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Abstract

State-of-the-art methods for zero-shot visual recognition

formulate learning as a joint embedding problem of im-

ages and side information. In these formulations the current

best complement to visual features are attributes: manually-

encoded vectors describing shared characteristics among

categories. Despite good performance, attributes have lim-

itations: (1) finer-grained recognition requires commensu-

rately more attributes, and (2) attributes do not provide

a natural language interface. We propose to overcome

these limitations by training neural language models from

scratch; i.e. without pre-training and only consuming words

and characters. Our proposed models train end-to-end to

align with the fine-grained and category-specific content of

images. Natural language provides a flexible and compact

way of encoding only the salient visual aspects for distin-

guishing categories. By training on raw text, our model can

do inference on raw text as well, providing humans a fa-

miliar mode both for annotation and retrieval. Our model

achieves strong performance on zero-shot text-based image

retrieval and significantly outperforms the attribute-based

state-of-the-art for zero-shot classification on the Caltech-

UCSD Birds 200-2011 dataset.

1. Introduction

A key challenge in image understanding is to correctly

relate natural language concepts to the visual content of im-

ages. In recent years there has been significant progress

in learning visual-semantic embeddings, e.g. for zero-shot

learning [36, 38, 24, 33, 12, 41, 2] and automatically gen-

erating image captions for general web images [23, 35, 45,

20, 8]. These methods have harnessed large image and text

datasets [39, 50, 25], as well as advances in deep neural net-

works for image and language modeling, already enabling

powerful new applications such as auto-captioning images

for blind users on the web [27].

Despite these advances, the problem of relating images

and text is still far from solved. In particular for the fine-

grained regime [46, 10, 7, 51], where images of differ-
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Figure 1: Our model learns a scoring function between im-

ages and text descriptions. A word-based LSTM is shown

here, but we also evaluate several alternative models.

ent classes have only subtle distinctions, sophisticated lan-

guage models have not been employed, perhaps due to the

scarcity of large and high-quality training data. For in-

stance on the Caltech-UCSD birds database (CUB) [46],

previous zero-shot learning approaches [13, 2, 3] have

used human-encoded attributes [24], or simplified language

models such as bag-of-words [16], WordNet-hierarchy-

derived features [29], and neural word embeddings such as

Word2Vec [28] and GloVE [37].

Previous text corpora used for fine-grained label embed-

ding were either very large but not visually focused, e.g. the

entire wikipedia, or somewhat visually relevant but very

short, e.g. the subset of wikipedia articles that are related

to birds. Furthermore, these wikis do not provide enough

aligned images and text to train a high-capacity sentence en-

coder. Given the data limitations, previous text embedding

methods work surprisingly well for zero-shot visual recog-

nition, but there remains a large gap between the text em-

bedding methods and human-annotated attributes (28.4% vs

50.1% average top-1 per-class accuracy on CUB [2]).

In order to close the performance gap between text em-

beddings and human-annotated attributes for fine-grained

visual recognition, we hypothesize that higher-capacity text

models are required. However, more sophisticated text

models would in turn require more training data, in par-

ticular aligned images and multiple visual descriptions per

image for each fine-grained category. These descriptions
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would support both zero-shot image recognition and zero-

shot image retrieval, which are strong measures of the gen-

eralization ability of both image and text models.

Our contributions in this work are as follows. First, we

collected two datasets of fine-grained visual descriptions:

one for the Caltech-UCSD birds dataset, and another for the

Oxford-102 flowers dataset [32]. Both our data and code

will be made available. Second, we propose a novel ex-

tension of structured joint embedding [2], and show that it

can be used for end-to-end training of deep neural language

models. It also dramatically improves zero-shot retrieval

performance for all models. Third, we evaluate several vari-

ants of word- and character-based neural language models,

including our novel hybrids of convolutional and recurrent

networks for text modeling. We demonstrate significant im-

provements over the state-of-the-art on CUB and Flowers

datasets in both zero-shot recognition and retrieval.

