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Abstract

The task of real-time combat game is to coordinate
multiple units to defeat their enemies controlled by
the given opponent in a real-time combat scenario.
It is difficult to design a high-level Artificial
Intelligence (AI) program for such a task due to
its extremely large state-action space and real-time
requirements. This paper formulates this task
as a collective decentralized partially observable
Markov decision process, and designs a Deep
Decentralized Policy Network (DDPN) to model
the polices. To train DDPN effectively, a novel
two-stage learning algorithm is proposed which
combines imitation learning from opponent and
reinforcement learning by no-regret dynamics.
Extensive experimental results on various combat
scenarios indicate that proposed method can
defeat different opponent models and significantly
outperforms many state-of-the-art approaches.

1 Introduction

The task of real-time (RT) combat game is to coordinate
multiple units to defeat their enemies controlled by the
given (or built-in) opponent in a real-time scenario. It
is significantly challenging to play such a game due to its
extremely large state-action space which grows exponentially
with the number of the controlled units. In addition, expert-
level labeled data are often unreliable or simply unavailable,
and the time allowed for planning is on the order of
milliseconds. Deep reinforcement learning (RL) [Li, 2018]

proposes a promising way to this task. That is, the allied
units are modeled as agents and controlled by deep neural
networks, which are trained by exploring the action-state
space and calculating rewards by playing with the opponent.
Since the controlled units are multiple and perform actions
simultaneously, hence it is naturally modeled the task as a
multi-agent reinforcement learning (MARL) problem.

In an MARL system, the first issue is the learning
paradigm. Since the joint state-action space of all agents is
known and the rewards are collective, a direct method is the
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Figure 1: The framework of the proposed method.

centralized learning [Usunier et al., 2016]. However, the joint
action space grows exponentially with the number of agents,
and it is hard to model the network when the number of agents
is large and uncertain. To cope with these complexities, it
is often necessary to resort to decentralized policies, where
each agent selects its own action conditioned only on its
observation. To learn effective decentralized policies, some
existing works [Hu et al., 2018] are designed by single-agent
action exploration and ignore multi-agent cooperation.
These methods often fail to encourage individual agents
to sacrifice themselves for team advantages. For example,
in a combat, the healthy agents should go forward to
draw enemy fire and cover other injured agents. This task
is always failed when each agent is only driven by its
individual rewards. Hence, we model the RT combat game
as a collective decentralized partially observable Markov
decision process (CDec-POMDP)[Nguyen et al., 2018],
and follow centralized training with decentralized execution
framework [Oliehoek et al., 2008; Foerster et al., 2018;
Rashid et al., 2018; Lowe et al., 2017; Nguyen et al., 2018].
That is, multiple agents coordinate their behavior by acting
in a decentralized way which is learned from collective
rewards. To this aim, a Deep Decentralized Policy Network
(DDPN) is proposed in this paper to model the decentralized
policies and control ally units. The input of the DDPN is the
feature of an agent’s observation, and the output is its policy.

Another issue is the learning algorithm. The standard RL
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pipeline [Mnih et al., 2015] trains the network from scratch
by exploring the action-state space and calculating rewards.
However, compared with the Atari games [Mnih et al., 2015]

