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Abstract

Model-based optimization methods and discriminative

learning methods have been the two dominant strategies for

solving various inverse problems in low-level vision. Typi-

cally, those two kinds of methods have their respective mer-

its and drawbacks, e.g., model-based optimization methods

are flexible for handling different inverse problems but are

usually time-consuming with sophisticated priors for the

purpose of good performance; in the meanwhile, discrim-

inative learning methods have fast testing speed but their

application range is greatly restricted by the specialized

task. Recent works have revealed that, with the aid of vari-

able splitting techniques, denoiser prior can be plugged in

as a modular part of model-based optimization methods to

solve other inverse problems (e.g., deblurring). Such an in-

tegration induces considerable advantage when the denois-

er is obtained via discriminative learning. However, the

study of integration with fast discriminative denoiser prior

is still lacking. To this end, this paper aims to train a set of

fast and effective CNN (convolutional neural network) de-

noisers and integrate them into model-based optimization

method to solve other inverse problems. Experimental re-

sults demonstrate that the learned set of denoisers can not

only achieve promising Gaussian denoising results but also

can be used as prior to deliver good performance for vari-

ous low-level vision applications.

1. Introduction

Image restoration (IR) has been a long-standing prob-

lem for its highly practical value in various low-level vision

applications [1, 9, 47]. In general, the purpose of image

restoration is to recover the latent clean image x from its

degraded observation y = Hx + v, where H is a degrada-

tion matrix, v is additive white Gaussian noise of standard

deviation σ. By specifying different degradation matrices,

one can correspondingly get different IR tasks. Three clas-
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sical IR tasks would be image denoising when H is an iden-

tity matrix, image deblurring when H is a blurring operator,

image super-resolution when H is a composite operator of

blurring and down-sampling.

Since IR is an ill-posed inverse problem, the prior which

is also called regularization needs to be adopted to con-

straint the solution space [50, 66]. From a Bayesian per-

spective, the solution x̂ can be obtained by solving a Maxi-

mum A Posteriori (MAP) problem,

x̂ = argmax
x

log p(y|x) + log p(x) (1)

where log p(y|x) represents the log-likelihood of observa-

tion y, log p(x) delivers the prior of x and is independent

of y. More formally, Eqn. (1) can be reformulated as

x̂ = argmin
x

1

2
‖y −Hx‖2 + λΦ(x) (2)

where the solution minimizes an energy function composed

of a fidelity term 1

2
‖y −Hx‖2, a regularization term Φ(x)

and a trade-off parameter λ. The fidelity term guarantees

the solution accords with the degradation process, while the

regularization term enforces desired property of the output.

Generally, the methods to solve Eqn. (2) can be divid-

ed into two main categories, i.e., model-based optimization

methods and discriminative learning methods. The model-

based optimization methods aim to directly solve Eqn. (2)

with some optimization algorithms which usually involve a

time-consuming iterative inference. On the contrary, dis-

criminative learning methods try to learn the prior parame-

ters Θ and a compact inference through an optimization of

a loss function on a training set containing degraded-clean

image pairs [2, 13, 51, 55, 57]. The objective is given by

min
Θ

ℓ(x̂,x) s.t. x̂ = argmin
x

1

2
‖y−Hx‖2+λΦ(x; Θ)

(3)
Because the inference is guided by the MAP estimation, we

refer to such methods as MAP inference guided discrimi-

native learning methods. By replacing the MAP inference

with a predefined nonlinear function x̂ = f(y,H; Θ), one
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can treat the plain discriminative learning methods as gen-

eral case of Eqn. (3). It can be seen that one obvious dif-

ference between model-based optimization method and dis-

criminative learning method is that, the former is flexible

to handle various IR tasks by specifying degradation matrix

H, whereas the later needs to use the training data with cer-

tain degradation matrices to learn the model. As a conse-

quence, different from model-based optimization methods

which have flexibility to handle different IR tasks, discrim-

inative learning methods are usually restricted by special-

ized tasks. For example, model-based optimization method-

s such as NCSR [22] are flexible to handle denoising, super-

resolution and deblurring, whereas discriminative learning

methods MLP [8], SRCNN [21], DCNN [62] are designed

for those three tasks, respectively. Even for a specific task

such as denoising, model-based optimization methods (e.g.,

BM3D [17] and WNNM [29]) can handle different noise

levels, whereas discriminative learning method of [34] sep-

arately train a different model for each level.