2. Related work

Over the past several years, advances in deep convolu-

tional networks [22, 9, 44] have driven rapid progress in

general-purpose visual recognition on large-scale bench-

marks such as ImageNet [6]. The learned features of

these networks have proven transferable to many other

problems [34]. However, a remaining challenge is fine-

grained image classification [46, 10, 7, 51], i.e. classify-

ing objects of many visually similar classes. The dif-

ficulty is increased by the lack of extensive labeled im-

ages [36, 38, 24, 33, 12, 41], which for fine-grained data

sets may even require annotation by human experts.

The setting we study in this work is both fine-grained

and zero-shot, e.g. we want to do fine-grained classification

of previously unseen categories of birds and flowers. This

problem is not as contrived as it may at first seem: good per-

formance would strongly indicate the generalization abil-

ity of image and text features; in particular that our visual

description embeddings represent well the fine-grained vi-

sual concepts in images, rather than over-fitting to known

categories. Strong performance metrics for visual-semantic

models are especially apropos because of the risk of over-

fitting recent high-capacity captioning models, e.g. memo-

rizing (and possibly regurgitating) training captions.

We compare to previous work on zero-shot recognition,

and also report zero-shot text-based retrieval. Zero-shot re-

trieval and detection have also been studied in [5, 15, 48,

21], but no other work has studied zero-shot text-based re-

trieval in the fine-grained context of CUB and flowers.

There has been a surge of progress in the field of

deep multi-modal representation learning in the past several

years. In [31], audio and video signals were combined in

an autoencoder framework, yielding improved speech sig-

nal classification for noisy inputs, and learning a shared

representation across modalities. In [43], a deep Boltz-

mann machine architecture was used for multimodal learn-

ing on Flickr images and text tags. In addition to improved

discriminative performance, it was also able to hallucinate

missing modalities, i.e. generate text tags given the image,

or retrieve images given text tags. In [42], a novel informa-

tion theoretic objective is developed, improving the perfor-

mance of deep multimodal learning for images and text.

Recent image and video captioning models [26, 45, 20,

49, 8] go beyond tags to generate natural language descrip-

tions. These models use LSTMs [17] for modeling cap-

tions at word level and focus on generating general high-

level visual descriptions of a scene. As an alternative to us-

ing LSTMs for language modeling, other works have used

character-based convolutional networks [52].

Architecturally, other vision systems have trained convo-

lutional and recurrent components (CNN-RNN) end-to-end,

e.g. for encoding spatial dependencies in segmentation [53]

and video classification [30]. Here we extend CNN-RNN

to learn a visual semantic embedding “from scratch” at the

character level, yielding competitive performance, robust-

ness to typos, and scalability to large vocabulary.

A related line of work has been to improve label em-

beddings for image classification [4, 47, 12, 1, 33]. Em-

bedding labels in an euclidean space is an effective way

to model latent relationships between classes [4, 47]. For

zero-shot learning, DeViSE [12] and ALE [1] employ two

variants of a ranking formulation to learn a compatibility

between images and textual side-information. ConSe [33]

uses the probabilities of a softmax-output layer to weigh the

semantic vectors of all the classes. Akata et al. [2] showed

a large performance gap in zero-shot classification between

attributes and unsupervised word embeddings.

In [11] and [3], the zero-shot recognition problem is

cast as predicting parameters of a classifier given a text de-

scription of the novel category. Our work considers a simi-

lar problem, but there are major differences. We consider

multi-class zero-shot recognition and retrieval, whereas

those works mainly focus on one-vs-rest detection of novel

categories. More importantly, our setting assumes that we

have a significant amount of visual descriptions for training

high-capacity text models, whereas those works had much

less text available and used TF-IDF features.

Our contribution builds on previous work on character-

level language models [52] and fine-grained zero-shot

learning [1] to train high capacity text encoders from scratch

to jointly embed fine-grained visual descriptions and im-

ages. We demonstrate that with sufficient training data,

text-based label embeddings can outperform the previous

attributes-based state-of-the art for zero-shot recognition on

CUB (at both word and character level).
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3. Deep Structured Joint Embedding

In this section we describe our approach to jointly em-

bedding images and fine-grained visual descriptions, which

we call deep structured joint embedding. As in previous

multimodal structured learning methods [1, 2], we learn a

compatibility function of images and text. However, instead

of using a bilinear compatibility function we use the inner

product of features generated by deep neural encoders. An

instantiation of our model using a word-level LSTM is il-

lustrated in Figure 1. Intuitively, we maximize the compat-

ibility between a description and its matching image, and

minimize compatibility with images from other classes.

