
Learning Decision Trees Using the Area Under the ROC Curve

Cèsar Ferri CFERRI@DSIC.UPV.ES
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, SPAIN

Peter Flach PETER.FLACH@BRISTOL.AC.UK
Department of Computer Science, University of Bristol, UK

José Hernández-Orallo JORALLO@DSIC.UPV.ES
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, SPAIN

Abstract

ROC analysis is increasingly being recognised as
an important tool for evaluation and comparison
of classifiers when the operating characteristics
(i.e. class distribution and cost parameters) are
not known at training time. Usually, each classi-
fier is characterised by its estimated true and
false positive rates and is represented by a single
point in the ROC diagram. In this paper, we
show how a single decision tree can represent a
set of classifiers by choosing different labellings
of its leaves, or equivalently, an ordering on the
leaves. In this setting, rather than estimating the
accuracy of a single tree, it makes more sense to
use the area under the ROC curve (AUC) as a
quality metric. We also propose a novel splitting
criterion which chooses the split with the highest
local AUC. To the best of our knowledge, this is
the first probabilistic splitting criterion that is not
based on weighted average impurity. We present
experiments suggesting that the AUC splitting
criterion leads to trees with equal or better AUC
value, without sacrificing accuracy if a single
labelling is chosen.

1. Introduction

Traditionally, classification accuracy (or error), i.e., the
percentage of instances that are correctly classified
(respectively incorrectly classified) has been used as a
measure of the quality of classifiers. However, in many
situations, not every misclassification has the same
consequences, and problem-dependent misclassification
costs have to be taken into account. If the cost parameters
are not known at training time, Receiver Operating
Characteristic (ROC) analysis can be applied (Provost &
Fawcett 1997; Swets, Dawes & Monahan 2000). ROC
analysis provides tools to distinguish classifiers that are
optimal under some class and cost distributions from

classifiers that are always sub-optimal, and to select the
optimal classifier once the cost parameters are known.

ROC analysis for two classes is based on plotting the true-
positive rate (TPR) on the y-axis and the false-positive
rate (FPR) on the x-axis. This gives a point for each
classifier. A curve is obtained because, given two
classifiers, we can obtain as many derived classifiers as
we want along the segment that connects them, just by
voting them with different weights. Consequently, any
point “below” that segment will have greater cost for any
class distribution and cost matrix, because it has lower
TPR and/or higher FPR. According to that property, given
several classifiers, one can discard the classifiers that fall
under the convex hull formed by the points representing
the classifiers and the points (0,0) and (1,1), which
represent the default classifiers always predicting negative
and positive, respectively.

This paper is concerned with taking costs into account
when learning decision trees. If costs are known at
training time, the training algorithm could be made cost-
sensitive, e.g. by incorporating costs in the splitting
criterion. However, it has been shown that such cost-
sensitive techniques do not lead to trees with lower costs
(Drummond and Holte 2000; Elkan 2001) and that cost-
sensitive class labelling is more effective (Bradford et al.
1998; Ferri, Flach & Hernandez 2002). In this paper we
assume that costs are unknown at training time. Clearly,
each of the 2n possible labellings of the n leaves of a
given decision tree establishes a classifier, and we can use
ROC analysis to determine the optimal labellings among
them. However, this set of classifiers has special
properties (e.g., for any classifier there is another one
making opposite predictions) which allows a more direct
computation of the optimal labellings. We prove that
there are n+1 of these, which are determined by a simple
ordering on the leaves of the tree.

Thus, from a cost-sensitive perspective it makes sense to
view a decision tree as an unlabelled tree with an ordering

on the leaves. Furthermore, this suggests to use the area
under the ROC curve (AUC), obtained by plotting the n+1
optimal labellings in ROC space, to evaluate the quality
of a decision tree (or any other partitioning of instance
space). A natural question is then whether existing deci-
sion tree algorithms – which aim at optimising the accu-
racy of a single labelling – also lead to good AUC values,
or whether we can do better by adapting the algorithm.
We show that a simple AUC-based splitting criterion
leads to trees with better AUC, without sacrificing
accuracy if a single labelling is chosen. To the best of our
knowledge, this is the first probabilistic splitting criterion
that is not based on weighted average impurity.

The paper is organised as follows. Section 2 poses the
problem of finding all labellings of the tree on the ROC
convex hull, and shows how to effectively obtain this
subset of labellings. In section 3, we discuss the AUC
metric and propose the AUC-based splitting criterion. In
section 4 we experimentally compare AUCsplit with
several well-known impurity-based splitting criteria with
respect to accuracy and AUC. Finally, section 5 closes the
paper with a discussion of the main conclusions and some
plans for future work.

2. Finding Optimal Labellings of a Decision
Tree

A decision tree classifier can be represented by a point in
the ROC space. However, if we change the class
assignment of one leaf, we obtain a different classifier and
hence a different point in the ROC space. Note that this
change can be made a posteriori, after the tree was learnt
or pruned. By changing in many different ways the
assignments of each leaf of the tree we can obtain
different trees. In what follows we will call labelling a set
of assignments to each tree leaf.