With the sacrifice of flexibility, however, discriminative

learning methods can not only enjoy a fast testing speed

but also tend to deliver promising performance due to the

joint optimization and end-to-end training. On the con-

trary, model-based optimization methods are usually time-

consuming with sophisticated priors for the purpose of good

performance [27]. As a result, those two kinds of meth-

ods have their respective merits and drawbacks, and thus

it would be attractive to investigate their integration which

leverages their respective merits. Fortunately, with the aid

of variable splitting techniques, such as alternating direc-

tion method of multipliers (ADMM) method [5] and half-

quadratic splitting (HQS) method [28], it is possible to deal

with fidelity term and regularization term separately [44],

and particularly, the regularization term only corresponds

to a denoising subproblem [18, 31, 61]. Consequently, this

enables an integration of any discriminative denoisers into

model-based optimization methods. However, to the best of

our knowledge, the study of integration with discriminative

denoiser is still lacking.

This paper aims to train a set of fast and effective

discriminative denoisers and integrate them into model-

based optimization methods to solve other inverse problem-

s. Rather than learning MAP inference guided discrimina-

tive models, we instead adopt plain convolutional neural

networks (CNN) to learn the denoisers, so as to take ad-

vantage of recent progress in CNN as well as the merit of

GPU computation. Particularly, several CNN techniques,

including Rectifier Linear Units (ReLU) [37], batch nor-

malization [32], Adam [36], dilated convolution [63] are

adopted into the network design or training. As well as pro-

viding good performance for image denoising, the learned

set of denoisers are plugged in a model-based optimization

method to tackle various inverse problems.

The contribution of this work is summarized as follows:

• We trained a set of fast and effective CNN denoiser-

s. With variable splitting technique, the powerful de-

noisers can bring strong image prior into model-based

optimization methods.

• The learned set of CNN denoisers are plugged in as

a modular part of model-based optimization method-

s to tackle other inverse problems. Extensive experi-

ments on classical IR problems, including deblurring

and super-resolution, have demonstrated the merits of

integrating flexible model-based optimization methods

and fast CNN-based discriminative learning methods.

2. Background

2.1. Image Restoration with Denoiser Prior

There have been several attempts to incorporate denoiser

prior into model-based optimization methods to tackle with

other inverse problems. In [19], the authors used Nash equi-

librium to derive an iterative decoupled deblurring BM3D

(IDDBM3D) method for image debluring. In [24], a sim-

ilar method which is equipped with CBM3D denoiser pri-

or was proposed for single image super-resolution (SISR).

By iteratively updating a back-projection step and a CB-

M3D denoising step, the method has an encouraging per-

formance for its PSNR improvement over SRCNN [21].

In [18], the augmented Lagrangian method was adopted to

fuse the BM3D denoiser into an image deblurring scheme.

With a similar iterative scheme to [19], a plug-and-play

priors framework based on ADMM method was proposed

in [61]. Here we note that, prior to [61], a similar idea

of plug-and-play is also mentioned in [66] where a half

quadratic splitting (HQS) method was proposed for image

denoising, deblurring and inpainting. In [31], the authors

used an alternative to ADMM and HQS, i.e., the primal-

dual algorithm [11], to decouple fidelity term and regular-

ization term. Some of the other related work can be found

in [6, 12, 48, 49, 54, 58]. All the above methods have shown

that the decouple of the fidelity term and regularization ter-

m can enable a wide variety of existing denoising models to

solve different image restoration tasks.

We can see that the denoiser prior can be plugged in an

iterative scheme via various ways. The common idea be-

hind those ways is to decouple the fidelity term and reg-

ularization term. For this reason, their iterative schemes

generally involve a fidelity term related subproblem and a

denoising subproblem. In the next subsection, we will use

HQS method as an example due to its simplicity. It should

be noted that although the HQS can be viewed as a general

way to handle different image restoration tasks, one can al-

so incorporate the denoiser prior into other convenient and

proper optimization methods for a specific application.
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2.2. Half Quadratic Splitting (HQS) Method

Basically, to plug the denoiser prior into the optimiza-

tion procedure of Eqn. (2), the variable splitting technique

is usually adopted to decouple the fidelity term and regular-

ization term. In half quadratic splitting method, by intro-

ducing an auxiliary variable z, Eqn. (2) can be reformulated

as a constrained optimization problem which is given by

x̂ = argmin
x

1

2
‖y −Hx‖2 + λΦ(z) s.t. z = x (4)

Then, HQS method tries to solve the following problem

Lµ(x, z) =
1

2
‖y −Hx‖2 + λΦ(z) +

µ

2
‖z− x‖2 (5)

where µ is a penalty parameter which varies iteratively in a

non-descending order. Eqn. (5) can be solved via the fol-

lowing iterative scheme,






xk+1 = argmin
x

‖y −Hx‖2 + µ‖x− zk‖
2 (6a)

zk+1 = argmin
z

µ

2
‖z− xk+1‖

2 + λΦ(z) (6b)