Objective. Given data S = {(vn, tn, yn), n = 1, ..., N}
containing visual information v ∈ V , text descriptions t ∈
T and class labels y ∈ Y , we seek to learn functions fv :
V → Y and ft : T → Y that minimize the empirical risk

1

N

NX

n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn)) (1)

where ∆ : Y × Y → R is the 0-1 loss. Note that N is the

number of image and text pairs in the training set, and so a

given image can have multiple corresponding captions.

Here we draw a distinction between our method from

previous work on structured joint embedding [2]; namely

that our objective is symmetric with respect to images and

text. This has the benefit that by optimizing equation 1, a

single model can learn to predict by conditioning on both

images and text. We thus name the above objective deep

symmetric structured joint embedding (DS-SJE). It is possi-

ble to use just one of the two terms in Eq. 1. For example

in [2] only the first term is used in order to train a zero-shot

image classifier, i.e. only image encoder fv is trained. In our

experiments we refer to this as deep asymmetric structured

joint embedding (DA-SJE).

It is also possible to build an asymmetric model in the

opposite direction, i.e. only train ft in order to perform

zero-shot image retrieval, although we are not aware of pre-

vious works doing this. From a practical perspective it is

clearly better to have a single model that does both tasks

well. Thus in our experiments we compare DS-SJE with

DA-SJE (training only fv) for zero-shot classification.

Inference. We define a compatibility function F : V ×
T → R that uses features from learnable encoder functions

✓(v) for images and '(t) for text:

F (v, t) = ✓(v)T'(t) (2)

We then formulate image and text classifiers as follows:

fv(v) = arg max
y∈Y

Et∼T (y)[F (v, t)] (3)

ft(t) = arg max
y∈Y

Ev∼V(y)[F (v, t)] (4)

where T (y) is the subset of T from class y, V(y) is the

subset of V from class y, and the expectation is over text

descriptions sampled uniformly from these subsets.

Since the compatibility function is shared by ft and fv ,

in the symmetric objective it must learn to yield accurate

predictions for both classifiers. From the perspective of the

text encoder, this means that text features must produce a

higher compatibility score to a matching image compared

to both 1) the score of that image with any mismatching

text, and 2) the score of that text with any mismatching im-

age. We found that both 1) and 2) are important for accurate

recognition and retrieval using a single model.

Learning. Since the 0-1 loss is discontinuous, we instead

optimize a surrogate objective function (related to equa-

tion 1) that is continuous and convex:

1

N

NX

n=1

`v(vn, tn, yn) + `t(vn, tn, yn) (5)

where the misclassification losses are written as:

`v(vn, tn,yn) = (6)

max
y∈Y

(0,∆(yn, y) + Et∼T (y)[F (vn, t)− F (vn, tn)])

`t(vn, tn,yn) = (7)

max
y∈Y

(0,∆(yn, y) + Ev∼V(y)[F (v, tn)− F (vn, tn)])

In practice we have many visual descriptions and many

images per class. During training, in each mini-batch we

first sample an image from each class, and then sample one

of its ten corresponding captions. To train the model, we use

SGD on Eq. 5 with RMSprop. Since our text encoder mod-

els are all differentiable, we backpropagate (sub)-gradients

through all text network parameters for end-to-end training.

For the image encoder, we keep the network weights fixed

to the original GoogLeNet.

4. Text encoder models

In this section we describe the deep neural language

models that we use for representing fine-grained visual de-

scriptions. We compare the performance on zero-shot pre-

diction tasks in Section 5.

4.1. Text-based ConvNet (CNN)

Text-based convolutional neural networks were studied

in depth in [52] for the task of document classification. The

text-based CNN can be viewed as a standard CNN for im-

ages, except that the image width is 1 pixel and the number

of channels is equal to the alphabet size. The 2D convolu-

tion and spatial max-pooling are replaced by temporal (1D)

convolution and temporal max-pooling. After each convo-

lution layer, we use rectified linear activation unit (ReLU),
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The beak is yellow and pointed and the wings are blue.