The idea is to view the ROC curve of a decision tree not
as the three-point curve given by a single labelling
together with the two default classifiers, but as the convex
hull defined by all the possible labellings. The problem is
that given n leaves and c classes, there are cn possible
labellings. Although this value alone can make this
intractable for many trees even for two classes, the
problem gets worse if we consider that we would need to
compute the convex hull of these cn points. Note that the
cost of computing the convex hull of N points in a d-
dimensional space is in O(N log N + Nd/2) (Boissonat &
Yvinex 1998). Consequently, one relevant question is
whether there is a way to restrict these cn combinations
and obtain the same ROC curve.

2.1 Preliminaries

Given a set of tree leaves lk (1≤k≤n) and a training set S
with possible classes ci (1≤i≤c), we denote by Ek the
number of examples of S that fall under leaf lk, and we
denote by Ek

i the number of examples of S that fall under

leaf lk of class i. The k subscript in Ek
i can be dropped

when the leaf is clear from context. A labelling is defined
as a set of pairs of the form (k, i), where k represents the
leaf lk and i represents the class assigned to that leaf. The
set of all possible labellings is denoted by Λ. Clearly, the
cardinality of Λ is cn.

In what follows, we study for 2-class problems how we
can restrict the 2n labellings but still obtain the points on
the convex hull. We will denote the two classes: + and −.
We also assume the following properties:

nkEEEE kkkk ≤≤∀>+≥≥ −+−+ 1,0,0,0 ,

∑
≤≤

− >
nk

kE
1

0 , and ∑
≤≤

+ >
nk

kE
1

0

That means that there are no empty leaves and that there
exists at least one example of each class.

We use the following notation for cost matrices Ci,j:

 ACTUAL
 + −

+ C++ C+−
PREDICTED

− C−+ C−−
where all the costs are greater or equal than 0. Addition-
ally, C−+ > C++ , C+− > C−−. Given a leaf lk we define Costk

i
as the cost of the examples under that leaf if class i would
be assigned:

∑=
j

ji
j

k
i
k CECost ,·

The best assignment for a leaf lk is then defined as:
i
k

i
k CostBest minarg=

The optimal labelling Sopt for a given cost matrix C is then
given by:

nkkopt BestkS ≤≤= 1)},{(

which means that each leaf is assigned the class that
minimises the cost for the cost matrix C.

2.2 Subset of Labellings Forming the Convex Hull

In this section we determine the subset of decision tree
labellings on the convex hull.

Lemma 1. Given a leaf of a decision tree for a 2-class
problem with the distribution E+ and E−, and given a cost
matrix C, the cost is minimised if the leaf is assigned class
+ when

)()(

)(

−−−++++−

−−−+

+−

+

−+−
−≥

+ CCCC

CC

EE

E

and assigned class − otherwise.

Proof: The cost of this leaf will be assigned to + iff Cost+
≤ Cost−, i.e.

−−
−

+−
+

−+
−

++
+ ⋅+⋅≤⋅+⋅ CECECECE

)()(

)(

−−−++++−

−−−+

+−

+

−+−
−≥

+ CCCC

CC

EE

E

The value on the left hand side is defined as the local
positive accuracy of a leaf lk, and is denoted by rk. This
result has also been used elsewhere to assign classes (see
e.g. Elkan 2001), but we will use it to order the leaves.
The value on the right hand side of the equation is called
the cost ratio (CR). In particular, when rk = CR either
class can be assigned arbitrarily.

The main definition of this section is the following.

Definition 2 (Optimal labellings). Given a decision tree
for a problem with 2 classes formed by n leaves {l1, l2 , …
, ln} ordered by local positive accuracy, i.e, r1 ≥ r2, ..., rn-1
≥ rn, we define the set of optimal labellings Γ = {S0, S1, ...,
Sn} where each labelling Si (0≤i≤n) is defined as: Si={A1

i,
A2

i, ..., A
n
i} where Aj

i = (j,+) if j≤i and Aj
i = (j,−) if j >i.

The following three lemmas are needed to establish the
main result of this section. The reader in a hurry may wish
to skip the technical details and proceed directly to
Theorem 6 and the subsequent example.

Lemma 3. Given a decision tree for a problem with 2
classes with n leaves, the labelling that minimises the cost
according to the training set and an arbitrary cost matrix
belongs to the set of optimal labellings Γ.

Proof: The cost matrix has one degree of freedom
expressed with the CR. Imagine that the CR is 1, then all
the leaves will be set to –, according to Lemma 1 (in the
case rk = CR we also select –). This labelling is in Γ. This
solution minimises the cost of any matrix until r1≤CR≤r2.
Then, leaf l1 will change its assignment to + according to
Lemma 1; this labelling also belongs to Γ. We can repeat
this argument until CR=0, where all the leaves will be set
to +. Thus, there are n+1 states that correspond to the
labellings in Γ.

