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LEARNING DECISION TREES USING THE FOURIER SPECTRUM*
EYAL KUSHILEVITZ AriD YISHAY MANSOUR

Abstract. This work gives a polynomial time algorithm for learning decision trees with respect to the uniform
distribution. (This algorithm uses membership queries.) The decision tree model that is considered is an extension
of the traditional boolean decision tree model that allows linear operations in each node (i.e., summation of a subset
of the input variables over GF(2)).

This paper shows how to learn in polynomial time any function that can be approximated (in norm L2) by
a polynomially sparse function (i.e., a function with only polynomially many nonzero Fourier coefficients). The
authors demonstrate that any function f whose L -norm (i.e., the sum of absolute value of the Fourier coefficients) is

polynomial can be approximated by a polynomially sparse function, and prove that boolean decision trees with linear

operations are a subset of this class of functions. Moreover, it is shown that the functions with polynomial L -norm
can be learned deterministically.

The algorithm can also exactly identify a decision tree of depth d in time polynomial in 2a and n. This result
implies that trees of logarithmic depth can be identified in polynomial time.
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1. Introduction. In recent years much effort has been devoted to providing a theoretical
basis for machine learning. These efforts involved formalization of learning models and
algorithms, with a special emphasis on polynomial running time algorithms (see [Va184],
[Ang87]). This work further extends our understanding of the learning tasks that can be
performed in polynomial time.

Recent work by [LMN89] has established the connection between the Fourier spectrum
and learnability. They presented a quasi-polynomial-time (i.e. O(nply-lg(n))) algorithm
for learning the class AC (polynomial size constant depth circuits), where the quality of
the approximation is judged with respect to the uniform distribution (and n is the number of
variables). Their main result is an interesting property of the representation of the Fourier
transform of ACO circuits. Using this property, they derive the learning algorithm for this
class of functions. [FJS91] has extended the result to apply also to mutually independent
distributions (i.e., product distributions) with a similar running time (i.e. quasi-polynomial
time). In [AM91 polynomial time algorithms are given for learning both decision lists and
decision trees (a boolean decision tree in which each variable appears only once) with respect
to the uniform distribution. As in [LMN89] these algorithms make use of special properties
of the Fourier coefficients and approximate the target function by observing examples drawn
according to the uniform distribution. More information about Fourier transform over finite
groups is found in [Dia88].

In this work we show another interesting application of the Fourier representation that
is applied to achieve learnability. The learning model allows membership queries, where the
learner can query the (unknown) function on any input. Our main result is a polynomial-time
algorithm for learning functions computed by boolean decision trees with linear operations
(over G F(2)). In these trees each node computes a summation (modulo 2) of a subset of the
n boolean input variables, and branches according to whether the sum is zero or one. Clearly,
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1332 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

this is an extension of the traditional boolean decision-tree model, since we can still test single
variables. On the other hand, we can test in a single operation the parity of all the input
variables, compared with a lower bound of 2n nodes in the traditional model (see [BHO90]).

An interesting consequence of our construction is that one can exactly find the Fourier
transform representation of boolean decision trees with linear operations in time poly(n, 2d),
where d is the depth of the tree. This implies that we find a function that is identical to the
tree for any boolean input. A corollary of this result is that decision trees with logarithmic
depth can be exactly identified in polynomial time. (Note that enumeration, even of constant
depth trees, would require exponential time (due to the linear operation); even eliminating the
linear operations and constraining each node to contain a single variable, the number of trees
of depth d is f2 (nd).)

Our main resultmthe learning algorithm for decision treesmis achieved by combining
the following three results:

The algorithmic tool--We present a randomized polynomial time algorithm that
performs the following task. The algorithm receives as an input a boolean function

f that can be approximated by a polynomially sparse function g (a function with
a polynomial number of nonzero Fourier coefficients) such that the expected error
square (i.e., E(f- g)2) is bounded by e. The algorithm finds some polynomially
sparse function h that approximates f, such that E(f- h)2 O(). The algorithm
we develop here is based on the ideas of [GL89].
We consider the class of functions {f L (f) < poly(n) }, where L (f) is the
L -norm of the coefficients (i.e., the sum of the absolute value of the coefficients).
We show that in order to achieve an approximation of a function f 6 U within e, it
is sufficient to consider only coefficients larger than e/L(f) (there are at most

(Ll(f)/e) 2 such coefficients). Therefore, every function in the class U can be
approximated by a polynomially sparse function and therefore can be learned in
polynomial time by our algorithm.
We prove that the L-norm of the coefficients of a decision tree is bounded by the
number of nodes in the tree. Therefore, polynomial size decision trees are in the class
.T’. It follows that every polynomial size decision tree with linear operations can be
learned in polynomial time.

Furthermore, for functions in the classU we show how to derandomize the learning algorithm.
The derandomization uses constructions of "small," "almost unbiased" probability spaces,
called )-bias distributions [NN90], [AGHP90]. (For a formal definition of ;k-bias probability
distributions see 4.1.) Thus, we derive a deterministic polynomial time algorithm for learning
decision trees.

Our technique sheds a new light on the possibilities of using )-bias distributions for
derandomization. We show that the deviation of the expected value of a function f with
respect to the uniform distribution and a )-bias distribution is bounded by ). L (f). One nice
example where this bound comes in handy is for showing that the deviation of the AND of a
subset of the n variables is bounded by 3). (This is since L (AND) < 3, independent of the
subset of variables or its size.)

