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Abstract

We propose a novel semantic segmentation algorithm by

learning a deep deconvolution network. We learn the net-

work on top of the convolutional layers adopted from VGG

16-layer net. The deconvolution network is composed of

deconvolution and unpooling layers, which identify pixel-

wise class labels and predict segmentation masks. We ap-

ply the trained network to each proposal in an input im-

age, and construct the final semantic segmentation map by

combining the results from all proposals in a simple man-

ner. The proposed algorithm mitigates the limitations of the

existing methods based on fully convolutional networks by

integrating deep deconvolution network and proposal-wise

prediction; our segmentation method typically identifies de-

tailed structures and handles objects in multiple scales nat-

urally. Our network demonstrates outstanding performance

in PASCAL VOC 2012 dataset, and we achieve the best ac-

curacy (72.5%) among the methods trained without using

Microsoft COCO dataset through ensemble with the fully

convolutional network.

1. Introduction

Convolutional neural networks (CNNs) are widely used

in various visual recognition problems such as image classi-

fication [17, 24, 25], object detection [8, 10], semantic seg-

mentation [7, 20], visual tracking [13], and action recog-

nition [15, 23]. The representation power of CNNs leads

to successful results; a combination of feature descriptors

extracted from CNNs and simple off-the-shelf classifiers

works very well in practice. Encouraged by the success

in classification problems, researchers start to apply CNNs

to structured prediction problems, i.e., semantic segmenta-

tion [19, 1], human pose estimation [18], and so on.

Recent semantic segmentation algorithms are often for-

mulated to solve structured pixel-wise labeling problems

based on CNN [1, 19]. They convert an existing CNN ar-

chitecture constructed for classification to a fully convolu-

tional network (FCN). They obtain a coarse label map from

the network by classifying every local region in image, and

bus 

car car 

bus 

car 

train 
boat 

bicycle 
person 

(a) Inconsistent labels due to large object size

person person 

(b) Missing labels due to small object size

Figure 1. Limitations of semantic segmentation algorithms based

on fully convolutional network. (Left) original image. (Center)

ground-truth annotation. (Right) segmentations by [19]

perform a simple deconvolution, which is implemented as

bilinear interpolation, for pixel-level labeling. Conditional

random field (CRF) is optionally applied to the output map

for fine segmentation [16]. The main advantage of the meth-

ods based on FCN is that the network accepts a whole image

as an input and performs fast and accurate inference.

Semantic segmentation based on FCNs [1, 19] have a

couple of critical limitations. First, the network has a pre-

defined fixed-size receptive field. Therefore, the object that

is substantially larger or smaller than the receptive field may

be fragmented or mislabeled. In other words, label predic-

tion is done with only local information for large objects and

the pixels that belong to the same object may have inconsis-

tent labels as shown in Figure 1(a). Also, small objects are

often ignored and classified as background, which is illus-

trated in Figure 1(b). Although [19] attempts to sidestep this

limitation using skip architecture, this is not a fundamen-

tal solution since there is inherent trade-off between bound-

ary details and semantics. Second, the detailed structures

of an object are often lost or smoothed because the label

11520



map, input to the deconvolutional layer, is too coarse and

deconvolution procedure is overly simple. Note that, in the

original FCN [19], segmentation results are obtained from

the 16 × 16 label map through deconvolution to the orig-

inal input size using a single bilinear interpolation layer.

The absence of a deep deconvolution network trained on

a large dataset makes it difficult to reconstruct highly non-

linear structures of object boundaries accurately. However,

recent methods ameliorate this problem using CRF [16].

To overcome such limitations, we employ a completely

different strategy to perform semantic segmentation based

on CNN. Our main contributions are summarized below:

• We learn a deep deconvolution network, which is com-

posed of deconvolution, unpooling, and rectified linear

unit (ReLU) layers. Learning deep deconvolution net-

works for semantic segmentation is meaningful but no

one has attempted to do it yet to our knowledge.

• The trained network is applied to individual object pro-

posals to obtain instance-wise segmentations, which

are combined for the final semantic segmentation; it is

free from scale issues found in the original FCN-based

methods and identifies finer details of an object.

• We achieve outstanding performance using the decon-

volution network trained on PASCAL VOC 2012 aug-

mented dataset, and obtain the best accuracy through

the ensemble with [19] by exploiting the heteroge-

neous and complementary characteristics of our algo-

rithm with respect to FCN-based methods.