Blockeel and Struyf (2001) used the same set of assign-
ments. However, no theoretical properties were discussed.
Lemma 3 shows that the set of optimal labellings is
sufficient for calculation of the convex hull. We now
proceed to show that these points are also necessary.

Lemma 4. Given three labellings from the set of optimal
labellings Γ: Si−1, Si, Si+1 (1≤i≤n−1), the point in the ROC
space corresponding to classifier Si is above the convex
hull formed by (0,0), (1,1), and the points in the ROC
space corresponding to classifiers Si−1, Si+1, if and only if

+
+

−
+

+
+

+−

+

+
>

+ 11

1

ii

i

ii

i

EE

E

EE

E
,

Proof: The three points in the ROC space corresponding
to Si−1, Si, Si+1 are:









= −−

−
t

i

t

i
i y

y

x

x
P 11

1 , ,








 ++
=

+
−

−
−

t

ii

t

ii
i y

Ey

x

Ex
P 11 , ,








 ++++
=

+
+

+
−

−
+

−
−

+
t

iii

t

iii
i y

EEy

x

EEx
P 1111

1 ,

where ∑
≤≤

−=
nj

jt Ex
1

, ∑
≤≤

+=
nj

jt Ey
1

,

∑
−≤≤

−
− =

11
1

ij
ji Ex and ∑

−≤≤

+
− =

11
1

ij
ji Ey .

Obviously,
t

i

x

x 1− ≤
t

ii

x

Ex −
− +1 ≤

t

iii

x

EEx −
+

−
− ++ 11 .

Thus, according to the definition of ROC curve, we only
want to know when Pi is above the straight line that joins
Pi−1 and Pi+1, focusing on the y coordinate.

The formula of a straight line that joins two points
P1=(X1,Y1) and P2=(X2,Y2) is:

11

12

12)(YXx
XX

YY
y +−

−
−

=

Substituting P1= Pi−1 and P2= Pi+1, the y coordinate of Pi
will be above iff:

t

i

t

i

t

ii

t

i

t

iii

t

i

t

iii

t

ii

y

y

x

x

x

Ex

x

x

x

EEx

y

y

y

EEy

y

Ey 111

111

111

1 −−
−

−

−
−
+

−
−

−
+
+

+
−

+
− +








−+⋅

−
++

−++

>+

iff

t

i

t

i

t

ii

t

ii

t

ii

y

y

x

E

x

EE

y

EE

y

Ey 1

1

1

1 −
−

−
+

−

+
+

+

+
− +








⋅

+

+

>+

iff +
+

−−
+

+ ⋅>⋅ 11 iiii EEEE ,

iff
+
+

−
+

+
+

+−

+

+
>

+ 11

1

ii

i

ii

i

EE

E

EE

E

We have shown this result for three consecutive
classifiers of the set of optimal labellings; however, it also
holds for three non-consecutive classifiers.

Lemma 5. Given three labellings from the set of optimal
labellings Γ: Si−1, Si, Si+1 (1≤i≤n−1) such that ri=ri+1, it is
not necessary to consider the point in the ROC space
corresponding to Si, because it will not affect the convex
hull.

Proof: If ri=ri+1 then

+
+

−
+

+
+

+−

+

+
=

+ 11

1

ii

i

ii

i

EE

E

EE

E
,

which, according to Lemma 4, means that the point in the
ROC space corresponding to Si is placed just on the
straight line between the points in the ROC space
corresponding to Si−1 and Si+1.

We can now formulate the main result of this section.

Theorem 6. Given a decision tree for a problem of 2
classes with n leaves, the convex hull of the 2n possible
labellings is formed by exactly those ROC points

corresponding to the set of optimal labellings Γ, removing
repeated leaves with the same local positive accuracy.

Proof: From Lemma 3 we can easily derive that all the
ROC points that are on the convex hull from the 2n
possible labellings belong to the ROC points generated
from the set of optimal classifiers. We only have to show
that all the ROC points from the set of optimal labellings
are on the convex hull. Suppose we have three
consecutive labellings Si-1, Si, Si+1, where Si-1 and Si+1 are on
the convex hull. Lemma 4 has shown that Si will be above
the convex hull iff ri ≥ ri+1, which is the case since the set
of optimal labellings is ordered by local positive
accuracy. In the case that ri= ri+1 we have, from Lemma 5,
that we can remove one of them.

The relevance of Theorem 6 is that computation of the
convex hull of the 2n possible labellings of the n leaves of
a decision tree is equivalent to ordering the leaves by
local positive accuracy.

2.3 Example

Suppose we have a decision tree with three leaves and the
following training set distribution:

 + −
LEAF 1 3 5

LEAF 2 5 1

LEAF 3 4 2

There are 23=8 possible classifiers corresponding to each
labelling in Λ. Figure 1 represents the ROC points of
these classifiers. As can be seen in the figure, the points
are mirrored through the point (0.5, 0.5), because for each
labelling there is another labelling assigning the opposite
class to each leaf.