1.1. Relations to other works. Our result could be contrasted with the result of [EH89],
where an O(nlgm) algorithm is given for learning decision trees in the PAC model, where
n is the number of variables and m is the number of nodes in the tree. Their algorithm
learns traditional boolean decision trees with respect to an arbitrary distribution, and uses
only examples drawn from that distribution. Therefore, it learns in a weaker model. On
the other hand, it runs in time O(nlgm) compared to the polynomial time of our algorithm.
Also, our algorithm handles a stronger model of boolean decision trees, which include linear
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1333

operations, while the algorithm of [EH89] does not seem to extend to such a model. In [Han90]
a polynomial-time algorithm was presented for learning/z-decision trees using membership
queries and equivalence queries, and in [Han91] a polynomial time algorithm was presented
for learning decision trees in which each variable appears at most a constant number of times.
(Again, these results do not address linear operations.)

Recently, Bellare [Be192] was able to extend a few of our results concerning decision
trees and show how to derive an upper bound on the sum of the Fourier coefficients as a
function of the predicates in the nodes. He also extends the learning algorithm to the case of
product distributions and shows that if the L 1-norm of f (with respect to a product distribution
/z) is polynomially bounded, then it can be learned (with respect to/z) in polynomial time.
Unfortunately, this result falls short of showing that decision trees are learnable with respect
to product distributions, since there are functions (e.g., the AND function) that have a small
size decision tree but their L 1-norm is exponential with respect to some product distributions.

Following our work, it has been shown [Man92] how to learn DNF formulas, with respect
to the uniform distribution, in O(nlglgn) time. The main contribution of that work is made
by bounding the number of "large" coefficients in the Fourier expansion of such a function by
O (///log log n). Then the algorithm of this paper is used to recover them.

In the work of [RB91] the same learning model was considered (i.e., using membership
queries and testing the hypothesis with respect to the uniform distribution). They show that
any polynomial over G F(2) with polynomial number of terms can be learned in polynomial
time in such a model. The class of polynomials with polynomial number of terms (considered
in [RB91 ]) and the class of boolean decision trees with linear operations (considered in our
work) are incomparable. On the one hand, the inner-product function has a small polynomial
but does not have a small decision tree. On the other hand, consider a boolean decision list
with log n nodes, where each node computes the sum of (n) variables. Representing such a
decision list by a polynomial may require f2 (nlgn) terms.

The power of polynomial size boolean decision trees with linear operations is also in-
comparable to AC circuits (which are the target of the learning algorithm of [LMN89]).
Such trees can compute parity, which cannot be approximated by ACO circuits (see [FSS84],
[Ajt83], [Yao85], [Has86]). We show that for boolean decision trees with linear operations the
L 1-norm is bounded by the number of nodes; therefore, computing a polynomial-size DNF
that has an exponential L 1-norm would require an exponential number of nodes (see [BS90]
for a construction of such a DNF).

The class .T" ofboolean functions whose L 1-norm is polynomially bounded was also stud-
ied in [Bru90], [BS90], [SB91 ]. They showed that any such function f can be approximated
by a sparse polynomial of a certain form. Note, however, that their notion of approximation
is different than ours. Another type of approximation for boolean functions was recently
suggested in [ABFR91] (and then studied by others). In that work, boolean functions are
approximated by the sign of a low-degree polynomial over the integers.

1.2. Organization. The rest of this paper is organized as follows. Section 2 has the
definitions of Fourier transform, decision trees, and the learning model. Section 3 includes
the procedure that finds the approximating sparse function. In 4 we prove the properties of
functions with small L 1-norm. In 5 we prove the results about boolean decision trees with
linear operations. Finally, in6 we discuss some extensions and mention some open problems.

2. Preliminaries. In this section we give the definition of Fourier transform and recall
some known properties of it (2.1). Then, we formally define the model of decision trees,
which is used in this work (2.2). We end by describing the membership-queries learning
model, which is used in this work (2.3).
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1334 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

2.1. Fourier transform. Let f {0, 1}n be a real function. Denote by E[f]
the expected value of f(x) with respect to the uniform distribution on x, i.e., E[f]
2-7 _xtO, lln f(x). The set of all real functions on the cubeZ is a 2n-dimensional real vector

space with an inner product defined by

< g’ f >= 2-- Z g(x)f(x)= E[gf].
x{0,1}

A
The norm of a function f is defined by [[fll2 /< f, f > E[f2]

Define a basis for the linear space of real functions on the cube Z, using the characters
ofZ as follows: For each z 6 {0, }n, define the basis function Xz:

xn) [ +1 if iziximd2=OXz(Xl
I -1 if -i zixi mod 2 1.

The following properties of these functions can be verified easily:
For every two vectors zl, z2 6 {0, 1}n: XzlXz2 Xz,.z2, where @ denotes bitwise
exclusive-or.
The family of functions {Xz z {0, }n} forms an orthonormal basis. That is, (1)
any function f(x) on the cubeZ can be uniquely expressed asz f(Z)Xz(X), where
j?(z) are real constants; and (2) if zl - z2, then < Xz,, Xz > 0, and for every z,
< Xz, Xz >= l.

The Fourier transform of f is just the expansion of f as a linear combination of the Xz’S.
Since the Xz’S are an orthonormal basis, Fourier coefficients are found via

f(z) =< f, Xz >= E[fXz].

The orthonormality of the basis implies Parseval’s identity:

z6{0,1}

Note that if for every x 6 Z, If(x)l _< 1, then Ilfll2 _< and therefore for every z 6 {0, }",

f(z)l < 1. Finally, we define L l(f) as the L 1-norm of the coefficients of f, i.e., L l(f) =
2.2. Boolean decision trees. In this section we give a precise definition of the decision

tree model used in this work. This model is much stronger than the traditional decision tree
model.

