
number of datapoints be used regardless of the number of conditions, this
would be a useful idea to try). The BN result contains 7 extra edges, fails
to orient some connections, and misses three connections (missed connec-
tions not shown). The GBN model contains one extra edge, misses two
connections and shifts the Erk → Grb2Sos edge to Erkp as before. We
note that it is not clear to us why the edge between Erk and Grb2Sos is so
commonly shifted to Erkp. Occupancy does not seem to be a factor, be-
cause binding times are short and Erk is not in short supply. It may be an
effect of the dynamics of the system as discussed in 7. Regarding data re-
quirements, we use here all available single perturbation conditions, a total
of 5 perturbational and 1 observational conditions. However, the learning
results are robust down to just two conditions, albeit with a loss of some
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edges (results not shown). Note however that the descendent information
from all 5 perturbations is employed. This points to the possibility that a
low throughput approach (such as western blots) could be used to detect
descendants, and a high throughput approach (such as flow cytometry) em-
ployed for just a small set of perturbation conditions. This approach may
save resources and reduce expense while still yielding good results.

Figure 3. BN and GBN results from synthetic data, using one perturbation per sample.
BN results are shown on the left, GBN results on the right. Broken arrows are noncausal.
Missed edges are not indicated; the BN model misses 4 edges and contains 7 extra edges,
the GBN model misses 2 edges and shifts theErk → Grb2Sos edge as before. It also
contains one noncausal edge.

5.3. Single perturbations with real data

To test our algorithm on real data, we employ a real-life dataset created
using multidimensional flow cytometry, described in10. Measurements of
T-cell signaling proteins are reported under observational as well as pertur-
bational conditions with just one perturbation per condition. Perturbation
conditions were available for Mek and Akt. The represented pathway is
thought to contain (at least) two cycles: Raf → Mek → p44/42(Erk) →
Akt → Raf , and Raf → Mek → p44/42 → Raf 10. We focus on the pro-
teins involved in these two cycles. BN and GBN results are shown below,
with BN results on the left and GBN on the right. The BN result misses
one edge and fails to orient two edges. The GBN result is nearly perfect,
but it does fail to orient one edge.

6. Conclusions

In this paper, we demonstrate the first-ever application of cyclic-structure
learning in signaling pathways using both synthetic and real life data, with
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Figure 4. BN and GBN results from real flow cytometry data, using one perturbation
per sample. BN results are shown on the left, GBN results on the right. The BN model
misses 1 edge and fails to orient 2 edges, the GBN model misses no edges but fails to
orient one edge.

score-based Bayesian networks. We present a novel structure learning al-
gorithm grounded in the GBN formalism, and capable of handling single
perturbations conditions, to reduce the algorithm’s data demands. We test
the original GBN algorithm on synthetic data from an accurate, differential
equation model of IGF signaling. We then test the novel extended GBN
algorithm formulated here, on both synthetic and real life data. In each
case, our algorithm demonstrates clearly superior performance, in terms of
elucidation of cyclic structures, correctly orienting model edges and even
elimination of extraneous edges.

In our exploration using synthetic data, we discover unexpected edges
and propose two main reason for their appearance- confounding effects of
the dynamics of the system (discussed in a companion paper, 7), and occu-
pancy effects, based on multiple molecules binding to the same intermediate
molecule, thus creating competition-like effects, even though not all of them
may be causally affected by the intermediate molecule. This latter concept
needs a more rigorous treatment, a topic that we will explore in future work.
We also had available multiple timepoints from the synthetic data. For this
study, a timepoint was selected arbitrarily, but the effect of timepoint se-
lection will be discussed in 7, using the same synthetic dataset, along with
the original GBN algorithm.

In the biological domain, we are often interested in a causal model,
partly for the insight and understanding such a model conveys with respect
to the modeled system, and partly for the possibility for system predictions
which it enables. In disease states for instance, a characterization of the
altered biological network can serve to guide therapeutic interventions. A
truly causal model which includes correctly oriented edges is crucial- with it,
a useful target can be identified and potentially detrimental effects can be
avoided. Whereas previous attempts at modeling biological pathways with
Bayesian networks have yielded useful results, the prevalence of cycles have
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confounded those efforts, compromising the causal nature of the learned
models. With this work, by overcoming the acyclicity constraint, we have
brought the structure learning capability incrementally closer to learning
truly causal models.

7. Acknowledgements

This work was supported by a Leukemia and Lymphoma Society post doc-
toral fellowship to K.S., and NIH grants N01-HV-28183, U19 AI057229,
2 P01 AI36535, U19 AI062623, R01-AI065824, 1 P50 CA114747, 2P01
CA034233-22A1, and HHSN272200700038C, NCI grant U54 RFA-CA-05-
024 and LLS grant 7017-6 to G.P.N.

References

1. S. Itani, M. Ohannessian, K. Sachs, G. P. Nolan and M. A. Dahleh, submitted
NIPS (2008).

2. M. Calder, V. Vyshemirsky, D. Gilbert, R. Orton. (2006).
3. U. Nodelman, C. Shelton, D. Koller. UAI (2002).
4. U. Nodelman, C. Shelton, D. Koller. UAI (2003).
5. Carlson, C.J., Biochem Biophys Res Comm, 2004. 316(2): p. 533-9.
6. Moelling, K., et al., J Biol Chem, 2002. 277(34): p. 31099-106.
7. Itani, S., Sachs, K., Fitzgerald, J., Wille, L., Schoeberl, B., Nolan, G. and

Dahleh, M., in preparation.
8. Friedman, N. and Linial, M. and Nachman, I. and Pe’er, D. (2000). J Comput

Biol, 3-4, Volume 7.
9. Friedman, N. (2004). Science, 5659, Volume 303.
10. K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan (2005).

Science.
11. K. Sachs, D. Gifford, T. Jakkola, P. Sorger, and D. A. Lauffenburger(2002).

Science STKE.
12. N. Friedman, K. Murphy, and S. Russell (1999). Proceedings of the Fifteenth

Annual Conference on Uncertainty in Artificial Intelligence, pp. 139-147.
13. A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young (2001). Pac

Symp Biocomput.
14. P. J. Woolf, W. Prudhomme, L. Daheron, G. Daley,and Q. and D. A. Lauf-

fenburger (2004). Bioinformatics.
15. J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauff-

man.
16. J. Pearl and T. S. Verma (1991). Second KR, pp. 441-452.
17. D. Heckerman, C. Meek and G. F. Cooper (1999). Computation, Causation,

and Discovery, C. Glymour and G. F. Cooper, Eds., MIT Press, pp 141-166.
18. T. S. Richardson (1996). UAI, pp. 454–461.
19. Schoeberl B, Fitzgerald JB, Wille L, West K, Pace E, Harms B, Gibbons F,

Donis E, Grantcharova V, Kumar A, Kudla A, Nielsen UB, Understanding
IGF signaling dynamics through computational modeling, in preparation.

Pacific Symposium on Biocomputing 14:63-74 (2009)