We first order the leaves by the local positive accuracy
and then we generate the set of n+1= 4 optimal labellings:

 + − S0 S1 S2 S3

LEAF 1 5 1 - + + +

LEAF 2 4 2 - - + +

LEAF 3 3 5 - - - +

If we plot the ROC points of these 4 combinations, these
are the points corresponding to the convex hull of Λ,
which are shown in Figure 1 as squares.

A final question is what to do with empty leaves, a case
that we have not considered in the previous results
because we excluded this case in the assumptions. Empty
leaves can be generated when there are splits with more
than two leaves, some of which may not cover any
example, i.e., E+=0 and E−=0. One easy solution to this
problem is to use some kind of smoothing (such as
Laplace or m-estimate) for E+ and E−. Another option is to
assign a local positive accuracy 0.5 and work with the leaf
without cardinality, not affecting the ROC curve.

FALSE POSITIVE RATE
0.2 0 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
R

U
E

 P
O

SI
T

IV
E

 R
A

T
E

Figure 1. ROC points and convex hull of set Λ.

3. AUC-based Decision Tree Evaluation and
Construction

The previous analysis supports the interpretation of a
decision tree as having several possible labellings of the
leaves, or alternatively, an ordering on the leaves. We
propose to use the area under the ROC curve (AUC)
obtained from these labellings to evaluate the quality of
the tree. Notice that if the accuracy of the tree is 100%, all
leaves are pure and the ROC curve covers the whole
space. If the tree consists of a single unsplit leaf, the two
labellings of this leaf correspond to the two default
classifiers and the area under the curve is 0.5. Also notice
that we can even calculate the AUC of a single labelling,
i.e. the area under the curve (0,0)–(FPR,TPR)–(1,1),
which is (TPR-FPR+1)/2, i.e. the average of positive and
negative accuracies.

3.1 The AUC Metric for Decision Tree Evaluation

In order to compute the area under the ROC curve we
employ the leaf ordering from the previous section to
compute the areas of each trapezoid. Specifically, it is
easy to compute the area between two consecutive points
Pi−1 and Pi in the ROC curve given by the set Γ:

t

ii

t

i
ii y

Ey

x

E
PPA

2

2
·),(1

1

+
−

−

−
+

=

where y i−1, xt and yt are as defined in Lemma 4. Since the
first point is P0=(0,0), we can define AUC as follows.

Definition 7 (AUC). Let Γ be the set of optimal labellings
of a decision tree with n leaves, then the AUC metric is
defined as

AUC(Γ) = ∑
=

−
ni

ii PPA
..1

1),(= ∑
=

+
−

− +
ni t

ii

t

i

y

Ey

x

E

..1

1

2

2
· =

∑ ∑
=

+

−=

+−












+









ni
i

ij
ji

tt

EEE
yx ..1 1..1

2
2

1

(See Lemma 4 for the meaning of the symbols.)

AUC is like any other machine learning metric in that it is
a population statistic which needs to be estimated from a

sample. We can use the standard techniques of using a
test set or cross-validation to obtain such an estimate. In
the case of a test set, note that the leaf ordering is
obtained during training, while the leaves’ positive and
negative coverage is determined on the test set.
Consequently, the ROC curve on the test set may not be
convex (it is, however, monotonically non-decreasing by
construction). Definition 7 is a general geometric
construction which does not assume convexity of the
curve.

3.2 The AUCsplit Splitting Criterion for Decision
Tree Construction

In the previous section we have argued that AUC is a
better metric than accuracy for evaluating decision trees
when class and cost distributions are unknown at training
time. However, the existing methods for growing decision
trees typically use splitting criteria based on
error/accuracy or discrimination. In this subsection we
propose an AUC-based splitting criterion.

Without the results introduced in section 2, computing the
AUC corresponding to a set of n leaves could be
computationally expensive, especially if splits have more
than two children. Using the optimal labelling set Γ, AUC
of the leaves under a split can be computed efficiently. In
particular, given several possible splits for growing the
tree, where each split consists of a set of new leaves, we
can compute the ordering of these leaves and calculate the
corresponding ROC curve. The area under this curve
could be compared to the areas of other splits in order to
select the best split. More precisely, we can use the
previous formula for AUC(Γ). This yields a new splitting
criterion.

Definition 8 (AUCsplit). Given several splits sj, each one
formed by nj leaves {lj

1, l
j
2,..., l

j
nj}, then the best split is the

one that maximises:

∑
=

−=
jni

j
i

j
ij PPAsAUCsplit

..1
1),()(

where the points Pi
j are obtained in the usual way (sorting

the leaves of each split by local positive accuracy).