A boolean decision tree T consists of a labeled binary tree. Each inner node v of the
tree is labeled by a set So n and has two outgoing edges. Every leaf of the tree is
labeled by either / or 1. (Throughout this paper a function is called boolean if its range is
{+1, -1}.)

Given an input, x (Xl Xn), the decision tree defines a computation. The compu-
tation traverses a path from the root to a leaf and assigns values to the nodes on the path in
the following way. The computation starts at the root of the tree T. When the computation
arrives at an inner node v, labeled by Sv, it assigns the node v the value Yisv xi mod 2, which
we denote by val(v). If val(v) 1, then the computation continues to the right son of v,
otherwise it continues to the left son. The computation terminates at a leaf u and outputs the
label of u (which is also the value of the leaD. The value of the tree on an input is the value
of the output of the computation.
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1335

Note that if, for example, Sl 1, then the meaning of the operation is testing the
value of a single variable which is the only permitted operation in the traditional decision tree
model. If, for example, Sl 2, then the meaning of the operation is testing whether the two
corresponding variables are equal, and if ISvl n, then in a single operation we have a test
for the parity of all variables. In the traditional decision tree model computing the parity of
all the variables requires 2n nodes.

2.3. Learning model. The learner in our model uses only membership queries. That
is, it can query the unknown function f on any input x 6 {0, }n and receive f(x). After
performing a finite number of membership queries, the learner outputs an hypothesis h. The

error of an hypothesis h, with respect to the function f, is defined to be error(f, h)
Prob[f(x) h(x)], where x is distributed uniformly over {0, }n.

A randomized algorithm A learns a class of functions U if for every f 6 U and e, 6 > 0
the algorithm outputs an hypothesis h A (f, e, 6) such that

Prob[error(f, h) >_ e] _< 6.

The algorithm A learns in polynomial time if its running time is polynomial in n, 1/e, and
log 1/6.

We also discuss deterministic learning algorithms. An algorithm A deterministically
learns a class of functions .T if for every f 6 - and e > 0 the algorithm outputs an hypothesis
h A(f, e) such that

error(f, h) _< e.

The algorithm A learns in deterministic polynomial time if its running time is polynomial in
n and 1/e. Note that in a deterministic algorithm we do not have a parameter 6. That is, the
algorithm always succeeds in finding a "good" hypothesis.

A (real) function g e-approximates f (in norm L2) if E[(f(x) g(x))2] _< e. In the case
that f is a boolean function, we can convert a real prediction function g to a boolean prediction
by predicting the sign of g. In such a case, if f(x) sign(g(x)) then If(x) g(x)[ > 1,
which implies

Prob[f(x) - sign(g(x))] < E[(f(x)- g(x))2] _< e.

Thus, we have
CLAIM 2.1. Ifg e-approximates a booleanfunction f, then

Prob[f(x) : sign(g(x))] < e.

3. Approximation by sparse functions. In this section we show how to find an approx-
imation by a sparse function. The main result in this section is that if f can be t-approximated
by some polynomially sparse function g, then there is a randomized polynomial time proce-
dure that finds some function h that O(e)-approximates f. (A function g is t-sparse if it has
at most Fourier coefficients that are not 0.)

The first step is to show that if f can be approximated by a polynomially sparse function
g, it can be approximated by a polynomially sparse function that has only "large" coefficients.
We remark that we do not make a "direct" use of g (e.g., by approximating g instead of
approximating f) but only use its existence in the analysis.

LEMMA 3.1. Iff can be approximated by a t-sparsefunction g such that E[(f g) 2 < e,
then there exists a t-sparsefunction h such that El(f-h)2] < e+ O(e2/t) andall the nonzero
coefficients ofh are at least e t.
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1336 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

Proof. Let g(x) _=l b(zi)Xzi (x). Note that the Fourier coefficients of the function

f g are exactly f(z) (z). Therefore, by Parseval’s equality,

E[(f- g)2] E(f(z)_ (z))2.

Thus, requiring that (zi) f(zi) can only reduce the expected error squared. Therefore,
without loss of generality, the nonzero coefficients of g are the coefficients of f, i.e., g(x)

YI=i (zi)Xzi (x). Let h be the function obtained from g by replacing the "small" coefficients
by 0. Namely,

h(x) E i(zi)Xzi (x).
f(zi)e/t

We now show that E[(f h)2] e + O(e2/t). Consider the expression,

E[(f- h)2] E[(f- g)2].

By the above arguments, this is equal to

(z)

Since E[(f g)2] < s, the lemma follows.

(f(zi)
f(zi)<s/t

f(zi)<s/t
f2(zi) < ()2t- e2/t.

The above lemma has reduced the problem of approximating f by a t-sparse function to
the problem of finding all the coefficients of f that are greater than a threshold of e/t. Note
that the function h defined above does not necessarily contain all the coefficients of f that are

greater than s/ t, but only those that appear also in g. However, adding these coefficients to h
will clearly make h a better approximation for f. In any case, the number of these coefficients,
as follows from Lemma 3.4, cannot be too high.

In the remainder of this section we show a randomized polynomial time procedure that

given a function f and a threshold 0 outputs (with prob. 3) all the coefficients for which
If(z)[ > 0. The procedure runs in polynomial time in n, 1/0 and log 1/3. This procedure is
based on the ideas of [GL89], although the context is completely different.