We believe that all of these three contributions help achieve

the state-of-the-art performance in PASCAL VOC 2012

benchmark.

The rest of this paper is organized as follows. We first

review related work in Section 2 and describe the architec-

ture of our network in Section 3. The detailed procedure

to learn a supervised deconvolution network is discussed

in Section 4. Section 5 presents how to utilize the learned

deconvolution network for semantic segmentation. Experi-

mental results are demonstrated in Section 6.

2. Related Work

CNNs are very popular in many visual recognition prob-

lems and have also been applied to semantic segmentation

actively. We first summarize the existing algorithms based

on supervised learning for semantic segmentation.

There are several semantic segmentation methods based

on classification. Mostajabi et al. [20] and Farabet et al. [7]

classify multi-scale superpixels into predefined categories

and combine the classification results for pixel-wise label-

ing. Some algorithms [3, 10, 11] classify region proposals

and refine the labels in the image-level segmentation map to

obtain the final segmentation.

Fully convolutional network (FCN) [19] has recently

driven breakthrough on deep learning based semantic seg-

mentation. In this approach, fully connected layers in the

standard CNNs are interpreted as convolutions with large

receptive fields, and segmentation is achieved using coarse

class score maps obtained by feedforwarding an input im-

age. An interesting idea in this work is that a single layer

interpolation is used for deconvolution and only the CNN

part of the network is fine-tuned to learn deconvolution in-

directly. The proposed network illustrates impressive per-

formance on the PASCAL VOC benchmark. Chen et al. [1]

obtain denser score maps within the FCN framework to pre-

dict pixel-wise labels and refine the label map using the

fully connected CRF [16]. Independently of our work and

[19], a shallow encoder-decoder model is studied [29] but

its performance improvement is marginal even compared to

the methods without deep learning.

In addition to the methods based on supervised learning,

several semantic segmentation techniques in weakly super-

vised settings have been proposed. When only bounding

box annotations are given for input images, [2, 21] refine the

annotations through iterative procedures and obtain accu-

rate segmentation outputs. On the other hand, [22] performs

semantic segmentation based only on image-level annota-

tions in a multiple instance learning framework. Our work

is extended to solving the semantic segmentation problem

with a small number of full annotations in [12].

Semantic segmentation involves deconvolution concep-

tually, but learning deconvolution network is not very com-

mon. Deconvolution network is discussed in [27] for image

reconstruction from its feature representation; it proposes

the unpooling operation by storing the pooled location to

resolve challenges induced by max pooling layers. This ap-

proach is also employed to visualize activated features in a

trained CNN [26] and update network architecture for per-

formance enhancement. This visualization is useful for un-

derstanding the behavior of a trained CNN model. Another

interesting work about deconvolution network is [5], which

generates chair images based only on a few parameters re-

lated to chair type, viewpoint, and transformation.

3. System Architecture

This section discusses the architecture of our deconvolu-

tion network, and describes the overall semantic segmenta-

tion algorithm.

3.1. Architecture

Figure 2 illustrates the detailed configuration of the en-

tire deep network. Our trained network is composed of two

parts—convolution and deconvolution networks. The con-

volution network corresponds to feature extractor that trans-

forms the input image to multidimensional feature represen-

tation, whereas the deconvolution network is a shape gen-
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Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-

layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from

the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and

rectification operations.

erator that produces object segmentation from the feature

extracted from the convolution network. The final output of

the network is a probability map in the same size to input

image, indicating probability of each pixel that belongs to

one of the predefined classes.

We employ VGG 16-layer net [24] for convolutional part

with its last classification layer removed. Our convolution

network has 13 convolutional layers altogether, rectifica-

tion and pooling operations are sometimes performed be-

tween convolutions, and 2 fully connected layers are aug-

mented at the end to impose class-specific projection. Our

deconvolution network is a mirrored version of the convo-

lution network, and has multiple series of unpooing, decon-

volution, and rectification layers. Contrary to convolution

network that reduces the size of activations through feed-

forwarding, deconvolution network enlarges the activations

through the combination of unpooling and deconvolution

operations. More details of the proposed deconvolution net-

work is described in the following subsections.