Convolutional 
encoding

Sequential 
encoding

Figure 2: Our proposed convolutional-recurrent net.

which is defined as relu(x) = max(0, x). The over-

all network is constructed using convolution, pooling and

thresholding activation function layers, followed by fully-

connected layers to project onto the embedding space. The

text embedding function is thus simply '(t) = CNN(t); the

final hidden layer of the CNN.

The maximum input length for character sequences is

constrained by the network architecture, but variable length

sequences beneath this limit are handled by zero-padding

the input past the final input character. The Word-CNN is

exactly the same as Char-CNN except that the alphabet of

the Char-CNN is replaced with the vocabulary of the Word-

CNN. Of course, the vocabulary is much larger, typically

at least several thousand words compared to a few dozen

characters in an alphabet. However, the sequence length is

significantly reduced.

4.2. Convolutional Recurrent Net (CNN-RNN)

A potential shortcoming of convolution-only text mod-

els is that they lack a strong temporal dependency along

the input text sequence. However, the CNN models are ex-

tremely fast and scale well to long sequences such as char-

acter strings. To get the benefits of both recurrent models

and CNNs, we propose to stack a recurrent network on top

of a mid-level temporal CNN hidden layer. Intuitively, the

CNN hidden activation is split along the time dimension (in

our case when the dimension was reduced to 8) and treated

as an input sequence of vectors. The entire resulting net-

work is still end-to-end differentiable.

This approach has the advantage that low-level temporal

features can be learned efficiently with fast convolutional

networks, and temporal structure can still be exploited at

the more abstract level of mid-level features. This can be

viewed as modeling temporal structure at the abstract or

conceptual level, not strictly dilineated by word boundaries.

The approach is well-suited to the case of character-level

processing (Char-CNN-RNN). We also evaluate a word-

level version (Word-CNN-RNN).

Figure 2 illustrates the convolutional-recurrent approach.

The final encoded feature is the average hidden unit activa-

tion over the sequence, i.e. '(t) = 1/L
PL

i=1 hi, where

hi is the hidden activation vector for the i-th frame and L
is the sequence length. The resulting scoring function can

be viewed as a linear accumulation of evidence for com-

patibility with a query image (illustrated in Figure 1). It is

also a linearized version of attention over the text sequence.

This has the advantage that at test time for classification

or retrieval, one can use the averaged hidden units as a fea-

ture, but for diagnostic purposes one can backtrace the score

computation to each time step of text processing.

4.3. Long Short-Term Memory (LSTM)

As opposed to the CNN models, the LSTM explic-

itly takes into account the temporal structure starting from

words or characters. We refer readers to [17] for full de-

tails. To extract a text embedding from the LSTM text en-

coder, we take the temporal average of the final layer hidden

units, i.e. '(t) = 1/L
PL

i=1 hi (defined similarly as in Sec-

tion 4.2).

4.4. Baseline representations

Since we gathered a significant amount of new data, tra-

ditional (e.g. non-“deep”) text representations should also

improve in performance. To evaluate whether using the neu-

ral language models really provide an additional benefit, we

compare against several classical methods.

For the BoW model, we first compute the vocabulary V
of all of the unique words appearing in the visual descrip-

tions. Then, we encode each description as a binary vec-

tor indicating the presence or absence of each word. The

embedding function is simply the output of a multi-layer

perceptron (MLP), '(t) = MLP(I(t)). where I(·) maps t
to an indicator vector in {0, 1}|V |. In practice we found a

single layer linear projection was sufficient for surprisingly

good performance.

We also evaluate a baseline that represents descrip-

tions using unsupervised word embeddings learned by

word2vec [28]. Previous works on visual-semantic embed-

ding have directly used the word embedings of target classes

for zero-shot learning tasks. However, in our case we have

access to many visual descriptions, and we would like to ex-

tract vector representations of them in real time; i.e. without

re-running word2vec training. A very simple way to do this

is to average the word embeddings of each word in the vi-

sual description. Although this loses the structure of the

sentence, this nevertheless yields a strong baseline and in

practice performs similarly to bag of words.