and the MineCraft scenarios [Oh et al., 2016], which both
focus on the control of a single agent with a fixed and limited
set of actions, the combat game is much more challenging
because its action-state space is extremely large and the
feasible action-states only occupy a very small portion of
the whole space. Therefore, randomizing actions will cause
the learning algorithm to reach sub-optimal plateaux with
a large probability. A lot of exploration is required for
learning [Usunier et al., 2016]. Furthermore, randomizing
actions often disorganize the agents, which leads rapidly
to defeat without any effective feedback. In addition, it is
hard to identify each agent action’s own contribution from
the collective rewards, and the optimal policy of one agent
depends on other agents’ policies, which make the learning
unstable. To handle these difficulties, a novel learning
algorithm is proposed as shown in Fig. 1, which contains the
following two stages: 1) In the first stage, the ally units are
controlled to explore the opponent’s policy and observe the
enemies’ actions. After collecting several observations as
training samples, the DDPN is pre-trained by online imitation
learning. 2) Since our goal is to defeat the opponent rather
than imitate it, the DDPN is further optimized in the second
stage. The regret is used to evaluate policies and a no-regret
dynamics algorithm is introduced to approximate the joint
no-regret policies of multiple agents. Then, a novel RL
algorithm is proposed based on the approximated no-regret
policies, and we prove it is self-improved and can learn better
policy from the first stage learning. These two stages of
learning are complementary to each other. On one hand, the
DDPN learned from stage 1 is not optimal and needs to be
further optimized. On the other hand, the imitation learning
can provide a good initial guidance of exploration and a
reasonable starting point of RL.

In summary, the main contributions of this work are in
three-fold: 1) we model the RT combat game task as CDec-
POMDP and a staged learning algorithm is proposed to train
the DDPN; 2) a self-improved RL algorithm is proposed
based on no-regret dynamics to learn decentralized policies
from collective rewards; and 3) extensive experimental
results on various combat scenarios demonstrate that the
proposed method can defeat different opponent models and
significantly outperforms many state-of-the-art approaches.

2 Related Work

The field of AI has made significant progresses in the last
decade due to the successes of deep learning [LeCun et
al., 2015] such as image classification [Russakovsky et
al., 2015] or playing various games including Go [Silver
et al., 2016] and the Atari video games [Mnih et al.,
2015]. However, it remains challenging to build high-
level AI programs in complex environments. RT combat
game is such a problem due to its large state-action space
and lack of expert-level annotations. Recently, a few of
works utilize the RT combat game to test AI algorithms
and several experiment platforms [Churchill et al., 2012;

Tian et al., 2017] have been opened.

The simplest approaches, which are widely used in most
RT combat game AI bots, are hand-crafted heuristics which
define static behaviors based on human prior knowledge.
To obtain better solutions, a few of approaches [Churchill
et al., 2012; Churchill and Buro, 2013; Lelis, 2017;
Moraes and Lelis, 2018] build game tree for current game
states and aim to search the optimal solutions with help
of heuristics. However, it is hard to search an effective
policy online due to the real-time limitations. Inspired
by the success of DQN [Mnih et al., 2015], the other
type of methods model the task as deep MARL problem
and learn deep neural networks by centralized learning
[Usunier et al., 2016; Kong et al., 2017], decentralized
learning [Peng et al., 2017; Hu et al., 2018] or centralized
learning with decentralized execution [Foerster et al., 2018;
Rashid et al., 2018]. We also follow the later setting, and
the main differences compared with [Foerster et al., 2018;
Rashid et al., 2018] are: 1) They train the network from
scratch, while the proposed DDPN is trained by staged
learning. The imitation learning from opponent provides
a good starting point of RL. 2) The no-regret dynamics
algorithm is introduced to approximate the joint no-regret
policies. We learn one agent’s policy by assuming other
agents are all performing actions as no-regret policies, which
makes the learning more effective and stable.

The proposed method can be regarded as learning from
demonstrations (LfD) [Schaal, 1997], and the demonstrations
are provided by the opponent. LfD is widely-used to
facilitate RL, and the direct method is to recover experts’
strategies from demonstrations by supervised learning
[Pomerleau, 1991; Ross et al., 2011; Sun et al., 2017] or
generative adversarial learning [Ho and Ermon, 2016; Song
et al., 2018]. However, our task is to defeat the opponent
rather than just imitate it. To learn better policies from
demonstrations, a few of approaches [Hester et al., 2018;
Kang et al., 2018] are proposed to explore the environment
by LfD. These two methods are both designed for single
agent tasks and try to find better policies by exploring around
demonstrations. However, the joint state-action space of
multiple agents is much larger and the exploration may be
inefficient. Several existing works are also proposed by
combining imitation learning and RL together [Silver et
al., 2016; Hu et al., 2018]. AlphaGo [Silver et al., 2016]