The first question that arises with a new splitting criterion
is how it differs from other criteria previously proposed.
To answer this question, let us review the general formula
of other well-known splitting criteria, such as Gini
(Breiman et al. 1984), Gain, Gain Ratio and C4.5 criterion
(Quinlan 1993) and DKM (Kearns & Mansour 1996).
These splitting criteria find the split with the lowest I(sj),
where I(sj) is defined as:

∑
=

−+=
jnj

jjj ppfpsI
..1

),(·)(

where pj is the probability of being sorted into that node
in the split (cardinality of child node divided by the
cardinality of parent node). Using this general formula,
each splitting criterion implements a different function f,
as shown in the following table:

CRITERION f(a,b)

ACCURACY (EERROR) min(a,b)
GINI (CART) 2ab

ENTROPY (GAIN) a·log(a)+b·log(b)
DKM 2(a·b)1/2

These functions f(a,b) are impurity functions, and the
function I(s) calculates a weighted average of the impurity
of the children in a split. In general, we need to compare
this weighted average impurity of the children with the
impurity of the parent, if we are comparing different splits
of different nodes.

Consider for instance the following two splits:
 [a+b,a+b]

[a,b] [b,a]

 [2a,2b]

[a,b] [a,b]

The children have the same weighted average impurity in
both cases. In order to see that the left is a better split than
the right (assuming a≠b), we need to take the impurity of
the parent into account. In contrast, AUCsplit evaluates
the quality of the whole split (parent + children) and
cannot be reduced to a difference in impurity between
parent and children. The left split has AUCsplit=a/(a+b)
(assuming a>b), while the right split has AUCsplit=0.5,
indicating that nothing has been gained in ROC space
with respect to the default diagonal from (0,0) to (1,1).

An interesting relationship can be established with the
Gini index. Consider the following binary split:

 [p,n]

[p1,n1] [p2,n2]

If the left child has higher local positive accuracy, then
we have:

pn

pnnp

pn

pnpnnp

n

n

p

p
AUCsplit

22
1

2

1 211111 +
=

+−
=








+−=

It is interesting to note that the denominator of this
expression is the Gini index of the parent, and the
enumerator could be called a mutual Gini index of the
children given the parent.

Finally, we have to consider the computational
complexity of calculating the AUCsplit with respect to
other well-known splitting criteria. Let n denote the
maximum number of children in all the splits. Then, if we
have k partitions, the selection of the best split by using
any of the information measures I(sj) requires, for each
partition, n computations of the entropy formula, that can
be considered in O(1). Consequently, the cost would be in
O(k·n). On the other hand, the selection of the best split
by using the AUCsplit(si) requires n·logn for sorting the n
nodes, and n computations of the A(·,·) formula that can
be considered in O(1). Consequently, the cost would be
k·(n·log n + n) which is in O(k·n·log n). This difference in

log n is negligible especially if we realise that the number
of children of a partition is 2 for numerical attributes and
very small for nominal attributes.

4. Experimental Evaluation

We evaluate the previous methods by using 25 datasets
extracted from the UCI repository (Blake and Merz
1998). All of them have two classes, either originally or
by selecting one of the classes and joining all the other
classes. Table 1 shows the dataset (and the class selected
in case of more than two classes), the size in number of
examples, the nominal and numerical attributes and the
percentage of examples of the minority class.

Table 1. Datasets used for the experiments.

ATTRIBUTES # DATASET SIZE
NOM NUM

%MIN
CLASS

1 MONKS1 566 6 0 50
2 MONKS2 601 6 0 34.28
3 MONKS3 554 6 0 48.01
4 TIC-TAC 958 8 0 34.66
5 HOUSE-VOTES 435 16 0 38.62
6 AGARICUS 8124 22 0 48.2
7 BREAST-WDBC 569 0 30 37.26
8 BREAST-WPBC 194 0 33 23.71
9 IONOSPHERE 351 0 34 35.9

10 LIVER 345 0 6 42.03
11 PIMA 768 0 8 34.9
12 CHESS-KR-VS-KP 3196 36 0 47.78
13 SONAR 208 0 60 46.63
14 BREAST-CANCER 683 0 9 34.99
15 HEPATITIS 83 14 5 18.07
16 THYROID-HYPO 2012 19 6 6.06
17 THYROID-SICK-EU 2012 19 6 11.83
18 TAE [{0}] 151 2 3 32.45
19 CARS [{UNACC}] 1728 6 0 29.98
20 NURSERY [{NR}] 12960 8 0 33.33
21 PENDIGITS [{0}] 10992 0 16 10.4
22 PAGE-BLOCKS [{0}] 5473 0 10 10.23
23 YEAST [{ERL}] 1484 0 8 31.2
24 LETTER [{A}] 20000 0 16 3.95
25 OPTDIGITS [{0}] 5620 0 64 9.86

The first thing to be considered is the behaviour of
classical splitting criteria with the AUC evaluation
measure. We compare the most commonly used splitting
criteria: Gain Ratio (only considering splits with at least
average gain as is done in C4.5), Gini (as used in CART),
DKM and Expected Error. All the experiments have been
done within the SMILES system (Ferri et al. 2002) that
includes all of these criteria, the labelling method and
AUC computation. The use of the same system for all the
methods makes the criteria comparison more impartial
because all the other things remain equal.