As one can see, the fidelity term and regularization term are

decoupled into two individual subproblems. Specifically,

the fidelity term is associated with a quadratic regularized

least-squares problem (i.e., Eqn. (6a)) which has various

fast solutions for different degradation matrices. A direct

solution is given by

xk+1 = (HTH+ µI)−1(HTy + µzk) (7)

The regularization term is involved in Eqn. (6b) which can

be rewritten as

zk+1 = argmin
z

1

2(
√

λ/µ)2
‖xk+1 − z‖2 +Φ(z) (8)

According to Bayesian probability, Eqn. (8) corresponds

to denoising the image xk+1 by a Gaussian denoiser with

noise level
√

λ/µ. As a consequence, any Gaussian de-

noisers can be acted as a modular part to solve Eqn. (2). To

address this, we rewrite Eqn. (8) by following

zk+1 = Denoiser(xk+1,
√

λ/µ) (9)

It is worth noting that, according to Eqns. (8) and (9),

the image prior Φ(·) can be implicitly replaced by a denois-

er prior. Such a promising property actually offers several

advantages. First, it enables to use any gray or color denois-

ers to solve a variety of inverse problems. Second, the ex-

plicit image prior Φ(·) can be unknown in solving Eqn. (2).

Third, several complementary denoisers which exploit d-

ifferent image priors can be jointly utilized to solve one

specific problem. Note that this property can be also em-

ployed in other optimization methods (e.g., iterative shrink-

age/thresholding algorithms ISTA [4, 14] and FISTA [3]) as

long as there involves a denoising subproblem.

3. Learning Deep CNN Denoiser Prior

3.1. Why Choose CNN Denoiser?

As the regularization term of Eqn. (2) plays a vital role in

restoration performance, the choice of denoiser priors thus

would be pretty important in Eqn. (9). Existing denoiser

priors that have been adopted in model-based optimization

methods to solve other inverse problems include total varia-

tion (TV) [10, 43], Gaussian mixture models (GMM) [66],

K-SVD [25], non-local means [7] and BM3D [17]. Such

denoiser priors have their respective drawbacks. For exam-

ple, TV can create watercolor-like artifacts; K-SVD denois-

er prior suffers high computational burden; non-local mean-

s and BM3D denoiser priors may over-smooth the irregular

structures if the image does not exhibit self-similarity prop-

erty. Thus, strong denoiser prior which can be implemented

efficiently is highly demanded.

Regardless of the speed and performance, color image

prior or denoiser is also a key factor that needs to be tak-

en into account. This is because most of the images ac-

quired by modern cameras or transmitted in internet are in

RGB format. Due to the correlation between different color

channels, it has been acknowledged that jointly handling the

color channels tends to produce better performance than in-

dependently dealing with each color channel [26]. Howev-

er, existing methods mainly focus on modeling gray image

prior and there are only a few works concentrating on mod-

eling color image prior (see, e.g., [16, 41, 46]). Perhaps the

most successful color image prior modeling method is CB-

M3D [16]. It first decorrelates the image into a luminance-

chrominance color space by a hand-designed linear trans-

form and then applies the gray BM3D method in each trans-

formed color channels. While CBM3D is promising for col-

or image denoising, it has been pointed out that the resulting

transformed luminance-chrominance color channels still re-

main some correlation [42] and it is preferable to jointly

handle RGB channels. Consequently, instead of utilizing

the hand-designed pipeline, using discriminative learning

methods to automatically reveal the underlying color image

prior would be a good alternative.

By considering the speed, performance and discrimina-

tive color image prior modeling, we choose deep CNN to

learn the discriminative denoisers. The reasons of using C-

NN are four-fold. First, the inference of CNN is very effi-

cient due to the parallel computation ability of GPU. Sec-

ond, CNN exhibits powerful prior modeling capacity with

deep architecture. Third, CNN exploits the external prior

which is complementary to the internal prior of many ex-

isting denoisers such as BM3D. In other words, a combina-

tion with BM3D is expected to improve the performance.

Fourth, great progress in training and designing CNN have

been made during the past few years and we can take advan-

tage of those progress to facilitate discriminative learning.
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Figure 1. The architecture of the proposed denoiser network. Note that “s-DConv” denotes s-dilated convolution [63], here s = 1, 2, 3 and

4; “BNorm” represents batch normalization [32]; “ReLU” is the rectified linear units (max(·, 0)).