is designed for two-agent zero-sum competitive task and
cannot be applied to RT combat game directly. OGTL [Hu
et al., 2018] is designed for RT combat game and also starts
learning by imitating the opponent. However, it relies on
independent single-agent action exploration and ignores
multi-agent cooperation. Different with OGTL, the DDPN is
trained by collective rewards of joint actions and can learn
cooperative polices more effectively.

3 Problem Definition

In RT combat game task, the enemy units and the opponent’s
strategy are modeled as a part of environment [Usunier
et al., 2016; Peng et al., 2017; Foerster et al., 2018;
Kong et al., 2017; Hu et al., 2018]. Hence, we define the
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task as collective decentralized partially observable Markov
decision process (CDec-POMDP) [Nguyen et al., 2018]

described by a tuple 〈S,U ,A,P,O, r,N, λ〉 consisting of:
State space S is a finite set of distinct states which can be
visited in the game. An episode is defined as a set of game
states in time series {S1, S2, ..., ST } where St is the game
state at time t and only related to St−1. The terminal state
ST means all units of at least one player have been wiped out
or T exceeds the time limitations. Agents U = {u1, ..., uN}
where each agent corresponds to an ally unit and N may be
varied at different states. Action spaceA is the finite discrete
set of possible actions that can be performed for agents.
State transition function Pt = P(St+1|St, A) is induced
by performing joint actions A = {ai}

N
i=1 simultaneously at

state St where ai is performed by ui. Observation function
O(S) = {Oi(S)}

N
i=1 where Oi(S) is the observation of

agent ui at state S. The decentralized policy of ui is defined
as {pi(a|Oi(s))}a∈A corresponding to the probabilities of
actions to perform. Although the joint state-action space
is known to each agent, the observations are more robust
and easy to model at game states where the numbers of
units are large and uncertain. Reward r(St+1, St, A) is a
bounded function to measure the reward (or payoff) of the
joint state-action, and it is defined as the sum of damage
inflicted on the opponent units minus the damage taken,
which is similar to previous works [Usunier et al., 2016;
Foerster et al., 2018]. It is collective and shared by all agents.
λ ∈ [0, 1) is the discount factor.

Given any state S ∈ S , initialize the game as S1 = S. At
each time step t, each agent ui receives a state St ∈ S , selects
an action ai ∈ A simultaneously, following joint policies
π = {pi}

N
i=1. All agents receive a global reward rt, and

the state is transited to St+1 according to P until reaching a
terminal state ST . The state value V π(s) is calculated by the
cumulative rewards with the discount factor λ:

V
π(S) = E

(

∑T−1

t=1
λ
t−1

rt

)

, (1)

where E is the expectation. According to V π(S), the state-
action value Qπ(S,A) is defined as:

Q
π(S,A) = E

(

r(S′
, S,A) + λV

π(S′)
)

, (2)

where S′ ∼ P(S′|S,A). According to these definitions, we
aims to find decentralized policies {p(a|Oi(S))}a∈A for any
agent ui to defeat the opponent. We utilize the deep neural
network parameterized by θ to model these policies, named
Deep Decentralized Policy Network (DDPN). That is, for any
agent (ui) and the corresponding game state (S), the input of
the DDPN is the feature of the unit’s observation fo (ui, S),
and the output {pθ(a|f

o (ui, S))}a∈A is its decentralized
policy. All units share same network parameters, and the
individual policy relies on the input of DDPN.

4 Two-Stage Learning Algorithm

This section introduces the staged learning algorithm for
the DDPN which is composed of imitation learning and
reinforcement learning, as shown in Fig. 1.

Algorithm 1: Online imitation learning of DDPN.