Finally, an important point of comparison is attributes,

which contain rich structured information far more com-

pactly than informal visual descriptions. As in the case

of bag-of-words, we learn a single-layer encoder function

mapping attributes to the embedding space. Since the num-

ber of attribute vectors is very small (only one per class), the
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The bird has a white 
underbelly, black 
feathers in the wings, 
a large wingspan, and 
a white beak.

This bird has 
distinctive-looking 
brown and white 
stripes all over its 
body, and its brown 
tail sticks up.

This flower has a 
central white blossom 
surrounded by large 
pointed red petals 
which are veined and 
leaflike.

Light purple petals 
with orange and 
black middle green 
leaves

Figure 3: Example annotations of birds and flowers.

risk of over-fitting strongly limits the encoder network ca-

pacity. The CUB dataset also has per-image attributes, but

we found that using these does not improve performance

compared to using a single averaged attribute vector per

class.

5. Experimental results

In this section we describe our experiments on the

Caltech-UCSD Birds dataset (CUB) and Oxford Flowers-

102 (Flowers) dataset. CUB contains 11,788 bird images

from 200 different categories. Flowers contains 8189 flower

images from 102 different categories. Following [1], the

images in CUB are split into 100 training, 50 validation, and

50 disjoint test categories1. As in [3], the images in Flowers

are split into 82 training + validation and 20 test classes.

For the image features, we extracted 1, 024-dimensional

pooling units from GoogLeNet [44] with batch normaliza-

tion [19] implemented in Torch2. For each image, we ex-

tracted middle, upper left, upper right, lower left and lower

right crops for the original and horizontally-flipped image,

resulting in 10 views per training image. At test time we

only use the original image resized to 224× 224.

For all word-level models (BoW, Word-LSTM, Word-

CNN, Word-CNN-RNN), we used all vocabulary words in

the dataset. For character-level models (Char-LSTM, Char-

CNN, Char-CNN-RNN), the alphabet consisted of all low-

ercase characters and punctuation.

The CNN input size (sequence length) was set to 30 for

word-level and 201 for character-level models; longer text

inputs are cut off at this point and shorter ones are zero-

padded. All text embeddings used a 1024-dimensional em-

bedding layer to match the size of the image embedding.

We kept the image encoder fixed, and used RMSprop with

base learning rate 0.0007 and minibatch size 40.

5.1. Collecting fine-grained visual descriptions

In this section we describe the collection of our new

dataset of fine-grained visual descriptions. For each image

1Since we evaluate in the zero-shot setting, it is critical that the vali-

dation categories be disjoint from the training categories. Once hyperpa-

rameters have been cross-validated, the training + validation (150) classes

can be taken as the training set. For Flowers, we do not do any parameter

cross-validation, we use the same parameters found for CUB.
2github.com/soumith/imagenet-multiGPU.torch

Top-1 Acc (%) AP@50 (%)

Embedding DA-SJE DS-SJE DA-SJE DS-SJE

ATTRIBUTES 50.9 50.4 20.4 50.0
WORD2VEC 38.7 38.6 7.5 33.5
BAG-OF-WORDS 43.4 44.1 24.6 39.6

CHAR CNN 47.2 48.2 2.9 42.7
CHAR LSTM 22.6 21.6 11.6 22.3
CHAR CNN-RNN 54.0 54.0 6.9 45.6

WORD CNN 50.5 51.0 3.4 43.3
WORD LSTM 52.2 53.0 36.8 46.8
WORD CNN-RNN 54.3 56.8 4.8 48.7

Table 1: Zero-shot recognition and retrieval on CUB. “DS-

SJE” and “DA-SJE” refer to symmetric and asymmetric

forms of our joint embedding objective, respectively.

in CUB and Flowers, we collected ten single-sentence vi-

sual descriptions. We used the Amazon Mechanical Turk

(AMT) platform for data collection, using non-“Master”

certified workers situated in the US with average work ap-

proval rating above 95%.

We asked workers to describe only visual appearance in

at least 10 words, to avoid figures of speech, to avoid nam-

ing the species even if they knew it, and not to describe

the background or any actions being taken. The prompt in-

cluded three example sentences and a diagram labeling spe-

cific parts of a bird (e.g. tarsus) and flower (e.g. stamen)

so that non-experts could describe many different aspects

without reference to external sources such as Wikipedia.