Let f(x) Zz{0,1}. i(z)xz(x)" For every a 6 {0, 1}k, we define the function f,
{0, }n-k __+ 9 as follows:

f(x) A= Z f(afl)X(X).
,tT{O, 11"-

In other words, the function f(x) includes all the coefficients f(z) of f such that z
starts with oe (and all the other coefficients are 0). This immediately gives the key idea for
how to find the large coefficients of f: find (recursively) the large coefficients of J and
Note that during the learning process we can only query for the value of the target function

f in certain points. Therefore, we first have to show that f (x) can be efficiently computed
using such queries to f. Actually, we need not compute the exact value of f (x) but just
need to approximate it. The following lemma gives an equivalent formulation of f, which is
computationally much more appealing:
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1337

LEMMA 3.2. For anyfunction f, any < k < n, any ot {0, }k, and any x {0, }n-k,

f(x) Ey{O, lF[f(yx)xa(y)].

This formulation implies that even though we do not know how to compute the value of

f (x) we can approximate it, by approximating the above expectation.
Proof. Let f(yx) Yz f(z)Xz(yX). Note that if z ZlZ2, where z 6 {0, }k, then

Xz (yx) Xz (Y)Xz (x). Therefore,

f(ZlZ2)Xz(x)Ey[Xzl (Y)X(Y)],
Zl z2

where y andz denote strings in {0, }k and z2 denotes strings in {0, }n-k. By the oahonoal-
ity of the basis, (see 2.1) it follows that Ey[Xz (y)X (Y)] (which is the same as < Xz, X >)
equals 0 if z , and equals if z . Therefore, only the terms with z contributes
in the sum. Thus, the last term equals

fzxzX- L(x.
z2G{O, 1}n-k

Since both If(x)l and IX(Y)I we derive the following corollary on the value of
Lx).

COROLLARY 3.3. For any boolean function f, any k < n, any 6 {0, }k, and any
x G {0, 1}n-k,

If(x)l 1.

We showed how to decompose a function f into functions f, u 6 {0, }k, such that each
coefficient of f appears in a unique f. Recall that our aim is to find the coefficients f(z)
such that f(z)l o. The next lemma claims that this cannot hold for "too many" values of
z, and that the property E[f] 02 cannot hold for "many" (of length k) simultaneously.

LEMMA 3.4. Let f be a boolean function, and 0 > O. Then,
1. At most 1/0 2 values ofz satis If(z) 0.
2. For any k < n, at most 1/02 functions f with {0, }k satis E[f] 02.
Proof. By the assumption that f is a boolean function combined with Parseval’s equality,

we get

,.
z{0,1}

Therefore, (1) immediately follows. Similarly, using the definition of f,

{0,1}-
Thus, if I(a)l 0, for some {0, }-, then E[f] 0 2. By the above two equalities,
the following holds.

a{0,1}

Therefore, at most 1/0 2 functions f have E[y] 0 2, which completes the proof
of (2).
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1338 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

The algorithm. By now the algorithm for finding the large coefficients of a function f
should be rather obvious. It is described by the recursive subroutine Coe f, which appears in
Fig. 1. We start the algorithm by calling Coef(,), where ) is the empty string.

SUBROUTINE
IF E[f2l >_ 0 2 THEN

IF
ELSE Coef(ot0); Coef(otl);

FIG. 1. Subroutine Coe f_.

As mentioned earlier in this section, we know that each coefficient off appears in exactly
one of f0 and fl, and also that if If(ot/3)l >_ 0, for some/3 6 {0, 1}n-k, then E[f2] > 02
(note that when Iotl n, then E[f2] fz(ot)). Therefore the correctness of the algorithm
follows; namely, the algorithm outputs all the required coefficients.

By Lemma 3.4, we also know that the number of ot’s for which E[f2] > 02 is bounded by
1/02, for each length of or. Thus, the total number of recursive calls is bounded by O(n/02).

Detailed analysis. We are still not done, since this algorithm assumes that we can com-
pute E[f2] exactly, something that is not achievable in polynomial time. On the other hand,
we can approximate E[f2] very accurately in polynomial time. Therefore we modify Subrou-
tine Coef: instead of testing whether E[f2] > 02 we approximate E[f] and test whether
the approximated value is greater than 02/2 (see Fig. 2).

SUBROUTINE Coe f (or)
B Approx(ot)/* B is approximating E[f2].*/
IF B > 02/2 THEN

IF lot[ n THEN OUTPUT ot

ELSE Coef(ot0); Coef(otl);

FIG. 2. The modification ofsubroutine Coe f.

The approximation of E[f2] is such that with very high probability the error in the

approximation is small. That is, with high probability, every coefficient satisfying f(z)l _>
0 will be output, which guarantees the correctness condition of the algorithm.^ Also, this
approximation guarantees that with high probability, no coefficient satisfying [f(z)l < 0/2
will be output, which bounds (by Lem. 3.4) the number of coefficients the algorithm outputs
to at most 4/02. Moreover, it implies that for every k at most 4/02 strings ot 6 {0, }k of
length k will pass the test of the subroutine, which bounds the number of calls to the recursive
subroutine by O(n/02). What we are left with is to bound the computation required to

approximate E[f ].
Let ml,m2 be parameters (to be fixed later). We approximate E[f2(x)] as shown in

Fig. 3.
The value ofB is the approximation to E[f2(x)]. We now need to find the "right" values

of ml and m2, such that B will be a "good" approximation to E[f2(x)]. That is, with high
probability, if E[f2] >_ 02 then B >_ 02/2 and if E[f2] <_ 02/4, then B < 02/2.