Input: Initial DDPN parameters θ and data Buffer B.
Output: Updated DDPN parameters: θ
Ep← 1.
while Non-convergent do

Initialize the game state S randomly.
while S is non-terminal do

for i = 1, ..., N do
Extract the feature of its observation:
fo(ui, S), and calculate its policy
pθ (a|f

o (ui, S)) .
Choose action ai ∼ pθ (a|f

o (u, S)).

for ue ∈ Ue do
Extract the feature of its observation:
fo(ue, S), and observe its action aeu.
Update B with (fo(ue, S), aeu).

Update S by performing {ai}
N
i=1.

if Ep mod EUpdate = 0 then
Update θ using B by Eq. (3).

Ep← Ep+ 1.

4.1 Stage 1: Imitation Learning

The opponent’s policy is similar to a black box and its
deterministic actions can be viewed without knowledge of
its internal workings. In the first stage, the DDPN is trained
by mimicking enemy units’ actions. For any state S ∈ S ,
we can observe the actions {aue}ue∈Ue performed by enemy
units Ue. They are regarded as demonstrations to play the
game, and DDPN is trained by minimizing the cross-entropy
loss function:

θ
∗ = argmin

θ

∑

ue∈Ue
− log pθ(aue |fo (ue

, S)). (3)

To learn DDPN efficiently, an imitation learning algorithm
is proposed in Alg. 1 by online update. Alg. 1 regards the
observations of enemy actions as demonstrations, and it
still works when the demonstrations are human-designed
heuristics or from experience replays.

4.2 Stage 2: Reinforcement Learning

Since our goal is to defeat the opponent rather than just
imitate it, hence we aim to further improve the polices in
the second stage. Consider the DDPN learned from the first
stage as the initial policies π0 = {p0i }i=1,...,N , then V 0(S)
and Q0(S,A) can be calculated by simulating π0 in Eq. (1)
and Eq. (2) respectively. The regret value is introduced to
represent how much the agents “regret” having used the
policies π = {pi}i=1,...,N . It roughly evaluates the gap
between the current policies and the optimal policies:

R(π, S,M) =
1

M

M
∑

m=1

( max
A∈AN

Q
0(S,A)−Q

0(S,Am)), (4)

where M is the number of independent simulations, Am =
{ami }i=1,...,N are joint actions and ami ∼ pi. If the joint

policies π∗ = {p∗i }i=1,...,N satisfy limM→+∞ R(π∗, S,M) =
0, then π∗ are the desired joint no-regret policies. As proved
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Algorithm 2: The multiplicative weights algorithm.

Input: Agent u, game state S and normalized
Q0(S, a) ∈ [0, 1] for any a ∈ A.

Output: {p∗ (a|O(S))}a∈A

Initialize weight w(a) = 1 for each action.
while Non-convergent do

Update p(a|O(S)) = w(a)∑
a′∈A

w(a′) for each action.

Update the weight w(a)← w(a) · (1 + ηQ0(S, a))
for each action (η is the update rate).

p∗(a|O(S)) = w(a)∑
a′∈A

w(a′) for each action.

in [Cesa-Bianchi et al., 2007], the multiplicative weights
(MW) algorithm (Alg. 2) converges to the no-regret policy in
single-agent cases.

Unfortunately, as the joint state-action space grows
exponentially with the number of agents and the no-regret
policy of one agent depends on others’ policies, it is difficult
to solve the joint no-regret policies in multi-agent cases. To
handle this challenge, Alg. 2 is extended to the no-regret
dynamics algorithm (Alg. 3) to approximately estimate the
joint no-regret policies {p∗i }

N
i=1. Then, {p∗i }

N
i=1 are further

used to learn DDPN by Eq. (5) where η is the learning rate,
and an asynchronous RL algorithm is proposed in Alg. 4.