3.2. The Proposed CNN Denoiser

The architecture of the proposed CNN denoiser is illus-

trated in Figure 1. It consists of seven layers with three

different blocks, i.e., “Dilated Convolution+ReLU” block

in the first layer, five “Dilated Convolution+Batch Normal-

ization+ReLU” blocks in the middle layers, and “Dilated

Convolution” block in the last layer. The dilation factors of

(3×3) dilated convolutions from first layer to the last layer

are set to 1, 2, 3, 4, 3, 2 and 1, respectively. The number

of feature maps in each middle layer is set to 64. In the fol-

lowing, we will give some important details in our network

design and training.

Using Dilated Filter to Enlarge Receptive Field. It has

been widely acknowledged that the context information fa-

cilitates the reconstruction of the corrupted pixel in image

denoising. In CNN, to capture the context information, it

successively enlarges the receptive field through the for-

ward convolution operations. Generally, there are two basic

ways to enlarge the receptive field of CNN, i.e., increasing

the filter size and increasing the depth. However, increasing

the filter size would not only introduce more parameters but

also increase the computational burden [53]. Thus, using

3×3 filter with a large depth is popularized in existing CN-

N network design [30, 35, 56]. In this paper, we instead use

the recent proposed dilated convolution to make a tradeoff

between the size of receptive filed and network depth. Di-

lated convolution is known for its expansion capacity of the

receptive field while keeping the merits of traditional 3×3

convolution. A dilated filter with dilation factor s can be

simply interpreted as a sparse filter of size (2s+1)×(2s+1)

where only 9 entries of fixed positions can be non-zeros.

Hence, the equivalent receptive field of each layer is 3, 5, 7,

9, 7, 5 and 3. Consequently, it can be easily obtained that

the receptive filed of the proposed network is 33×33. If the

traditional 3×3 convolution filter is used, the network will

either have a receptive filed of size 15×15 with the same

network depth (i.e., 7) or have a depth of 16 with the same

receptive filed (i.e., 33×33). To show the advantage of our

design over the above two cases, we have trained three dif-

ferent models on noise level 25 with same training settings.

It turns out that our designed model can have an average P-

SNR of 29.15dB on BSD68 dataset [50], which is much bet-

ter than 28.94dB of 7 layers network with traditional 3×3

convolution filter and very close to 29.20dB of 16 layers

network.

Using Batch Normalization and Residual Learning to

Accelerate Training. While advanced gradient optimiza-

tion algorithms can accelerate training and improve the per-

formance, the architecture design is also an important fac-

tor. Batch normalization and residual learning which are

two of the most influential architecture design techniques

have been widely adopted in recent CNN architecture de-

signs. In particular, it has been pointed out that the combi-

nation of batch normalization and residual learning is par-

ticularly helpful for Gaussian denoising since they are ben-

eficial to each other. To be specific, it not only enables fast

and stable training but also tends to result in better denois-

ing performance [65]. In this paper, such strategy is adopted

and we empirically find it also can enable fast transfer from

one model to another with different noise level.

Using Training Samples with Small Size to Help Avoid

Boundary Artifacts. Due to the characteristic of convolu-

tion, the denoised image of CNN may introduce annoying

boundary artifacts without proper handling. There are two

common ways to tackle with this, i.e., symmetrical padding

and zero padding. We adopt the zero padding strategy and

wish the designed CNN has the capacity to model image

boundary. Note that the dilated convolution with dilation

factor 4 in the fourth layer pads 4 zeros in the boundaries

of each feature map. We empirically find that using training

samples with small size can help avoid boundary artifacts.

The main reason lies in the fact that, rather than using train-

ing patches of large size, cropping them into small patches

can enable CNN to see more boundary information. For ex-

ample, by cropping an image patch of size 70×70 into four

small non-overlap patches of size 35×35, the boundary in-
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formation would be largely augmented. We also have tested

the performance by using patches of large size, we empiri-

cally find this does not improve the performance. However,

if the size of the training patch is smaller than the receptive

field, the performance would decrease.