To prove that B is a "good" approximation of Ex[fZ(x)], we first prove that B would
be a "good" approximation of Ex [f2 (x)] ifwe compute it with the real values off (xi). Then
we show that the Ai’s are "good" approximations for f(xi). Finally, we show that even if we
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1339

SUBROUTINE Approx (or)
Choose at random X {0, 1}n-k, for < < m l.
For each xi

Choose at random Yi,j {0, }k, for _< j _< m 2.
m2Let Ai Yj=I f(Yi,jxi)x(Yi,j).

/* Ai is approximating */
/* f(xi) Ey[f(yxi)xa(y)].*/

Let B j=l A/.
/* B is approximating Ex[f2(x)].*/

RETURN B.

FIG. 3. Approximation of E[f2 (x) ].

compute B with the Ai’S (instead of fot(Xi) it is still a "good" approximation of Ex[f2(x)].
For the proof we use Chernoff bounds (see [HR89]):

LEMMA 3.5 (CHERNOFF). Let X1 Xm be independent, identically distributed random
variables, such that E[Xi] p and Sm Zi%I Si.

IfXi [0, 1], then

Prob [(1- e) p < Sm < (l + e) p] > 2e-e2mp/3

IfXi [-1, +1], then

Prob[iSm ] 2e_Z2/2-p] >). <
m

Using this bound, we claim that by choosing at random m values x and computing the
average JZ(xi), we get a value that is very close to E[f2].

LEMMA 3.6. Let B f (xi), where xi {0, },-k, _< _< m l, are chosen
uniformly at random. Then,

Prob - E[f2 < B <_ - E{f2 >_ 2e-9 el/21

(andProof. Follows immediately from the first part of Lemma 3.5 with e p
E[f]). q

The next lemma claims that Ai is a "good" approximation for f(xi). It is based on the
identity of Lemma 3.2 (i.e., f(xi) Ey[f(yxi)x(y)]).

LEMMA 3.7. For any value ofxi,

Prob [IAi f(xi)l 02/16] < 2e-04m2/29.

Proof. The proof ofLemma 3.7 follows immediately from the second part ofLemma 3.5

with ) 24-
16

[]

Intuitively, if we approximate each f (xi) well, the difference between B (which uses
the approximate values) and B’ (which uses the true values) should be small. The following
lemma formalizes this intuition.

02 202LEMMA 3.8. Iflf(xi) Ai[ <_ N,for < < ml, then [Bc B[ < -fff
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1340 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

Proof. By Corollary 3.3 it follows that [f(xi)[ 1. By the definition of the Ai’s it
follows that IAi[ < 1. Therefore,

(f2(Xi) Ai2)I If(xi) Ail If(xi) -t- Ailm
i=1

m
i=1

0 2 202

< .2=. V1
m 16 16

Using the above lemmas, we now fix the values ofm and m 2 so thatB will be a "good"
approximation for E[f2].

n.mlLEMMA 3.9 Let m (R)(2 log a-) and m 2 (R)(4 log a02 J. With probability
the procedure Cf outputs all the coecients z such that If(z)l 0, and does not output
any coecient z such that If(z)l 0/2.

Proof. As shown above we have O(n/O2) calls to the subroutine Cf (and the same
number of calls to the subroutine Aprx). To guarantee a total eor probability of 3 we
choose m and m2 so that the probability of eor in each of the calls is no more than 0.

n

Also recall that if z fl, for some 6 {0, 1}k and fl 6 {0, 1}-k, and if If(z)l 0, then
E[fl 0 2.

Consider an such that E[f] R 0 2. By Lemma 3.6, with probability at least
3 2 e-O4m2/292e-m1/48 the value ofB a0 By Lemma 3.7, with probability 2ml all the

values of Ai (1 ml) satisfy If(xi) All 2/16. In this case, using Lemma 3.8,
102 02BN >T"

Consider an such that E[f] 02/4. Note that B is monotonic in E[f], and
therefore it is enough to consider the case E[fff] 02/4. By Lemma 3.6, with probability

2e-m’2/192, the value ofB 0 2. By Lemma 3.7, with probability 2me-4m/29,
all the values of Ai (1 ml) satisfy If(xi) All 02/16. In this case, using Lemma

023.8, B 02 < T"
SO far we have shown that the algorithm performs the "right" recursive calls. This implies

that, with probability a, the number of recursive calls is at most 4n/02. It also implies
that all the required coefficients will be output. Now we need to show that in such a case
no coefficient z, such that If(z)l 0/2 is output. Note that the probability of outputting
such a coefficient is at least the probability that we made one "wrong" recursive call, and this
probability is bounded by a.

Once the procedure outputs the list of vectors, z ze, we can apprpximate each co-
efficient f(zi). Let the approximate value be Yi. (Since by definition, f(zi) E[fx,],
then Lemma 3.5 guantees that a "small" sample will give with a high probability a "good"
approximation for all these coefficients.) The prediction hypothesis is h (x) = FiXi (x).
To conclude, the algorithm has the following performance:

THEOREM 3.10. There is a randomized algorithm, thatfor any boolean function f, any
> O, and any 0 > 0 outputs a list ofvectors i {0, }n such that

with probability the list contains eery vector for which f()l 0 and
does not contain any vector for which If()l 0/2. (This implies that the list
may contain at most 4/02 vectors.)
the algorithm runs in time polynomial in n, 1/0, and log

To summarize, in this section we have shown that iff can be g-approximated by a t-sparse
function, then it is sufficient to find all its coefficients larger than g/t 0. Therefore we have
established the following theorem.

THEOREM 3.11. Let f be a boolean function such that there exists a t-sparse function
g that g-approximates f (in norm L). Then there exists a randomized algorithm that on
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1341

input f and 6 > 0 outputs afunction h such that with probability 6 the function h 0 (e)-
approximates, in norm L2, the input function f The algorithm runs in time polynomial in
n, t, 1/e, and log 1/6.