θ ← θ + η
∑

a∈A
log pθ(a|f

o (ui, S))p
∗
i (a|Oi(S)). (5)

Here we theoretically analyse the effectiveness of the
proposed algorithm. In each iteration of Alg. 3, each
agent finds its no-regret policy by assuming other agents’
policies are certain, and Alg. 3 is convergent as proven
in [Roughgarden, 2016]. Although there is no theoretical
guarantee that {p∗i }

N
i=1 are joint no-regret policies, yet we

can still prove that they are better policies than the initial
policies π0, that is V ∗(S) ≥ V 0(S) for any state S ∈ S
where V ∗(S) is simulated by performing {p∗i }

N
i=1 in Eq. (1).

Proof: Suppose pki is the policy of ui after the k-th iteration
of Alg. 3. Since Alg. 2 is no-regret for each single agent
when other agents’ polices are known, hence:

E

(

Q
0(S,A ∼

∏N

i=1
p
k+1

i )
)

≥ E

(

Q
0(S, aN ∼ p

k

N , {ai}
N−1

i=1 ∼
∏N−1

i=1
p
k+1

i )
)

≥ ... ≥ E

(

Q
0(S,A ∼

∏N

i=1
p
k

i )
)

,

(6)

where S is any game state. Consider a game initialized by
S1 = S, according to Eq. (6), we have:

V
0(S1) = E

(

Q
0(S1, A ∼

∏N

i=1
p
0
i )
)

≤ E

(

Q
0(S1, A ∼

∏N

i=1
p
∗
i )
)

≤ E

(

r(S2, S1, A ∼
∏N

i=1
p
∗
i ) + λQ

0(S2, A ∼
∏N

i=1
p
∗
i )
)

... ≤ E

(

∑T−1

t=1
λ
t−1

r(St+1, St, A ∼
∏N

i=1
p
∗
i )
)

= V
∗(S1).

(7)

Algorithm 3: The no-regret dynamics algorithm

Input: The game state S, agents u1, ..., uN , and the
initialized policies π0 = {p0i }

N
i=1.

Output: {p∗i (a|Oi(S))}a∈A for each agent ui.
Initialize p∗i = p0i for each agent ui.
for k = 1, 2, ...,K do

for i = 1, ..., N do
Fix the polices of agents {uj}j 6=i as {p∗j}j 6=i.

Find the no-regret policy pki for ui by Alg. 2.

Update p∗i (a|Oi(S)) = pki (a|Oi(S)).

According to Eq. (7), Alg. 3 will find a local optimum where
the starting point is the previous policy. In practice, most
existing opponent policies are implemented by rule-based
scripts and far from the local optimum. Hence, the proposed
method can improve these policies significantly in practice.
Furthermore, the learning policies are continually regarded
as new initial policies of Alg. 3 during the learning procedure
to improve constantly.

5 Experiments

The proposed method is tested using SparCraft [Churchill
et al., 2012], which is a simulator of the StarCraft local
combat game and is widely adopted to test combat game
algorithms [Churchill et al., 2012; Churchill and Buro, 2013;
Lelis, 2017; Moraes and Lelis, 2018]. It is chosen as
the experimental platform because its efficient simulation
function can accelerate the algorithms. In addition, unlike the
StarCraft environment [Usunier et al., 2016], the SparCraft
implements several kinds of opponent models to better
validate the robustness of the proposed method.

5.1 Experiment Settings

The action space contains three types of discrete actions:
noop, move[directions] and attack[enemy ids], where
directions is set to 4 corresponding to left, right, up and
down, and enemy ids is the number of enemy units at
the initial state of the combat scenario. To an ally unit,
[enemy ids] is the list of its attack targets, and arranged
in ascending order of the remaining hit points. The feature
of an agent’s observation is concatenated of the properties
[Foerster et al., 2018] of the corresponding unit, the 10
closest ally units and 10 closest enemy units. To make
sure the feature vector is unique and identical to each state,
the ally and enemy units are arranged in ascending order
of the distance to the agent. If the numbers of ally and
enemy units are less than 10, then the feature vector is
filled with 0 to make the length of feature vector identical
at any state. DDPN is composed of 4 fully connected (FC)
layers, 3 batch normalization layers following the first 3 FC
layers respectively. A softmax layer is used to output the
probabilities. The widths of the FC layers are 256, 128, 128,
and directions + enemy ids + 1 respectively. The leaky
rectified linear function [Maas et al., 2013] is used as an
activation function for the first 3 FC layers. We utilize this

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1308



Algorithm 4: RL algorithm of DDPN.