Workers were not told the species.

Figure 3 shows several representative examples of the

results from our data collection. The descriptions almost al-

ways accurately describe the image, to varying degrees of

comprehensiveness. Thus, in some cases multiple captions

might be needed to fully disambiguate the species of bird

category. However, as we show subsequently, the data is de-

scriptive and large enough to support training high-capacity

text models and greatly improve the performance of text-

based embeddings for zero-shot learning.

5.2. CUB zero-shot recognition and retrieval

In this section we describe the protocol and results for

our zero-shot tasks. For both recognition and retrieval, we

first extract text encodings from test captions and average

them per-class. In this experiment we use all test captions

and in a later section we vary this number, including using

a single caption per class. In recognition, the resulting clas-

sifier is defined by equation 3. Note that by linearity we can

move the expectation inside the compatibility function:

fv(v) = arg max
y∈Y

✓(v)TEt∼T (y)['(t)] (8)

The expectation above is estimated by the averaged per-

class text embedding that we compute. Hence the accuracy
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Figure 4: Zero-shot image classification and retrieval accuracy versus number of sentences per-image used in training and

number of sentences in total used for testing. Results reported on CUB.

of the classifier is determined not only by the underlying

image and text encoders, but also by the quantity of text

available at test time to improve the estimate.

In the retrieval task, we rank all test set images according

to compatibility (equation 2) with the averaged text embed-

ding for each class. We report the AP@50, i.e. the percent

of top-50 scoring images whose class matches that of the

text query, averaged over the 50 test classes.

Table 1 summarizes our results. Both in the classifica-

tion (first two columns) and for retrieval (last two columns)

settings, the symmetric (DS-SJE) formulation of our model

improves over the asymmetric (DA-SJE) formulation. Es-

pecially for retrieval, DS-SJE performs much better than

DA-SJE consistently for all the text embedding variants. It

makes the difference between working very well and fail-

ing, particularly for the high-capacity models which likely

overfit to the classification task in the asymmetric setting.

In the classification setting there are notable differences

between the language models. For DA-SJE (first column),

Char-CNN-RNN (54.0% Top-1 Acc) and Word-CNN-RNN

(54.3%) outperform the attributes-based state-of-the-art [2]

for zero-shot classification (50.1%). In fact we replicated

the attribute-based model in [2] and got slightly better re-

sults (50.9%, also reported in Table 1), probably due to

training on 10 image crops instead of a single crop. Similar

observations hold for DS-SJE (second column). Notably for

DS-SJE, Char-CNN-RNN (54.0%), Word-CNN (51.0%),

Word-LSTM (53.0%) and Word-CNN-RNN (56.8%) out-

perform the attributes. In the case of retrieval and DS-SJE

(last column), attributes still performs the best (50.0% AP),

but Word-CNN-RNN (48.7%) approaches this result.

Among the character-level models, Char-CNN is signif-

icantly better than Char-LSTM. Additionally, our proposed

Char-CNN-RNN, which adds a temporal aspect to Char-

CNN, improves over the other two character-based deep

methods and also over the attribute-based state-of-the-art

for classification. This is notable because it establishes that

character-level models can extract visually-discriminative

text representations of previously-unseen categories. Fur-

thermore, combining convolutional and temporal process-

ing appears to be a promising approach to learn at the char-

acter level. Word-level models improve performance fur-

ther and can also significantly outperform attributes.

5.3. Effect of visual description training set size

In this section we investigate the effect of increasing the

number of sentences used in training on zero-shot classifica-

tion and retrieval performance. Obviously having more data

is better, but with this experiment we can see which methods

are best at which operating point of data size (hence cost).

We start with using one sentence per image and we increase

this number gradually to ten sentences per image for train-

ing. For testing, the protocol is the same as in Table 1, and

we use all available captions per class.