3.2. Deconvolution Network for Segmentation

We now discuss two main operations, unpooling and de-

convolution, in our deconvolution network in details.

3.2.1 Unpooling

Pooling in convolution network is designed to filter noisy

activations in a lower layer by abstracting activations in a

receptive field with a single representative value. Although

it helps classification by retaining only robust activations in

upper layers, spatial information within a receptive field is

lost during pooling, which may be critical for precise local-

ization that is required for semantic segmentation.

To resolve such issue, we employ unpooling layers in de-

convolution network, which perform the reverse operation

of pooling and reconstruct the original size of activations as

illustrated in Figure 3. To implement the unpooling opera-

tion, we follow the similar approach proposed in [26, 27]. It

Figure 3. Illustration of deconvolution and unpooling operations.

records the locations of maximum activations selected dur-

ing pooling operation in switch variables, which are em-

ployed to place each activation back to its original pooled

location. This unpooling strategy is particularly useful to

reconstruct the structure of input object as described in [26].

3.2.2 Deconvolution

The output of an unpooling layer is an enlarged, yet sparse

activation map. The deconvolution layers densify the sparse

activations obtained by unpooling through convolution-like

operations with multiple learned filters. However, contrary

to convolutional layers, which connect multiple input ac-

tivations within a filter window to a single activation, de-

convolutional layers associate a single input activation with

multiple outputs, as illustrated in Figure 3. The output of

the deconvolutional layer is an enlarged and dense activa-

tion map. We crop the boundary of the enlarged activation

map to keep the size of the output map identical to the one

from the preceding unpooling layer.

The learned filters in deconvolutional layers correspond

to bases to reconstruct shape of an input object. Therefore,
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Figure 4. Visualization of activations in our deconvolution network. The activation maps from (b) to (j) correspond to the output maps from

lower to higher layers in the deconvolution network. We select the most representative activation in each layer for effective visualization.

The image in (a) is an input, and the rest are the outputs from (b) the last 14× 14 deconvolutional layer, (c) the 28× 28 unpooling layer,

(d) the last 28 × 28 deconvolutional layer, (e) the 56 × 56 unpooling layer, (f) the last 56 × 56 deconvolutional layer, (g) the 112 × 112

unpooling layer, (h) the last 112× 112 deconvolutional layer, (i) the 224× 224 unpooling layer and (j) the last 224× 224 deconvolutional

layer. The finer details of the object are revealed, as the features are forward-propagated through the layers in the deconvolution network.

Note that noisy activations from background are suppressed through propagation while the activations closely related to the target classes

are amplified. It shows that the learned filters in higher deconvolutional layers tend to capture class-specific shape information.

similar to the convolution network, a hierarchical structure

of deconvolutional layers are used to capture different level

of shape details. The filters in lower layers tend to cap-

ture overall shape of an object while the class-specific fine-

details are encoded in the filters in higher layers. In this

way, the network directly takes class-specific shape infor-

mation into account for semantic segmentation, which is

often ignored in other approaches based only on convolu-

tional layers [1, 19].

3.2.3 Analysis of Deconvolution Network

In the proposed algorithm, the deconvolution network is a

key component for precise object segmentation. Contrary

to the simple deconvolution in [19] performed on coarse ac-

tivation maps, our algorithm generates object segmentation

masks using deep deconvolution network, where a dense

pixel-wise class probability map is obtained by successive

operations of unpooling, deconvolution, and rectification.

Figure 4 visualizes the outputs from the network layer by

layer, which is helpful to understand internal operations of

our deconvolution network. We can observe that coarse-to-

fine object structures are reconstructed through the propaga-

tion in the deconvolutional layers; lower layers tend to cap-

ture overall coarse configuration of an object (e.g. location,

shape and region), while more complex patterns are discov-

ered in higher layers. Note that unpooling and deconvolu-

tion play different roles for the construction of segmentation

masks. Unpooling captures example-specific structures by

tracing the original locations with strong activations back

to image space. As a result, it effectively reconstructs the

detailed structure of an object in finer resolutions. On the

other hand, learned filters in deconvolutional layers tend to

capture class-specific shapes. Through deconvolutions, the

activations closely related to the target classes are amplified

while noisy activations from other regions are suppressed

effectively. By the combination of unpooling and deconvo-

lution, our network generates accurate segmentation maps.