The experiments were performed with and without
pruning, although we only show the methods with
pruning because the results are better in general (both in
accuracy and AUC) for all the splitting criteria. The post-

pruning method used is the “Pessimistic Error Pruning”
introduced by (Quinlan 1987). According to the study in
(Esposito, Malerba & Semeraro 1997), this is the best
method that does not modify the tree structure (unlike
C4.5 pruning). Although it has a tendency to underprune,
we think that it is a quite simple and effective method that
allows a fairer comparison. We have also used frequency
smoothing (Laplace correction) for the nodes in each
split, because it is favourable for the AUC measure for all
methods, especially Gini and DKM. Accuracy of Gain
Ratio results are slightly worse when smoothing is used,
although AUC values are still better. Table 2 shows AUC
results obtained by 10-fold cross-validation.

Table 2. AUC values for different splitting criteria.

SET GAIN RATIO GINI DKM EERR
1 81.5 ± 14.0 79.8 ± 11.9 79.8 ± 11.9 82.2 ± 5.3
2 60.6 ± 10.4 57.7 ± 8.4 55.5 ± 7.9 69.8 ± 4.1
3 98.8 ± 1.6 98.7 ± 1.7 98.7 ± 1.7 95.4 ± 2.6
4 81.3 ± 8.0 80.6 ± 7.5 79.8 ± 8.1 76.4 ± 5.6
5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5
6 1 ± 0 99.9 ± 0.2 1 ± 0 1 ± 0.1
7 91.1 ± 6.6 90.9 ± 5.8 95.7 ± 5.3 93.6 ± 3.7
8 58.1 ± 24.4 66.4 ± 18.3 54.9 ± 18.6 51.2 ± 3.5
9 88.8 ± 10.2 56.1 ± 13.6 90.8 ± 5.0 59.0 ± 15.1

10 65.1 ± 6.7 63.4 ± 8.2 65.6 ± 8.4 59.9 ± 9.4
11 78.0 ± 5.2 27.8 ± 3.5 69.3 ± 25.7 30.5 ± 39.8
12 99.7 ± 0.4 99.3 ± 0.4 99.7 ± 0.3 98.3 ± 0.8
13 60.6 ± 10.2 69.7 ± 10.4 72.7 ± 6.8 68.1 ± 12.8
14 95.5 ± 2.5 95.2 ± 2.7 96.8 ± 2.1 94.8 ± 2.9
15 92.9 ± 12.4 65.4 ± 24.4 72.9 ± 26.3 65 ± 24.2
16 83.2 ± 16.5 48.6 ± 51.2 96.9 ± 5.7 34.8 ± 41.1
17 93.6 ± 3.2 49.7 ± 46.1 65.8 ± 45.5 3.7 ± 11.3
18 50.5 ± 25.9 48.9 ± 27.1 52.5 ± 24.5 21.5 ± 21.4
19 98.1 ± 0.7 98.2 ± 0.8 98.1 ± 0.8 97.8 ± 1.1
20 1 ± 0 1 ± 0 1 ± 0 1 ± 0
21 99.7 ± 0.6 98.2 ± 0.7 99.7 ± 0.3 96.3 ± 2.1
22 93.7 ± 3.7 81.7 ± 4.9 66.6 ± 21.6 50 ± 0
23 73.7 ± 3.1 66.6 ± 9.9 73.5 ± 4.3 51.0 ± 4.0
24 98.7 ± 1.0 95.9 ± 2.4 99.4 ± 0.5 85.7 ± 0.5
25 98.1 ± 2.3 95.9 ± 3.3 98.0 ± 2.6 96.0 ± 3.3
M 85.53 77.26 83.19 71.12

Although all methods behave very similarly in terms of
accuracy (as has been shown in the machine learning
literature and by our own experiments not listed here), the
differences in AUC are very noticeable, especially in
datasets 9, 11, 15, 16, 17, 22, 23. There is no apparent
relationship with any dataset characteristic except the
minority class proportion, which will be analysed at the
end of this section.

The worst methods according to the AUC measure are
clearly Gini and Expected Error. Better and more similar
results are given by GainRatio and DKM. If we select

Gain Ratio as the best classical method, we can compare
its results with AUCsplit results. In order to make
comparisons significant, we have repeated 10-fold cross
validation 10 times, making a total of 100 learning runs
for each pair of dataset and method. These new results are
shown in Table 3.

Table 3. Accuracy and AUC for Gain Ratio and AUCsplit.