Learning Specific Denoiser Model with Small Interval

Noise Levels. Since the iterative optimization framework

requires various denoiser models with different noise level-

s, a practical issue on how to train the discriminative mod-

els thus should be taken into consideration. Various studies

have shown that if the exact solutions of subproblems (i.e.,

Eqn. (6a) and Eqn. (6b)) are difficult or time-consuming to

optimize, then using an inexact but fast subproblem solu-

tion may accelerate the convergence [39, 66]. In this re-

spect, their is no need to learn many discriminative denois-

er models for each noise level. On the other hand, although

Eqn. (9) is a denoiser, it has a different goal from the tradi-

tional Gaussian denoising. The goal of traditional Gaussian

denoising is to recover the latent clean image, however, the

denoiser here just acts its own role regardless of the noise

type and noise level of the image to be denoised. There-

fore, the ideal discriminative denoiser in Eqn. (9) should be

trained by current noise level. As a result, there is tradeoff

to set the number of denoisers. In this paper, we trained a

set of denoisers on noise level range [0, 50] and divided it by

a step size of 2 for each model, resulting in a set of 25 de-

noisers for each gray and color image prior modelling. Due

to the iterative scheme, it turns out the noise level range of

[0, 50] is enough to handle various image restoration prob-

lems. Especially noteworthy is the number of the denoisers

which is much less than that of learning different models for

different degradations.

4. Experiments

4.1. Image Denoising

It is widely acknowledged that convolutional neural net-

works generally benefit from the availability of large train-

ing data. Hence, instead of training on a small dataset con-

sisting of 400 Berkeley segmentation dataset (BSD) images

of size 180×180 [13], we collect a large dataset which in-

cludes 400 BSD images, 400 selected images from valida-

tion set of ImageNet database [20] and 4,744 images of Wa-

terloo Exploration Database [40]. We empirically find using

large dataset does not improve the PSNR results of BSD68

dataset [50] but can slightly improve the performance of

other testing images. We crop the images into small patches

of size 35×35 and select N=256×4,000 patches for train-

ing. As for the generation of corresponding noisy patches,

we achieve this by adding additive Gaussian noise to the

clean patches during training. Since the residual learning

Table 1. The average PSNR(dB) results of different methods on

(gray) BSD68 dataset.

Methods BM3D WNNM TNRD MLP Proposed

σ = 15 31.07 31.37 31.42 - 31.63

σ = 25 28.57 28.83 28.92 28.96 29.15

σ = 50 25.62 25.87 25.97 26.03 26.19

Table 2. The average PSNR(dB) results of CBM3D and proposed

CNN denoiser on (color) BSD68 dataset.

Noise Level 5 15 25 35 50

CBM3D 40.24 33.52 30.71 28.89 27.38

Proposed 40.36 33.86 31.16 29.50 27.86

strategy is adopted, we use the following loss function,

ℓ(Θ) =
1

2N

N
∑

i=1

‖f(yi; Θ)− (yi − xi)‖
2
F (10)

where {(yi,xi)}
N
i=1 represents N noisy-clean patch pairs.

To optimize the network parameters Θ, the Adam

solver [36] is adopted. The step size is started from 1e−3

and then fixed to 1e−4 when the training error stops de-

creasing. The training was terminated if the training error

was fixed in five sequential epochs. For the other hyper-

parameters of Adam, we use their default setting. The mini-

batch size is set to 256. Rotation or/and flip based data aug-

mentation is used during mini-batch learning. The denoiser

models are trained in Matlab (R2015b) environment with

MatConvNet package [60] and an Nvidia Titan X GPU. To

reduce the whole training time, once a model is obtained,

we initialize the adjacent denoiser with this model. It takes

about three days to train the set of denoiser models.

We compared the proposed denioser with several state-

of-the-art denoising methods, including two model-based

optimization methods (i.e., BM3D [17] and WNNM [29]),

two discriminative learning methods (i.e., MLP [8] and T-

NRD [13]). The gray image denoising results of different

methods on BSD68 dataset are shown in Table 1. It can be

seen that WNNM, MLP and TNRD can outperform BM3D

by about 0.3dB in PSNR. However, the proposed CNN de-

noiser can have a PSNR gain of about 0.2dB over those

three methods. Table 2 shows the color image denoising

results of benchmark CBM3D and our proposed CNN de-

noiser, it can be seen that the proposed denoiser consistently

outperforms CBM3D by a large margin. Such a promising

result can be attributed to the powerful color image prior

modeling capacity of CNN.

For the run time, we compared with BM3D and TNRD

due to their potential value in practical applications. Since

the proposed denoiser and TNRD support parallel compu-

tation on GPU, we also give the GPU run time. To make a

further comparison with TNRD under similar PSNR perfor-

mance, we additionally provide the run time of the proposed

3933



denoiser where each middle layer has 24 feature maps. We

use the Nvidia cuDNN-v5 deep learning library to acceler-

ate the GPU computation and the memory transfer time be-

tween CPU and GPU is not considered. Table 3 shows the

run times of different methods for denoising images of size

256×256, 512×512 and 1024×1024 with noise level 25.