Figure 5 illustrates examples of outputs from FCN-8s

and the proposed network. Compared to the coarse acti-

vation map of FCN-8s, our network constructs dense and

precise activations using the deconvolution network.

3.3. System Overview

Our algorithm poses semantic segmentation as instance-

wise segmentation problem. That is, the network takes

a sub-image potentially containing objects—which we re-

fer to as instance(s) afterwards—as an input and produces

pixel-wise class prediction as an output. Given our network,

semantic segmentation on a whole image is obtained by ap-

plying the network to each candidate proposals extracted
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(a) Input image (b) FCN-8s (c) Ours

Figure 5. Comparison of class conditional probability maps from

FCN and our network (top: dog, bottom: bicycle).

from the image and aggregating outputs of all proposals to

the original image space.

Instance-wise segmentation has a few advantages over

image-level prediction. It handles objects in various scales

effectively and identifies fine details of objects while the ap-

proaches with fixed-size receptive fields have troubles with

these issues. Also, it alleviates training complexity by re-

ducing search space for prediction and reduces memory re-

quirement for training.

4. Training

The entire network described in the previous section is

very deep (twice deeper than [24]) and contains a lot of as-

sociated parameters. In addition, the number of training ex-

amples for semantic segmentation is relatively small com-

pared to the size of the network—12031 PASCAL training

and validation images in total. Training a deep network with

a limited number of examples is not trivial and we train the

network successfully using the following ideas.

4.1. Batch Normalization

It is well-known that a deep neural network is very hard

to optimize due to the internal-covariate-shift problem [14];

input distributions in each layer change over iteration during

training as the parameters of its previous layers are updated.

This is problematic in optimizing very deep networks since

the changes in distribution are amplified through propaga-

tion across layers.

We perform the batch normalization [14] to reduce the

internal-covariate-shift by normalizing input distributions

of every layer to the standard Gaussian distribution. For

the purpose, a batch normalization layer is added to the out-

put of every convolutional and deconvolutional layer. We

observe that the batch normalization is critical to optimize

our network; it ends up with a poor local optimum without

batch normalization.

4.2. Two-stage Training

Although batch normalization helps escape local optima,

the space of semantic segmentation is still very large com-

pared to the number of training examples and the benefit

to use a deconvolution network for instance-wise segmen-

tation would be cancelled. Then, we employ a two-stage

training method to address this issue, where we train the

network with easy examples first and fine-tune the trained

network with more challenging examples later.

To construct training examples for the first stage training,

we crop object instances using ground-truth annotations so

that an object is centered at the cropped bounding box. By

limiting the variations in object location and size, we re-

duce search space for semantic segmentation significantly

and train the network with much less training examples suc-

cessfully. In the second stage, we utilize object proposals

to construct more challenging examples. Specifically, can-

didate proposals sufficiently overlapped with ground-truth

segmentations (≥ 0.5 in IoU) are selected for training. Us-

ing the proposals to construct training data makes the net-

work more robust to the misalignment of proposals in test-

ing, but makes training more challenging since the location

and scale of an object may be significantly different across

training examples.

5. Inference

The proposed network is trained to perform semantic

segmentation for individual instances. Given an input im-

age, we first generate a sufficient number of candidate pro-

posals, and apply the trained network to obtain semantic

segmentation maps of individual proposals. Then we ag-

gregate the outputs of all proposals to produce semantic

segmentation on a whole image. Optionally, we take en-

semble of our method with FCN [19] to further improve

performance. We describe detailed procedure next.

5.1. Aggregating Instance-wise Segmentation Maps

Since some proposals may result in incorrect predictions

due to misalignment to object or cluttered background, we

should suppress such noises during aggregation. The pixel-

wise maximum or average of the score maps corresponding

all classes turns out to be sufficiently effective to obtain ro-

bust results.

Let gi ∈ RW×H×C be the output score maps of the ith

proposal, where W ×H and C denote the size of proposal

and the number of classes, respectively. We first put it on

image space with zero padding outside gi; we denote the

segmentation map corresponding to gi in the original image

size by Gi hereafter. Then we construct the pixel-wise class

score map of an image by aggregating the outputs of all

proposals by

P (x, y, c) = max
i

Gi(x, y, c), ∀i, (1)
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or

P (x, y, c) =
∑

i

Gi(x, y, c), ∀i. (2)

Class conditional probability maps in the original image

space are obtained by applying softmax function to the ag-

gregated maps obtained by Eq. (1) or (2). Finally, we apply

the fully-connected CRF [16] to the output maps for the fi-

nal pixel-wise labeling, where unary potential are obtained

from the pixel-wise class conditional probability maps.