 GAIN RATIO AUCSPLIT BETTER?
SET ACC. AUC ACC. AUC ACC. AUC
1 90.7±6.6 83.6±11.8 96.5±3.9 94.3±6.7
2 57.7±6.5 61.1±7.9 56.0±6.2 56.7±8.0 x x
3 97.6±7.8 97.4±8.5 99.1±1.1 99.1±1.4
4 78.9±4.6 79.8±7.2 77.6±4.7 76.9±6.5 x x
5 95.8±2.6 95.2±3.1 95.8±2.6 95.2±3.1
6 1±0 1±0 1±0 1±0
7 92.5±4.1 91.5±6.1 92.9±3.7 94.7±4.6
8 72.1±10.2 61.3±16.9 69.5±10.6 59.3±16.2 x
9 92.0±4.7 90.4±7.0 89.6±5.0 89.7±6.7 x

10 62.6±8.8 64.2±10.6 64.0±9.0 65.8±10.1
11 73.3±5.7 76.6±6.9 72.5±5.1 76.7±6.0
12 99.1±2.3 99.5±1.6 99.2±0.6 99.5±0.6
13 68.2±10.2 67.4±11.9 71.0±10.4 73.6±11.0
14 95.4±2.5 96.3±2.5 96.2±2.5 97.6±2.1
15 86.4±14.2 85.1±17.9 83.4±14.0 63.5±22.3 x
16 98.0±10.9 84.6±13.1 98.6±0.8 94.8±5.6
17 95.2±1.4 92.6±3.5 96.7±1.2 95.1±3.1
18 71.4±12.4 61.5±20.8 68.9±11.6 59.8±21.3
19 95.0±1.8 98.2±0.9 94.8±1.9 98.1±1.0
20 1±0 1±0 1±0 1±0
21 99.6±0.3 99.6±0.5 99.6±0.2 99.4±0.6
22 96.8±0.9 93.3±4.7 96.8±0.2 95.1±6.9
23 70.4±3.9 72.2±4.9 71.1±3.6 73.3±4.0
24 99.5±0.2 98.9±1.4 99.5±0.1 99.3±0.7
25 98.9±1.8 94.2±19.4 99.5±0.3 98.5±1.8
M. 87.49 85.78 87.55 86.24

Table 3 lists the accuracy of the chosen labelling and the
AUC values of the whole set of optimal labellings. The
first thing that can be observed is that the differences in
accuracy are smaller than in AUC. In some cases it
happens that Gain Ratio is better than AUCsplit in terms
of accuracy, but not significantly in terms of AUC.

Since means of different datasets are illustrative but not
reliable we compare dataset by dataset if one method is
better than the other. The ‘Better?’ column represents if
AUCsplit behaves better () or worse (x) than Gain
Ratio. These marks are only shown when the differences
are significant according to the t-test with level of
confidence 0.1. This gives 8 wins, 13 ties and 4 loses for
accuracies and 11 wins, 11 ties and 3 loses for AUC.

In order to study the applicability of the AUCsplit for
unbalanced datasets, we have selected the datasets with a
percentage of the minority class less than 15%. Table 4

shows the accuracies of both methods (GainRatio and
AUCsplit) with several test set distributions under the
same experimental methodology as those shown in Table
3. The first two columns of Table 4 show the accuracy
preserving the original class distribution for the test set.
The new information appears in the next columns of
Table 4. These show the accuracies if we modify the test
set distribution to be 50% for both classes. Finally, we
show the accuracies for the swapped class distributions
(e.g. 10%-90% train distribution is swapped to 90%-10%
test distribution).

Table 4. Accuracy results for unbalanced datasets.

ORIGINAL DIST. 50%-50% SWAPPED DIST.
 GR AUCS. GR AUCS. GR AUCS.

%MIN

CLASS
16 98.0 98.6 88.3 93.5 78.6 88.3 6.06
17 95.2 96.7 88.6 92.6 81.9 88.4 11.83
21 99.6 99.6 99.0 98.7 98.4 97.8 10.4
22 96.8 96.8 89.8 89.7 82.9 82.7 10.23
24 99.5 99.5 96.0 96.6 92.5 93.6 3.95
25 98.9 99.5 95.8 98.4 92.7 97.3 9.86
M. 98.0 98.5 92.9 94.9 87.8 91.4

As we can see in Table 4, the difference in accuracy is
small when train and test distributions are the same. In
general, if a model learned with an unbalanced dataset is
to be used with a distribution different from the train
distribution, the accuracy decreases. However, the
AUCsplit splitting criterion yields models whose accuracy
decreases less than those obtained by GainRatio splitting
criterion in these cases.

5. Conclusions and Future Work

We have reassessed the construction and evaluation of
decision trees based on a very practical and direct way to
compute the convex hull of the ROC curve of all the
possible labellings of a decision tree. The cost of this
operation is just O(n·log n), for ordering n leaves of a tree
according to their local positive accuracy. This gives a
different perspective on decision tree learning, where just
clustering trees are learned, and classes are assigned at
application time.

Our approach to using only n+1 points is closely related
to the ordering of decision tree leaves already presented in
(Blockeel & Struyf 2001) and the ranking of predictions
and its use for computing the AUC measure presented in
(Hand & Till 2001). In comparison with Hand and Till’s
approach, their AUC measure is almost equivalent to ours
(their area is step-like) but our node-based way of
computing the AUC gives more insight and allows a
direct implementation as splitting criterion. This leads to
the first successful splitting criterion based on estimated
probabilities we are aware of that is not a weighted
average of the impurities of the children, and gives better
results for the AUC measure and comparable results in
terms of accuracy.