Input: DDPN parameters θ0 learned by Alg. 1.
Output: Updated DDPN parameters θ.

Initialize: θ̃ ← θ0, θ ← θ0.
Ep = 1.
while Non-convergent do

Initialize game state S randomly.
while S is non-terminal do

for i = 1, ..., N do
Extract feature fo(ui, S).
Choose action ai ∼ pθ̃(a|f

o(ui, S)).

Calculate the joint no-regret policies by Alg. 3
which is initialized by pθ(a|f

o(ui, S)).

Update θ̃ by Eq. (5).
Update S by performing {ai}

N
i=1.

if Ep mod EUpdate = 0 then

Update θ ← θ̃.

Ep← Ep+ 1.

simple network architecture because it needs to forward the
network in real time.

The opponents are the rule-based heuristics implemented
in SparCraft, including: (1) Attack-Value (v) where units
attack the unit with the highest value (damage per frame /
current hit points) within range and a unit not within the
range of any enemy moves toward the closest enemy. (2)
Attack-Closest (c) which is similar to v except each unit
attack the closest enemy unit. (3) Kiter (k) is similar to
c, it instead moves a fixed distance away from the closest
enemy when it is necessary to cool down the weapon. (4)
Kiter Value (kv) will attack the enemy units as same as
v if the weapon is ready to attack, and it will move as
same to k otherwise. To summarize, c and v are two most
straightforward and simplest heuristics who only focus on
how to attack. The scripts k and kv additionally consider
how to move when the weapon is not ready. The “move and
attack” mode of k and kv is also known as “hit-and-run”1

which is often used by professional players. In experiments,
“DDPN x” denotes the DDPN model trained by the opponent
x. The Marine (m) and Zealot (z) are chosen as two typical
unit types for ranged and melee units respectively. The test
combat scenarios differ in the unit numbers and types: two
small scale combats m5v5 and z5v5, a large-scale combat
m30v30, a heterogeneous combat 5m5z where the ally and
enemy units are both composed of 5 Marines and 5 Zealots,
and two unbalanced combats m15v16 and m18v20 where
we control 15(18) Marines against 16(20) Marines and our
force is weaker than the opponent. Two circle regions in the
combat area are chosen for ally and enemy units respectively,
and each unit is born randomly in the corresponding region in
each scenario. All of the win rates in the paper are accounted
with 200 independent battles.

The decay factor λ is set to 0.995, and the iterations of
Alg. 2 and Alg. 3 are both set to 5. To simulate Eq. (2) and

1http://tvtropes.org/pmwiki/pmwiki.php/Main/HitAndRunTactics.