We show the performance of several text encoding mod-

els in Fig 4a. In zero-shot classification, attributes are com-

petitive when two captions per-image are available, but with

more training captions the deep network models win. For

retrieval, the crossover point might happen with more than

ten captions per image as the results seem to be increas-

ing. The baseline word2vec and BoW encodings do not

gain much from more data. The results suggests that given

a moderate number of sentences, i.e. four per image, neural

text encoders improve the performance over the state-of-

the-art attribute-based methods significantly.

Among neural text encoders, Char-LSTM fares worst

and also does not appear to gain consistently from ad-

ditional data. It may be that the long training sequence

length increases the difficulty of LSTM training, relative to

the word-based approach. Stacking a recurrent module on

top of a text convolutional network appears to avoid this

problem, achieving significantly better performance than

the Word-LSTM especially with more than 4 sentences for

training. It also has the nice property of robustness to typos.

Overall, Word-CNN-RNN achieved the best performance.

5.4. Effect of test visual description length

In a real application relating images and text (e.g. text-

based image retrieval), most users would prefer to describe

a visual concept concisely, rather than writing a detailed ar-

ticle with many sentences. Thus, we evaluate the perfor-

mance of our model using a varying number of query de-
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Top-1 Acc (%) AP@50 (%)

Embedding DA-SJE DS-SJE DA-SJE DS-SJE

WORD2VEC 54.6 54.2 16.3 52.1
BAG-OF-WORDS 56.7 57.7 28.2 57.3

CHAR CNN 51.1 47.3 8.3 46.1
CHAR LSTM 29.1 25.8 19.3 27.0
CHAR CNN-RNN 61.7 63.7 13.6 57.3

WORD CNN 60.2 60.7 8.7 56.3
WORD LSTM 62.3 64.5 45.9 52.3
WORD CNN-RNN 60.9 65.6 7.6 59.6

Table 2: Zero-shot % recognition accuracy and retrieval av-

erage precision on Flowers.

scriptions per class at test time. The experimental protocol

is a slight modification of that used in Table 1.

As before, we extract text embeddings from test set cap-

tions and average them per-class. In this case, we extract

embeddings separately using {1, 2, 4, 8, 16, 32, 64, 128}
and also all descriptions available per class. For each de-

scription length, we report the resulting zero-shot classifi-

cation accuracy and zero-shot retrieval AP@50. Since we

do not use all available test captions per class, we perform

10 iterations of this procedure while randomly sampling the

descriptions used for each class.

Figure 4b shows the averaged results for zero-shot clas-

sification and for zero-shot retrieval. Both figures include

error bars to ±1 standard deviation. Note that the error bars

are larger towards the left side of both figures because in the

few-text case, especially discriminative or especially vague

(or wrong) descriptions can have a relatively larger impact

on the text embedding quality. BoW again shows a surpris-

ingly good performance, significantly better than word2vec

and competitive with Char-CNN. However, the word-level

neural text encoders outperform word2vec and BoW at all

operating points.

5.5. Flowers zero-shot recognition and retrieval

To demonstrate that our results generalize beyond the

case of bird images, we report the same set of experiments

on the Flowers dataset. The experimental setting here is the

same as in Sec 5.2, except that there is no attributes base-

line due to lack of labeled attributes for this dataset. All

neural text model architectures are the same as we used for

CUB, and we used the same hyperparameters from cross-

validation on CUB. Table 2 summarizes our results.

Char CNN-RNN achieves competitive results to word-

level models both for DA-SJE and DS-SJE. The word-

level models achieve the best result, significantly better than

both the shallow embeddings and character-level models.

Among different models, Word LSTM is the winner for DA-

SJE both in classification and retrieval. On the other hand,

Word CNN-RNN is the winner for DS-SJE for the same. As

Approach CUB Flowers

CSHAPH [18] 17.5 –

AHLE [1] 27.3 –

TMV-HLP [14] 47.9 –

SJE [2] 50.1 –

DA-SJE (ours) 54.3 62.3

DS-SJE (ours) 56.8 65.6

Table 3: Summary of zero-shot % classification accura-

cies. Note that different features are used in each work,

although [1] uses the same features as in this work.

in the case for CUB, we found that DS-SJE achieves strong

retrieval performance, and DA-SJE often fails in compari-

son.