5.2. Ensemble with FCN

Our algorithm based on the deconvolution network has

complementary characteristics to the approaches relying on

FCN; our deconvolution network is appropriate to capture

the fine-details of an object, whereas FCN is typically good

at extracting the overall shape of an object. In addition,

instance-wise prediction is useful for handling objects with

various scales, while fully convolutional network with a

coarse scale may be advantageous to capture context within

image. Exploiting these heterogeneous properties may lead

to better results, and we take advantage of the benefit of

both algorithms through ensemble.

We develop a simple method to combine the outputs of

both algorithms. Given two sets of class conditional prob-

ability maps of an input image computed independently by

the proposed method and FCN, we compute the mean of

both output maps and apply the CRF to obtain the final se-

mantic segmentation.

6. Experiments

This section first describes our implementation details

and experiment setup. Then, we analyze and evaluate the

proposed network in various aspects.

6.1. Implementation Details

Dataset We employ PASCAL VOC 2012 segmentation

dataset [6] for training and testing the proposed deep net-

work. For training, we use augmented segmentation anno-

tations from [9], where all training and validation images

are used to train our network. The performance of our net-

work is evaluated on test images. Note that only the im-

ages in PASCAL VOC 2012 augmented datasets are used

for training in our experiment, whereas some state-of-the-

art algorithms [2, 21] also employ Microsoft COCO to im-

prove performance.

Training Data Construction We employ a two-stage

training strategy and use a separate training dataset in each

stage. To construct training examples for the first stage,

we draw a tight bounding box corresponding to each an-

notated object in training images, and extend the box 1.2

times larger to include local context around the object. Then

we crop the square window tightly enclosing the extended

bounding box to obtain a training example. The class label

for each cropped region is provided based only on the ob-

ject located at the center while all other pixels are labeled

as background. In the second stage, each training example

is extracted from object proposal [28], where all relevant

class labels are used for annotation. We employ the same

post-processing as the one used in the first stage to include

context. For both datasets, we maintain the balance for the

number of examples across classes by adding redundant ex-

amples for the classes with limited number of examples.

Optmization We implement the proposed network based

on Caffe [30] framework. The standard stochastic gradi-

ent descent with momentum is employed for optimization,

where initial learning rate, momentum and weight decay are

set to 0.01, 0.9 and 0.0005, respectively. We initialize the

weights in the convolution network using VGG 16-layer net

pre-trained on ILSVRC [4] dataset, while the weights in the

deconvolution network are initialized with zero-mean Gaus-

sians. We remove the drop-outs due to batch normalization

as suggested in [14], and reduce learning rate in an order of

magnitude whenever validation accuracy does not improve.

Although our final network is learned with both training and

validation datasets, learning rate adjustment based on vali-

dation accuracy still works according to our experience.

Inference We employ edge-box [28] to generate object

proposals. For each testing image, we generate approxi-

mately 2000 object proposals, and select top 50 proposals

based on their objectness scores. We observe that this num-

ber is sufficient to obtain accurate segmentation in practice.

To obtain pixel-wise class conditional probability maps for

a whole image, we compute pixel-wise maximum to aggre-

gate proposal-wise predictions as in Eq. (1).

6.2. Evaluation on Pascal VOC

We evaluate our network on PASCAL VOC 2012 seg-

mentation benchmark [6], which contains 1456 test images

and involves 20 object categories. We adopt comp6 eval-

uation protocol that measures scores based on Intersection

over Union (IoU) between ground truth and predicted seg-

mentations.

The quantitative results of the proposed algorithm and

the competitors are presented in Table 1, where our method

is denoted by DeconvNet. The performance of DeconvNet

is competitive to the state-of-the-art methods. The CRF [16]

as post-processing enhances accuracy by approximately 1%

point. We further improve performance through an ensem-

ble with FCN-8s. It improves mean IoU about 10.3% and

3.1% point with respect to FCN-8s and our DeconvNet, re-

spectively, which is notable considering relatively low accu-

racy of FCN-8s. We believe that this is because our method
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Table 1. Evaluation results on PASCAL VOC 2012 test set. (Asterisk (∗) denotes the algorithms that also use Microsoft COCO for training.)