We can see that the proposed denoiser is very competitive

in both CPU and GPU implementation. It is worth empha-

sizing that the proposed denoiser with 24 feature maps of

each layer has a comparable PSNR of 28.94dB to TNRD but

delivers a faster speed. Such a good compromise between

speed and performance over TNRD is properly attributed to

the following three reasons. First, the adopted 3×3 convo-

lution and ReLU nonlinearity are simple yet effective and

efficient. Second, in contrast to the stage-wise architecture

of TNRD which essentially has a bottleneck in each imme-

diate output layer, ours encourages a fluent information flow

among different layers, thus having larger model capacity.

Third, batch normalization which is beneficial to Gaussian

denoising is adopted. According to the above discussion-

s, we can conclude that the proposed denoiser is a strong

competitor against BM3D and TNRD.

Table 3. Run time (in seconds) of different methods on images of

size 256×256, 512×512 and 1024×1024 with noise level 25.

Size Device BM3D TNRD Proposed24 Proposed64

256×256
CPU 0.66 0.47 0.10 0.310

GPU - 0.010 0.006 0.012

512×512
CPU 2.91 1.33 0.39 1.24

GPU - 0.032 0.016 0.038

1024×1024
CPU 11.89 4.61 1.60 4.65

GPU - 0.116 0.059 0.146

4.2. Image Deblurring

As a common setting, the blurry images are synthesized

by first applying a blur kernel and then adding additive

Gaussian noise with noise level σ. In addition, we assume

the convolution is carried out with circular boundary con-

ditions. Thus, an efficient implementation of Eqn. (7) by

using Fast Fourier Transform (FFT) can be employed. To

make a thorough evaluation, we consider three blur kernels,

including a commonly-used Gaussian kernel with standard

deviation 1.6 and the first two of the eight real blur kernels

from [38]. As shown in Table 4, we also consider Gaussian

noise with different noise levels. For the compared method-

(a) (b) (c) (d) (e) (f)

Figure 2. Six testing images for image deblurring. (a) Cameraman;

(b) House; (c) Lena; (d) Monarch; (e) Leaves; (f) Parrots.

s, we choose one discriminative method named MLP [52]

and three model based optimization methods, including ID-

DBM3D [19], NCSR [22] and EPLL. Among the testing

images, apart from three classical gray images as shown

in Figure 2, three color images are also included such that

we can test the performance of learned color denoiser prior.

In the meanwhile, we note that the above methods are de-

signed for gray image deblurring. Specially, NCSR tackles

the color input by first transforming it into YCbCr space and

then conducting the main algorithm in the luminance com-

ponent. In the following experiments, we simply plug the

color denoisers into the HQS framework, whereas we sep-

arately handle each color channel for IDDBM3D and MLP.

Note that MLP trained a specific model for the Gaussian

blur kernel with noise level 2.

Once the denoisers are provided, the subsequent crucial

issue would be parameter setting. From Eqns. (6), we can

note that there involve two parameters, λ and µ, to tune.

Generally, for a certain degradation, λ is correlated with

σ2 and keeps fixed during iterations, while µ controls noise

level of denoiser. Since the HQS framework is denoiser-

based, we instead set the noise level of denoiser in each

iteration to implicitly determine µ. Note that the noise level

of denoiser
√

λ/µ should be set from large to small. In

our experimental settings, it is decayed exponentially from

49 to a value in [1, 15] depending on the noise level. The

number of iterations is set to 30 as we find it is large enough

to obtain a satisfying performance.

The PSNR results of different methods are shown in Ta-

ble 4. As one can see, the proposed CNN denoiser prior

based optimization method achieves very promising PSNR

results. Figure 3 illustrates deblurred Leaves image by d-

ifferent methods. We can see that IDDBM3D, NCSR and

MLP tend to smooth the edges and generate color artifacts.

In contrast, the proposed method can recover image sharp-

ness and naturalness.

Table 4. Deblurring results of different methods.
Methods σ C.man House Lena Monar. Leaves Parrots

Gaussian blur with standard deviation 1.6

IDDBM3D

2

27.08 32.41 30.28 27.02 26.95 30.15

NCSR 27.99 33.38 30.99 28.32 27.50 30.42

MLP 27.84 33.43 31.10 28.87 28.91 31.24

Proposed 28.12 33.80 31.17 30.00 29.78 32.07

Kernel 1 (19×19) [38]

EPLL
2.55

29.43 31.48 31.68 28.75 27.34 30.89

Proposed 32.07 35.17 33.88 33.62 33.92 35.49

EPLL
7.65

25.33 28.19 27.37 22.67 21.67 26.08

Proposed 28.11 32.03 29.51 29.20 29.07 31.63

Kernel 2 (17×17) [38]