4. Functions with small L-norm. In this section we show that a function whose sum
of the absolute value of the coefficients is "small" has a "small" number of"large" coefficients
that "almost" determine the function. Therefore, in order to get a good approximation of the
function, it is sufficient to approximate those coefficients. Saying it differently, we show that
functions with "small" L 1-norm can be approximated by sparse functions.

Let f be a boolean function, and recall that L1 (f) = Y-z If(z) l. The following lemma
shows that it is sufficient to approximate a small number of the (large) coefficients of f.

LEMMA 4.1. Let e > O. Let S {z If(z)l > e/Ll(f)}, and let g(x)
YzeS f(z)Xz(X). Then

E[(f- g)2] < e.

Proof. By the definition of g, we have

(f g)(x) Z(f(z) (z))Xz(X) Z f(z)Xz(X).
zS

Therefore, using Parseval’s identity, we have

E[(f- g)2] Z fZ(z)"
zS

This is clearly bounded above by

z{O, 1} L(f)
Ll(f) e.

This implies that if we can find all the coefficients that are greater, in absolute value, than
e/L(f), we can approximate f. The procedure in the previous section gives a way to find
all such coefficients in time poly(n, L (f), 1/e, log 1/6). Note that in order to use subroutine
Coe f we need to know the value of L (f). If this is not the case, we can search for an upper
bound on it. This will add a multiplicative factor of O (log L (f)) to the time complexity. We
have established the following theorem.

THEOREM 4.2. There is a randomized algorithm, that for any boolean function f, and
e, 6 > O, outputs a function g such that Prob[E[(f- g)2] <_ e] >_ 6, and the algorithm
runs in time polynomial in n, L (f), 1/e, and log 1/6.

4.1. Derandomization. For functions with a "small" L 1-norm we can efficiently deran-
domize the algorithm. One drawback of the derandomization is that it requires that we have
a bound on the L 1-norm, since we cannot test hypotheses using randomization as before.
The main idea in the derandomization is the usage of )-bias distributions. The notion of a
)-bias distribution was first suggested by [NN90], and other constructions were given later by
[AGHP90]. One way to formalize the notion of )-bias is the following.

DEFINITION 4.1. Every distribution/z over {0, }n can be considered as a real function
lz(x) Yz I?Z(z)Xz(X). A distribution/z(x) is )-bias if for any z - 0, It2(z)l _< )2-n.

Note that the uniform distribution u(x) has (z) 0, for z (, and therefore it is
0-bias. Also for any distribution

/2(0) =< #, Xo >-- E[#]- Z/(x)
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1342 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

One of the applications of )-bias distributions is to derandomize algorithms. The deran-
domization of an algorithm is done by showing that the output of the algorithm when its coin
tosses are chosen from a uniform distribution, and the output of the algorithm when its coin
tosses are chosen from a )-bias distribution are very similar. If this holds, then the determin-
istic algorithm is the following: (1) enumerate all the strings in the L-bias distribution, (2) for
each such string compute the value of the randomized algorithm, and (3) output the average
of the replies in step (2). To have an efficient derandomization we would like that the sample
space of the )-bias probability distribution would be enumerable "efficiently" (in particular,
it has to be "small").

THEOREM 4.3 ([NN90, AGHP90]). There are .-bias distributions whose sample
spaces are ofsize ()2 and are constructible in polynomial time.

Using the definition (and basic properties) of the Fourier transform we show the following
identity.

LEMMA 4.4. For anyfunction f and any distribution lz,

Ez[f] f(6) -+- 2nE (z)f(z).

Proof. By the definitions,

Clearly, if z z’ then Yx Xz(X)Xz’ (x) 2n, and if z z’ then .x Xz(x)xz’ (x)

x Xz.z’ (x) 0. Therefore the above sum equals

As/2(0) n, the lemma follows. [3

Our goal now is to show that the algorithm behaves "similarly" when its coin tosses are
chosen from the uniform distribution, u, or from a )-bias distribution, /z. We show it by
proving that the Ai’s and the B computed by Subroutine Appro are "similar." The main
tool for this is the following lemma.

LEMMA 4.5. Let f be any function, u be the uniform distribution, and lZ be a )-bias

distribution, then

[E[f]- Eu[f]l <_ )Ll(f).

Proof. By definition, Eu[f] f((). From Lemma 4.4 we have

Eu[fl j(6) + 2 E z(z)f(z).

The definition of )-bias distributions ensures that I(z)l )/2n, therefore we get

IE[f]- Eu[f]l <_ [f((J)+ 2n Efi(z)f(z)- j((J)l _< 2nE -; Ij(z)[ .L(f),
z#6 z#O

which completes the proof. 3
LEMMA 4.6. Let h(y) f(yx),forsome fixedx {0, 1}k. Then, Ll(h) < L(f).
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1343

Proof. The proof is by induction k; let k 1. Then h(y) f(yb), where b e {0, }.
One can verify easily that if b 0, then (z) f(zO) + f(zl), and if b 1, then (z)
f(zO) f(z 1). In both cases L (h) _< L (f).

The induction step follows from the fact that we can restrict the function bit after
bit.

This implies that we can compute the Ai’s (the inner loop of subroutine Appro) with
]<-bias distributions.

LEMMA 4.7. Let u be the uniform distribution, and IZ be a ]<-bias distribution on {0, }k.
For anyfunction f, k < n, ot {0, 1}k, and x {0, 1}n-k,

[Eyu[f(yx)x(y)] Eyu[f(yx)x(y)][ < ]<Ll(f).