Scenarios m5v5 z5v5 m30v30 5m5z m15v16 m18v20

UCT v 0.95 0.91 0.83 0.89 0.72 0.41

A-B v 0.97 0.90 0.78 0.90 0.66 0.39

DQN v 0.95 0.89 0.86 0.66 0.37 0.15

PG v 0.89 0.85 0.77 0.85 0.42 0.20

OGTL v 1.00 0.96 0.92 0.76 0.86 0.45

GMEZO* 1.00 - - - 0.79 -

BicNet* 0.92 - - - 0.71 -

CommNet* 0.95 - - - 0.68 -

MS-MARL* - - - - 0.82 -

DDPN v 0.99 0.95 0.93 0.85 0.87 0.73

UCT c 0.93 0.86 0.85 0.84 0.69 0.36

A-B c 0.99 0.90 0.79 0.89 0.70 0.32

DQN c 0.97 0.92 0.74 0.63 0.35 0.11

PG c 0.89 0.85 0.91 0.68 0.36 0.19

OGTL c 0.94 0.96 0.89 0.76 0.80 0.51

DDPN c 0.96 0.91 1.00 0.92 0.84 0.79

UCT k 0.81 0.80 0.75 0.78 0.59 0.20

A-B k 0.82 0.85 0.72 0.79 0.63 0.25

DQN k 0.77 0.71 0.65 0.54 0.19 0.09

PG k 0.76 0.85 0.73 0.58 0.26 0.10

OGTL k 0.82 0.79 0.81 0.61 0.42 0.32

DDPN k 0.89 0.84 0.84 0.80 0.77 0.65

UCT kv 0.79 0.81 0.76 0.72 0.56 0.16

A-B kv 0.80 0.83 0.75 0.74 0.55 0.16

DQN kv 0.73 0.71 0.51 0.49 0.14 0.08

PG kv 0.76 0.70 0.59 0.57 0.29 0.11

OGTL kv 0.79 0.83 0.72 0.61 0.46 0.27

DDPN kv 0.88 0.85 0.91 0.78 0.76 0.61

Table 1: Compared with other competing approaches, where “*”
means the experiments are conducted on the other settings and “-
” means the results are unavailable. The best result for the given
scenario and opponent is in bold.

Eq. (1) efficiently, actions with the maximum possibility are
performed. In addition, η = 0.6 in Alg. 3 and DDPN is
learned by SGD with learning rate 10−3. The models are
trained on GeForce GTX 1080 and tested on a desktop PC
with one 2.4 GHz CPU and 8G RAM.

5.2 Comparative Results

We consider two type of methods as competing baselines
including: 1) heuristic-based search methods, including UCT
[Churchill and Buro, 2013] and Alpha-Beta (A-B) search
[Churchill et al., 2012] which have been implemented in
SparCraft both use the opponent’s policy to help search
for fair comparison; and 2) deep learning based methods
including two well-known general RL algorithms DQN
[Mnih et al., 2013] and PG [Williams, 1992], and 5
state-of-the-art deep RL algorithms designed for the RT
combat game including OGTL [Hu et al., 2018], GMEZO
[Usunier et al., 2016], BicNet [Peng et al., 2017], CommNet
[Sukhbaatar and Fergus, 2016] and MS-MARL [Kong et
al., 2017]. The DQN is re-implemented as centralized
learning by the framework proposed in [Usunier et al., 2016],
and PG and OGTL are re-implemented in a decentralized
way [Hu et al., 2018] which utilizes the same feature and
network architecture as us. The results of GMEZO, BicNet,
CommNet and MS-MARL are reported in [Peng et al., 2017;
Kong et al., 2017]. Due to different experimental settings,
these comparative results are only indicative. As stated in
[Peng et al., 2017], their opponents have the similar effect to
w, hence we compare these results with the DDPN w.
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Figure 2: Win rates for DDPN and competing algorithms on
m18v20 against with “v”. “DDPN1+DDPN2” outperforms all
baseline methods.

From the comparative results presented in Table 1, we
observe the following key findings: 1) the win rates of
our DDPN model are much larger than 0.5 in all combat
scenarios, and outperforms other competing methods overall.
It demonstrates the effectiveness of the proposed method.
2) UCT and Alpha-Beta can achieve high win rates in
balanced combats, while the performances are very limited
in unbalanced combats. It is difficult to search the effective
cooperative policies from the extremely large game tree
under real-time limitation (40ms). 3) DQN and PG perform
well in small combats against easy opponent models (v
and c), while the win rates decline dramatically in large
scale combats against hard opponent models because it
is hard to learn an effective network from scratch in an
extremely large state-action space. 4) OGTL is also designed
by combing imitation learning of opponent and RL. It
performs well in balanced combats and performs poorly in
unbalanced combats. The reason is that it ignores multi-agent
cooperation during learning and the cooperation plays an
important role in unbalanced combats. Different with OGTL,
the proposed DDPN utilizes collective rewards and can learn
more effective multi-agent cooperative polices.