EPLL
2.55

29.67 32.26 31.00 27.53 26.75 30.44

Proposed 31.69 35.04 33.53 33.13 33.51 35.17

EPLL
7.65

24.85 28.08 27.03 21.60 21.09 25.77

Proposed 27.70 31.94 29.27 28.73 28.63 31.35
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(a) Blurry and noisy image (b) IDDBM3D (26.95dB) (c) NCSR (27.50dB) (d) MLP (28.91dB) (e) Proposed (29.78dB)

Figure 3. Image deblurring performance comparison for Leaves image (the blur kernel is Gaussian kernel with standard deviation 1.6, the

noise level σ is 2).

4.3. Single Image SuperResolution

In general, the low-resolution (LR) image can be mod-

eled by a blurring and subsequent down-sampling opera-

tion on a high-resolution one. The existing super-resolution

models, however, mainly focus on modeling image prior

and are trained for specific degradation process. This makes

the learned model deteriorates seriously when the blur ker-

nel adopted in training deviates from the real one [23, 64].

Instead, our model can handle any blur kernels without re-

training. Thus, in order to thoroughly evaluate the flexibil-

ity of the CNN denoiser prior based optimization method

as well as the effectiveness of the CNN denoisers, follow-

ing [45], this paper considers three typical image degrada-

tion settings for SISR, i.e., bicubic downsampling (default

setting of Matlab function imresize) with two scale fac-

tors 2 and 3 [15, 21] and blurring by Gaussian kernel of size

7×7 with standard deviation 1.6 followed by downsampling

with scale factor 3 [22, 45].

Inspired by the method proposed in [24] which iterative-

ly updates a back-projection [33] step and a denoising step

for SISR, we use the following back-projection iteration to

solve Eqn. (6a),

xk+1 = xk − α(y − xk ↓sf) ↑
sf

bicubic (11)

where ↓sf denotes the degradation operator with downscal-

ing factor sf, ↑sf

bicubic represents bicubic interpolation opera-

tor with upscaling factor sf, and α is the step size. It is wor-

thy noting that the iterative regularization step of methods

such as NCSR and WNNM actually corresponds to solv-

ing Eqn. (6a). From this viewpoint, those methods are opti-

mized under HQS framework. Here, note that only the bicu-

bic downsampling is considered in [24], whereas Eqn. (11)

is extended to deal with different blur kernels. To obtain a

fast convergence, we repeat Eqn. (11) five times before ap-

plying the denoising step. The number of main iterations is

set to 30, the step size α is fixed to 1.75 and the noise levels

of denoiser are decayed exponentially from 12×sf to sf.

The proposed deep CNN denoiser prior based SISR

method is compared with five state-of-the-art methods, in-

cluding two CNN-based discriminative learning method-

s (i.e., SRCNN [21] and VDSR [35]), one statistical pre-

diction model based discriminative learning method [45]

which we refer to as SPMSR, one model based optimiza-

tion method (i.e., NCSR [22]) and one denoiser prior based

method (i.e., SRBM3D [24]). Except for SRBM3D, all

the existing methods conducted their main algorithms on Y

channel (i.e., luminance) of transformed YCbCr space. In

order to evaluate the proposed color denoiser prior, we also

conduct experiments on the original RGB channels and thus

the PSNR results of super-resolved RGB images of differ-

ent methods are also given. Since the source code of SRB-

M3D is not available, we also compare two methods which

replace the proposed CNN denoiser with BM3D/CBM3D

denoiser. Those two methods are denoted by SRBM3DG

and SRBM3DC , respectively.

Table 5 shows the average PSNR(dB) results of differ-

ent methods for SISR on Set5 and Set14 [59]. Note that

SRCNN and VDSR are trained with bicubic blur kernel,

thus it is unfair to use their models to super-resolve the

low-resolution image with Gaussian kernel. As a matter of

fact, we give their performances to demonstrate the limi-

tations of such discriminative learning methods. From Ta-

ble 5, we can have several observations. First, although S-

RCNN and VDSR achieve promising results to tackle the

case with bicubic kernel, their performance deteriorates se-

riously when the low-resolution image are not generated by

bicubic kernel (see Figure 4). On the other hand, with the

accurate blur kernel, even NCSR and SPMSR outperfor-

m SRCNN and VDSR for Gaussian blur kernel. In con-

trast, the proposed methods (denoted by ProposedG and

ProposedC) can handle all the cases well. Second, the pro-

posed methods have a better PSNR result than SRBM3DC

and SRBM3DG which indicates good denoiser prior facil-

itates to solve super-resolution problem. Third, both of

the gray and color CNN denoiser prior based optimization

methods can produce promising results. As an example for

the testing speed comparison, our method can super-resolve

the Butterfly image in 0.5 second on GPU and 12 seconds

on CPU, whereas NCSR spends 198 seconds on CPU.
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Table 5. Average PSNR(dB) results of different methods for single image super-resolution on Set5 and Set14.
Dataset Scale Kernel Channel SRCNN VDSR NCSR SPMSR SRBM3D SRBM3DG SRBM3DC Proposed