As future work, we plan to extend AUCsplit to more than
2 classes. For this, a simplified 1-point ROC curve could
be used, or the generalised M function introduced by
(Hand & Till 2001). This would only be feasible by using
our node sorting technique, incurring a cost in O(c2·n·log
n) where c is the number of classes and n the number of
nodes.

Some other issues to be explored are the development of
pre-pruning and post-pruning methods based on AUC,
because accuracy-based pruning methods may counteract
some of the AUCsplit benefits for the AUC measure.
From a more general point of view, other subsets of the
set Γ of optimal labellings or even Λ could be considered,
or several smoothing methods could be applied to
compute the AUC measure. The use of a validation set for
estimating AUCsplit could also be examined.

A more ambitious approach would be the development of
a global AUC search heuristic, which would compute the
optimality of a split taking into account the leaves in the
split but also all the other opened leaves of the tree. We
think that a monotonic AUC-based heuristic could be
derived, in order to implement an optimal AO* search.

Finally, we would like to point out that, while we have
focused on decision trees in this paper, the results can be
equally used with other learning methods that partition the
instance space, such as CN2 or many ILP systems.

Acknowledgements

This work has been partially supported by CICYT under
grant TIC2001-2705-C03-01, by Generalitat Valenciana
under grant GV00-092-14, and by the EU project Data
Mining and Decision Support for Business
Competitiveness: Solomon Virtual Enterprise (IST-1999-
11495). Two of the authors enjoyed two research stays in
the Department of Computer Science of the University of
Bristol, where this work was initiated during the last
quarter of 2001. These stays were funded by Universitat
Politècnica de València and by Generalitat Valenciana.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases (http://www.ics.uci.edu/∼mlearn/
MLRepository.html). University of California, Dept of
Computer Science.

Blockeel, H., & Struyf, J. (2001). Frankenstein classifiers:
Some experiments on the Sisyphus dataset, in C.
Giraud-Carrier, N. Lavrac, and S. Moyle (eds.),
Integrating Aspects of Data Mining, Decision Support
and Meta-Learning, pp 1-12, ECML/PKDD'01
workshop notes.

Boissonat, J.D., & Yvinec, M. (1998). Algorithmic
Geometry. Cambridge University Press.

Bradford, J., Kunz, C., Kohavi, R., Brunk, C., & Brodley,
C. (1998). Pruning decision trees with misclassification

costs, in H.Prade (ed.) Proceedings of the European
Conference on Machine Learning, pp. 131-136.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J.
(1984). Classification and regression trees, Belmont,
CA, Wadsworth.

Drummond, C., & Holte, R.C. (2000). Exploiting the cost
(in)sensitivity of decision tree splitting criteria, in
Langley (ed.) Proceedings of the Seventeenth
International Conference on Machine Learning,
Morgan Kaufmann, pp. 239-246.

Elkan, C. (2001). The Foundations of Cost-Sensitive
Learning, in B. Nebel (Ed.) Proceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence, Seattle, Morgan Kaufmann, pp. 973-978.

Esposito, F., Malerba, D., & Semeraro, G. (1997). A
Comparative Analysis of Methods for Pruning Decision
Trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, No. 5, pp. 476-491.

Ferri, C., Flach, P., & Hernández, J. (2002). Rocking the
ROC Analysis within Decision Trees (Technical
Report). Department of Computer Science, Bristol, UK.

Ferri, C., Hernández, J., & Ramírez, M.J. (2002).
SMILES: A Multi-purpose Learning System. (Technical
Report), Dep. Sistemes Informàtics i Computació, Univ.
Pol. València. (http://www.dsic.upv.es/~flip/smiles/).

Hand, D.J., & Till, R.J. (2001). A Simple Generalisation
of the Area Under the ROC Curve for Multiple Class
Classification Problems, Machine Learning, 45, pp.
171-186.

Kearns, M., & Mansour, Y. (1996) On the boosting ability
of top-down decision tree learning algorithms. Journal
of Computer and Systems Sciences, 58(1), 1999, pp 109-
128. Also in Proceedings ACM Symposium on the
Theory of Computing, 1996, ACM Press, pp.459-468.

Provost, F., & Fawcett, T. (1997). Analysis and
visualization of classifier performance: Comparison
under imprecise class and cost distribution, in D.
Heckerman, H. Mannila, D. Pregibon (eds.).
Proceedings of the 3rd Intl. Conf, on Knowledge
Discovery and Data Mining (KDD-97), Menlo Park,
CA: AAAI Press, pp. 43-48.

Quinlan, J.R. (1987). Simplifying Decision Trees.
International Journal Man-Machine Studies, vol. 27,
pp. 221-234.

Quinlan, J.R. (1993) C4.5. Programs for Machine
Learning, San Francisco, Morgan Kaufmann.

Swets, J., Dawes, R., & Monahan, J. (2000). Better
decisions through science. Scientific American, October
2000, pp. 82-87.