5.6. Qualitative results

Figure 5 shows several example zero-shot retrieval re-

sults using a single text description. Both the text queries

and images are real data points drawn from the test set.

We observe that having trained on our dataset of visual de-

scriptions, our proposed method returns results that accu-

rately reflect the text, even when using only a single caption.

Quantitatively, BoW achieves 14.6% AP@50 with a sin-

gle query compared to 18.0% with word-LSTM and 20.7%
with Word-CNN-RNN.

Note that although almost all retrieved images match the

text query well, the actual class of that image can still be

incorrect. This is why the average precision may seem low

compared to the generally good qualitative results. The per-

formance appears to degrade gracefully; our model at least

returns visually-consistent results if not of the correct class.

Furthermore, some queries are inherently ambiguous and

could match multiple classes equally well, so low precision

is not necessarily the fault of the model. We show a t-SNE

embedding of test-set description embeddings in Figure 6,

successfully clustering according to visual similarities (i.e.

color, shape). Additional examples from test images and

queries are included in the supplementary material.

5.7. Comparison to the state-of-the-art

In this section we compare to the previously published

results on CUB, including results that use the same zero-

shot split. CSHAPH [18] uses 4K-dim features from the

Oxford VGG net [40] and also attributes to learn a hyper-

graph on the attribute space. AHLE [1] uses Fisher vector

image features and attribute embeddings to learn a bilinear

compatibility function between these embeddings. TMV-

HLP [14] builds a hypergraph on a multiview embedding

space learned via CCA which uses deep image features and

attributes. In SJE [2] as in AHLE [1] a compatibility func-

tion is learned, in this case between 1K-dim GoogleNet [44]

features and various other embeddings including attributes.
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Word-
LSTM

Bag of 
words

Char- 
CNN- 
RNN

Word-
LSTM

Bag of 
words

“This is a bird with a yellow belly, black head 
and breast and a black wing.”

“This is a large black bird with a pointy black beak.”

“A small bird containing a light grey throat and breast, with light 
green on its side, and brown feathers with green wingbars.”

“A small bird with a white underside, greying wings and a 
black head that has a white stripe above the eyes.”

Char- 
CNN- 
RNN

Figure 5: Zero-shot retrieval given a single query sentence. Each row corresponds to a different text encoder.

Figure 6: t-SNE embedding of test class description embed-

dings from Oxford-102 (left) and CUB (right), marked with

corresponding images. Best viewed with zoom.

Our method achieves significant improvements over all of

these baselines, despite the fact that we do not use attributes.

Previously-reported zero-shot results on the Flowers

dataset [11, 3] do not report multi-class classification (in-

stead reporting binary one-vs-rest detection of unseen cate-

gories) or do not currently have published splits. However,

it will be interesting to compare these methods of “predict-

ing a classifier” given image descriptions in the large-data

setting with our new caption collection. We include our

Flowers multi-class results and will publish our split.

Overall, the results in Table 3 demonstrate that state-of-

the-art zero-shot prediction performace can be achieved di-

rectly from text descriptions. This does not require access to

any form of test label embeddings. Although attributes are

richer and more compact than text descriptions, attributes

alone form a very small training set. One explanation for the

better performance of using our descriptions is that having

many noisy human-generated descriptions acts as an effec-

tive regularizer on the learned compatibility function. This

is especially important when training deep networks, which

in our model are used for both the image and text encoding

components. Indeed, we observed that when training with

attributes, we had to use far fewer epochs (7 compared to

300) to avoid over-fitting.

6. Discussion

We developed a deep symmetric joint embedding model,

collected a high-quality dataset of fine-grained visual de-

scriptions, and evaluated several deep neural text encoders.

We showed that a text encoder trained from scratch on char-

acters or words can achieve state-of-the-art zero-shot recog-

nition accuracy on CUB, outperforming attributes. Our text

encoders achieve a competitive retrieval result compared to

attributes, and unlike attributes can be directly used to build

a language-based retrieval system.

Our visual descriptions data also improved the zero shot

accuracy using BoW and word2vec encoders. While these

win in the smaller data regime, higher capacity encoders

dominate when enough data is available. Thus our contri-

butions (data, objective and text encoders) improve perfor-

mance at multiple operating points of training text size.
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