Method bkg areo bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Hypercolumn [11] 88.9 68.4 27.2 68.2 47.6 61.7 76.9 72.1 71.1 24.3 59.3 44.8 62.7 59.4 73.5 70.6 52.0 63.0 38.1 60.0 54.1 59.2

MSRA-CFM [3] 87.7 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN8s [19] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

TTI-Zoomout-16 [20] 89.8 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4

DeepLab-CRF [1] 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

DeconvNet 92.7 85.9 42.6 78.9 62.5 66.6 87.4 77.8 79.5 26.3 73.4 60.2 70.8 76.5 79.6 77.7 58.2 77.4 52.9 75.2 59.8 69.6

DeconvNet+CRF 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

EDeconvNet 92.9 88.4 39.7 79.0 63.0 67.7 87.1 81.5 84.4 27.8 76.1 61.2 78.0 79.3 83.1 79.3 58.0 82.5 52.3 80.1 64.0 71.7

EDeconvNet+CRF 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

* WSSL [21] 93.2 85.3 36.2 84.8 61.2 67.5 84.7 81.4 81.0 30.8 73.8 53.8 77.5 76.5 82.3 81.6 56.3 78.9 52.3 76.6 63.3 70.4

* BoxSup [2] 93.6 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1 71.0

Figure 6. Benefit of instance-wise prediction. We aggregate the proposals in a decreasing order of their sizes. The algorithm identifies

finer object structures through iterations by handling multi-scale objects effectively.

and FCN have complementary characteristics as discussed

in Section 5.2. Our ensemble method denoted by EDecon-

vNet achieves the state-of-the-art accuracy among the meth-

ods trained only on PASCAL VOC 2012 augmented dataset.

Figure 6 demonstrates effectiveness of instance-wise

prediction for accurate segmentation. We aggregate the pro-

posals in a decreasing order of their sizes and observe the

progress of segmentation. As the number of aggregated pro-

posals increases, the algorithm identifies finer object struc-

tures, which are typically captured by small proposals.

The qualitative results of DeconvNet, FCN and their en-

semble are presented in Figure 7. Overall, DeconvNet pro-

duces fine segmentations compared to FCN, and handles

multi-scale objects effectively through instance-wise pre-

diction. FCN tends to fail in labeling too large or small ob-

jects (Figure 7(a)) due to its fixed-size receptive field. Our

network sometimes returns noisy predictions (Figure 7(b)),

when the proposals are misaligned or located at background

regions. The ensemble with FCN-8s produces much bet-

ter results as observed in Figure 7(a) and 7(b). Note that

inaccurate predictions from both FCN and DeconvNet are

sometimes corrected by ensemble as shown in Figure 7(c).

Adding CRF to ensemble improves quantitative perfor-

mance, although the improvement is not significant.

7. Conclusion

We proposed a novel semantic segmentation algorithm

by learning a deconvolution network. The proposed de-

convolution network is suitable to generate dense and pre-

cise object segmentation masks since coarse-to-fine struc-

tures of an object is reconstructed progressively through

a sequence of deconvolution operations. Our algorithm

based on instance-wise prediction is advantageous to han-

dle object scale variations by eliminating the limitation of

fixed-size receptive field in the FCN. We further proposed

an ensemble approach, which combines the outputs of the

proposed algorithm and FCN-based method, and achieved

substantially better performance thanks to complementary

characteristics of both algorithms. Our network demon-

strated the state-of-the-art performance in PASCAL VOC

2012 segmentation benchmark.
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(a) Examples that our method produces better results than FCN [19].

(b) Examples that FCN produces better results than our method.

(c) Examples that inaccurate predictions from our method and FCN are improved by ensemble.

Figure 7. Example of semantic segmentation results on PASCAL VOC 2012 validation images. Note that the proposed method and FCN

have complementary characteristics for semantic segmentation, and the combination of both methods improves accuracy through ensemble.

Although CRF removes some noises, it does not improve quantitative performance of our algorithm significantly.
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