5.3 Ablation Studies

To validate the contributions of the staged learning, two
additional versions of the DDPN are evaluated in this
experiment: “only DDPN1” which means the model is
only trained by imitation learning proposed in Alg. 1, and
“only DDPN2” which means we train the DDPN by Alg. 4
directly with random initialization. To better validate the
contributions of Alg. 4, we compare the proposed method
with the stage learning method OGTL as “DDPN1+OGTL2”,
where the network is pre-trained by Alg. 1 and further
improved by the RL proposed in [Hu et al., 2018]. Fig. 2
shows average win rates as a function of training episode
for each method on m18v20 against with “w”, and it is
evident that: 1) “DDPN1” can learn primary policy while
its win rate is low. 2) The performance of “Only DDPN2”
is poor because it is difficult to effectively explore the large
action-state space from scratch. 3) “DDPN1+DDPN2”
outperforms “only DDPN1” and “only DDPN2” clearly and
it indicates these two stages are indeed complementary to
each other. In addition, the improvement is more significant

Scenarios m5v5 m15v15 m18v18 m30v30 m18v20

DQN v 0.73 0.48 0.40 0.05 0.01

GMEZO* 0.80 0.80 0.82 - 0.17

DDPN v 0.89 0.94 0.93 0.92 0.67

Table 2: The comparison results on scenarios with different unit
numbers. The models are all trained on m15v16. The “*” means
the experiments are conducted on other platforms.

Opponents Mean c v k kv

DDPN c 0.86 0.93 0.95 0.79 0.78

DDPN v 0.85 0.91 1.00 0.70 0.78

DDPN k 0.93 1.00 1.00 0.84 0.89

DDPN kv 0.93 1.00 1.00 0.82 0.91

Table 3: Win rates for the cross-opponent experiments on m30v30.

than “DDPN1+OGTL2”. The reason is that Alg. 4 utilizes
collective rewards to learn multi-agent cooperative policies,
while “OGTL2” only uses single-agent action explorations.

To evaluate the robustness to different combat scales,
DDPN trained on one scenario is tested on other scenarios
with a different number of units. As shown in Table 2,
DDPN is more robust than the centralized learning methods
GMEZO and DQN. The reason is that DDPN relies on
observations of an agent, which is more robust than whole
joint state-action space.

In addition, a cross-opponent experiment is conducted to
validate the influence of various opponents. In particular,
the DDPN model trained by one opponent will fight against
to another one such as DDPN c vs. k. The experiment is
carried on m30v30 and the comparison results are shown in
Table 3. DDPN not only defeats the opponent model who
is used to train the network, but also is applicable to other
opponents. For example, DDPN c can defeat kv even c and
kv are implemented by totally different rules. In addition,
the effectiveness of the DDPN is positively correlated to the
opponent. The mean win rates of k and kv are higher than
c and v, where the former two heuristics are the improved
versions of the latter two. It is reasonable because the DDPN
is learned from the opponent and more effective opponent
model leads to more effective DDPN.

6 Conclusion

This paper formulates the task of real-time combat game as a
collective decentralized partially observable Markov decision
process (CDec-POMDP), and designs a Deep Decentralized
Policy Network (DDPN) to model the decentralized polices.
To train DDPN effectively, a novel two-stage learning
algorithm is proposed which first performs imitation learning
from opponent and then self-improved reinforcement
learning by no-regret dynamics. Experimental results in
several scenarios demonstrate that the method can defeat
different rule-based scripts and significantly outperforms the
state-of-the-art deep learning based approaches.
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