G
Proposed

C

Set5

2 Bicubic
Y 36.65 37.56 - 36.11 37.10 36.34 36.25 37.43 37.22

RGB 34.45 35.16 - 33.94 - 34.11 34.22 35.05 35.07

3 Bicubic
Y 32.75 33.67 - 32.31 33.30 32.62 32.54 33.39 33.18

RGB 30.72 31.50 - 30.32 - 30.57 30.69 31.26 31.25

3 Gaussian
Y 30.42 30.54 33.02 32.27 - 32.66 32.59 33.38 33.17

RGB 28.50 28.62 30.00 30.02 - 30.31 30.74 30.92 31.21

Set14

2 Bicubic
Y 32.43 33.02 - 31.96 32.80 32.09 32.25 32.88 32.79

RGB 30.43 30.90 - 30.05 - 30.15 30.32 30.79 30.78

3 Bicubic
Y 29.27 29.77 - 28.93 29.60 29.11 29.27 29.61 29.50

RGB 27.44 27.85 - 27.17 - 27.32 27.47 27.72 27.67

3 Gaussian
Y 27.71 27.80 29.26 28.89 - 29.18 29.39 29.63 29.55

RGB 26.02 26.11 26.98 27.01 - 27.24 27.60 27.59 27.70

(a) Ground-truth (b) Zoomed LR image (c) SRCNN (24.46dB) (d) VDSR (24.73dB) (e) Proposed
G

(29.32dB)

Figure 4. Single image super-resolution performance comparison for Butterfly image from Set5 (the blur kernel is 7×7 Gaussian kernel

with standard deviation 1.6, the scale factor is 3). Note that the comparison with SRCNN and VDSR is unfair. The proposed deep CNN

denoiser prior based optimization method can super-resolve the LR image by tuning the blur kernel and scale factor without training,

whereas SRCNN and VDSR need additional training to deal with such cases. As a result, this figure is mainly used to show the flexibility

advantage of the proposed deep CNN denoiser prior based optimization method over discriminative learning methods.

5. Conclusion

In this paper, we have designed and trained a set of fast

and effective CNN denoisers for image denoising. Spe-

cially, with the aid of variable splitting technique, we have

plugged the learned denoiser prior into a model-based opti-

mization method of HQS to solve the image deblurring and

super-resolution problems. Extensive experimental results

have demonstrated that the integration of model-based op-

timization method and discriminative CNN denoiser results

in a flexible, fast and effective framework for various image

restoration tasks. On the one hand, different from conven-

tional model-based optimization methods which are usually

time-consuming with sophisticated image priors for the pur-

pose of achieving good results, the proposed deep CNN de-

noiser prior based optimization method can be implemented

effectively due to the plug-in of fast CNN denoisers. On the

other hand, different from discriminative learning method-

s which are specialized for certain image restoration tasks,

the proposed deep CNN denoiser prior based optimization

method is flexible in handling various tasks while can pro-

duce very favorable results. In summary, this work high-

lights the potential benefits of integrating flexible model-

based optimization methods and fast discriminative learning

methods. In addition, this work has shown that learning ex-

pressive CNN denoiser prior is a good alternative to model

image prior.

While we have demonstrated various merits of plug-

ging powerful CNN denoiser into model-based optimiza-

tion methods, there also remain room for further study.

Some research directions are listed as follows. First, it will

be interesting to investigate how to reduce the number of

the discriminative CNN denoisers and the number of whole

iterations. Second, extending the proposed CNN denoiser

based HQS framework to other inverse problems such as

inpainting and blind deblurring would be also interesting.

Third, utilizing multiple priors which are complementary

to improve performance is certainly one promising direc-

tion. Finally, and perhaps most interestingly, since the HQS

framework can be treated as a MAP inference, this work

also provides some insights into designing CNN architec-

ture for task-specific discriminative learning. Meanwhile,

one should be aware that CNN has its own design flexibility

and the best CNN architecture is not necessarily inspired by

MAP inference.
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