Proof. Let hx(y) L f(yx) and gx(y) = hx(Y)X(y). By Lemma 4.6 L(hx) <. Ll(f).
First, we show that L(gx) L(hx) by showing that they have the same set of coefficients:

(z) =< g, Xz >=< hx, Xz >=< h, XXz >=< hx, Xez >= h (or @ z).

This implies that L (g) _< L (f). By Lemma 4.5,

IE[gx] Eu[gx]l <_ ]<Ll(gx) < ]<Ll(f).

We now show a few basic relations about the L 1-norm of the coefficients of a function,
so that we can show that L (f2) < L2 (f).

CLAIM 4.8. For anyfunction f and ot {0, }, k < n, then L (f) <_ L (f).
This is because f, by definition, includes only a subset of the coefficients of f. The

second claim establishes a relation between the L -norm of two functions and the L -norm of
their product.

CLAIM 4.9. For anyfunctions g and h, L (gh < L (g)L (h ).
Proof. Note that

(To see the last transformation, take z3 to be Z () Z2. Therefore,

Ll(gh) Z(Zl)/](z3 (9 z)l < Z I(zl)ll/(z2)l- Ll(g)Ll(h).
Z3 Z1 Z1, Z2

We use the above two claims to bound L (f2).
CLAIM 4.10. For anyfunction f and ote {0, }, k <_ n, then,

L,(f) <_ L(f) <_ L(f).
This implies that we can compute B (the outer loop of subroutine Approx) using only

]<-bias distributions.
LEMMA 4.11. For anyfunction f, and {0, }k, k _< n,

[E.[f2] Eu[f2]l <_

Proof. Combine Lemma 4.5 with Claim 4.10. E]

Lemma 4.11 can be used to derandomize the outer loop by choosing ]< e/LZl(f).
Lemma 4.7 can be used to derandomize the inner loop by choosing ]< e/L(f). This
implies that we have established the following theorem.

THEOREM 4.12. There is a deterministic algorithm that receives as an input a boolean
function f, Ll(f), and e > O, and outputs a function g such that E[(f g)2] _< 8, and the
algorithm runs in time polynomial in n, L (f), and 1/e.
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1344 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

5. Decision trees. We consider decision trees, whose input is n boolean variables, and
the branching in each node is based on a linear combination (over G F(2)) of a subset of the
variables (as described in 2.2). In this section we show that, for any function corresponding
to such a boolean decision tree, the sum of the absolute values of its coefficients (i.e., the
L 1-norm) is bounded by m, the number of nodes in the tree. This implies, using the result in
the previous section, that such decision trees can be approximated in polynomial time.

LEMMA 5.1. Let f be computed by a decision tree with m nodes, then L l(f) <_ m.

Proof. A nonredundant decision tree is a tree in which for every leaf there is some input
that ends up in that leaf. By the claim of the lemma, f has a decision tree with m nodes,
therefore there is a nonredundant decision tree TU with at most m nodes that computes f.
Denote by leaf(Tf) the set of leaves in the tree TU, and by d(v) the depth of node v. That
is, d(v) is the number of nodes on the path from the root to node v, not including v.

We claim that every node at depth d has exactly a 2-a fraction of the inputs reaching it.
The inputs that reach a node at depth d pass through d internal nodes; therefore, they satisfy
a set of d linear constraints over G F(2). Each such linear constraint is satisfied by exactly
1 of the inputs Since Tf is nonredundant, the linear constraints are linearly independent.2
Therefore, the fraction of the inputs that satisfy all the d constraints is 2-a.

By the definition of a decision tree each input reaches a unique leaf. Let I (v) be the set
of all the inputs that reach leaf v. Then for every z,

f(z) =< f Xz >= E[fXz]
v61eaf(Tf)

2-d(v) val (v) ExI(v)[Xz (X) ].

In the following we show that IEx()[Xz(X)]l for exactly 2d(v) values of z, and zero
for the rest. This implies that each leaf can contribute at most one to the value of L (f).

Consider a leaf v. Any input x I(v) satisfies d(v) linear constraints, i.e.,

x (9 Yl bl
x (9 y2 b2

X (9 Yd(v) bd(v),

where (9 denotes the inner product of two n-bit vectors x, y 6 {0, 1}n, i.e., x (9 y

Yi xi Yi mod 2.
The argument has two parts, depending on whether or not z is a linear combination of

the yi’s. If z is a linear combination of the yi’s, then clearly the value of x (9 z is fixed, for
every x 6 I (v). Since the value of x (9 z is fixed, by definition, the value of Xz(X) is fixed to
either + or 1, hence IExei()[Xz(X)]l 1. Since the tree is nonredundant, there are exactly
2a() vectors that are a linear combination of the yi ’s. Note that we consider z 6 as a linear
combination of the yi’s.) On the other hand, if z # 0 is not a linear combination of the Yi’s
then the number of x 6 I(v) satisfying x (9 z 0 is the same as the number of x I(v)
satisfying x (9 z 1. Therefore, in this case Exez(v)[Xz(X)] 0. Combining the two claims,
we have that ,z IExi()[Xz]l 2a(v).

Intuitively, each leaf v contributes to at most 2(v) coefficients, and to each coefficient it
contributes 2-(v). This implies that leaf v contributes at most one to the sum of the absolute
value of all the coefficients. Therefore, L l(f) is bounded by the number of leaves, which is
at most m. The following calculations shows this formally:
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EYAL KUSHILEVITZ AND YISHAY MANSOUR 1345

ze{O,l}" ze{O,l}"

ze{0,1}, veleaf(Tf)

2-a(v) val(v)ExI(v)[Xz]

Combining Lemma 5.1 and Claim 2.1 with Theorem 4.12, we get the following theorem:
THFOP,FM 5.2. There is a polynomial time (deterministic) algorithm, thatfor any boolean

function f that can be represented by an m node decision tree with linear operations, andfor
any e > O, outputs afunction g such that

Prob[f - sign(g)] _< e,

and the algorithm runs in time polynomial in n, m, and 1/e.
We now show that the bound given in Lemma 5.1 is tight. Consider the inner product

function on inputs of n 2e variables:

f(Xl Xzg) (-- 1)x’xe+lm’"*xex2e U(- 1)xixe+i
i=1

Let hi(x1 x2e) (-1)xixe+i,for <_ < g.. Clearly, f- I-I=l hi. The Fourier transform
of hi is

hi(x) - -t- - XI (i) (X -Jl- - XI (i +g.) (X - XI (i,i+e) (x

where I(S) is the indicator vector of the set S, e.g., I({j}) is equal to the vector who has the

jth coordinate one and all the other coordinates zero. From the expansion of hi it is clear that
If(z)l 2-e, for any z, and therefore L l(f) 22e2-e 2e. We will show that there is a
decision tree with linear operations of size O(2e) that computes f.

The following is a description of the decision tree that computes f. The first g levels of
the decision tree form a complete binary tree. In each node of level (1 _< _< g) we test

xi @ xe+i. For every leaf v of the tree, let b’ b be the sequence of the replies to the
queries xi @ xe+i along the path from the root of the tree to v. Let, S, {ilb 0}. We
now test for the parity of all xi’s with E Sv. Let the value of the computation be the value
of the parity. The tree has only depth g + 2, and hence only O(2e) nodes. The reason that it
computes the inner product correctly is the following. If bi 1, then exactly one of xi, xe+i
is 0 and in particular xix+ O. This implies that the ith term in the inner product is zero,
and therefore we can ignore it. If b 0, then either both xi, xe+i are 0, or both xi, xe+i
are 1. In both cases, xixe+i xi. Therefore, instead of considering the value of the ith term
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1346 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

(i.e., XiXg.+i), we can consider the variable xi. Therefore the parity of Sv is the parity of all the
relevant terms.

Exact reconstruction. We show that a boolean decision trees with linear operations can
be recovered exactly in time polynomial in n and 2d, where d is the depth of the tree.

It follows from the proof of Lemma 5.1 that all the coefficients of a tree of depth d can
be written as k/2d, where k is an integer in the range [-2d, +2d]. The idea is to first find a
good approximation of all the nonzero coefficients and then, using the above fact, to compute
them exactly.

By Theorem 4.12, we have a deterministic algorithm that for every function f and e > 0
outputs a function g such that

E(f(z) (z))2 E[(f- g)2l _< e

in time polynomial in n, L (f), and 1/e. In particular, it follows that If(z) (z)l _< v/d, for
)2every z. We use this algorithm, with e < (7 z which ensures that g satisfies If(z) ,(z) <

2 2, for every z. Since the real coefficient is of the form k/2d, where k is integer, the difference

between possible values that a coefficient can have is 1/2d" since the error is smaller than 7 z,
by rounding we find the exact coefficient.

This implies that we recovered all the Fourier coefficients of the function exactly. There-
fore, we found a function whose Fourier transform is identical to the tree’s Fourier transform,
this implies that the two functions are identical. By the choice of e and as L (f) < m < 2d+

the running time of the algorithm is polynomial in n and 2d. Thus, we have established the
following theorem,

THEOREM 5.3. There is a (deterministic) polynomial time algorithm, thatfor any boolean

function f that can be represented by a depth d decision tree with linear operations, outputs
afunction g such that

Vx Z g(x) f(x),

and the algorithm runs in time polynomial in n and 2.
An interesting special case is when the depth of the tree is logarithmic in n. In such a

case, the algorithm will run in polynomial time.

6. Extensions and open problems. The characterization of the decision trees can be
extended easily to boolean functions of the form f {0, k }n

__
{0, that can

be computed by a polynomial-size k-ary decision tree, namely, a tree in which each inner
node v has k outgoing edges. When the computation reaches the node v, labeled by Sv
{0, k 1}n, it assigns this node the value Ein__l Si "xi mod k, and the computation
continues to the appropriate child of v. For extending the results to such functions and
decision trees we have to define the appropriate characters and modify the proofs accordingly.
For each z {0, k 1}n, define the basis function Xz:

XZ (Xl’’’’’ Xn) L W zl "xl l-’"’-Zn’Xn,
2rri

where to e-r is the root of unity of order k. In this case, a straightforward extension of our
proof for k 2 shows that the sum of the magnitudes of the coefficients is bounded by the
number of leaves.

Another issue is decision trees with real outputs, where the leaves have real values from
the interval [0, M], i.e., f {0, }n

_
[0, M]. In a similar way to the boolean case, one can
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show that any function f that has a real decision tree with rn leaves then L l(f) < rnM. In
this case the running time of the learning algorithm would be polynomial in M.

An open problem related to this work is to find other classes of functions that can be
learned in polynomial time. In particular, it is very interesting whether functions that can
be represented by a polynomial-size DNF formula can be learned in polynomial time. One
possible direction to resolve this open problem is to show that for any polynomial-size DNF
there is a polynomially sparse function that approximates it in L2. So far we have not found
any counter examples to this claim.

While our algorithm can be derandomized in the case of functions with polynomial L 1-

norm, it is an open problem to derandomize it in the more general case of functions that can
be approximated by polynomially sparse functions.
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