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Abstract

Human free-hand sketches have been studied in various
contexts including sketch recognition, synthesis and fine-
grained sketch-based image retrieval (FG-SBIR). A funda-
mental challenge for sketch analysis is to deal with drasti-
cally different human drawing styles, particularly in terms
of abstraction level. In this work, we propose the first
stroke-level sketch abstraction model based on the insight
of sketch abstraction as a process of trading off between the
recognizability of a sketch and the number of strokes used
to draw it. Concretely, we train a model for abstract sketch
generation through reinforcement learning of a stroke re-
moval policy that learns to predict which strokes can be
safely removed without affecting recognizability. We show
that our abstraction model can be used for various sketch
analysis tasks including: (1) modeling stroke saliency and
understanding the decision of sketch recognition models,
(2) synthesizing sketches of variable abstraction for a given
category, or reference object instance in a photo, and (3)
training a FG-SBIR model with photos only, bypassing the
expensive photo-sketch pair collection step.

1. Introduction
Sketching is an intuitive process which has been used

throughout human history as a communication tool. Due
to the recent proliferation of touch-screen devices, sketch is
becoming more pervasive: sketches can now be drawn at
any time and anywhere on a smartphone using one’s finger.
Consequently sketch analysis has attracted increasing atten-
tion from the research community. Various sketch related
problems have been studied, including sketch recognition
[9, 47, 46], sketch based image retrieval [11, 18, 45, 40],
forensic sketch analysis [26, 33] and sketch synthesis [36,
15, 29].

These studies use free-hand sketches drawn by amateurs
based on either a category name, mental recollection, or a
reference photo of an object instance. A fundamental chal-
lenge in analyzing free-hand sketches is that sketches drawn
by different people for the same object category/instance

Figure 1: Sketch analysis is difficult because humans draw
sketches at very different abstraction levels. Top: different
shoe sketches drawn by different people given only the cat-
egory name. Bottom: sketches are now drawn by different
people with a reference photo.

often differ significantly, especially in their levels of ab-
straction. Fig. 1 shows some examples of both category-
level (drawn with only a category name) and instance-level
(drawn with a reference photo) sketches. Clearly the large
variation in abstraction levels is a challenge for either rec-
ognizing the sketch or matching it with a photo. Variation in
sketch abstraction level is expected: humans sketch to pro-
vide an abstract depiction of an object, and how abstract a
sketch is depends both on the task and the individual user’s
overall and instantaneous preference.

We present the first model of deep sketch abstraction.
Our approach to model abstraction is based on the insight
that abstraction is a process of tradeoff between recogniz-
ability and brevity/compactness (number of strokes). It is
thus intuitive that abstraction should vary with task (e.g.,
sketching for instance- rather than category-level tasks per-
mits less abstraction as the recognition task is more fine-
grained), and that abstraction varies between people as their
subjective perception (what seems to be recognizable), as
might their relative preference for brevity vs identifiabil-
ity. Based on the same insight, we develop a computational
model that learns to abstract concrete input sketches and es-
timate stroke saliency by finding the most compact subset of
input strokes for which the sketch is still recognizable. We
consider this similar to the human sketching process: be-
fore drawing an object a human has a more detailed mental
model of the object, then they work out which details can
be safely removed in conveying a compact yet recognizable
sketch depiction of the imagined object.



Specifically, we develop a recurrent neural network
(RNN) based abstraction model, which learns to measure
the importance of each segment and make a decision on
whether to skip or keep it. The impact of any given part
removal on recognizability is interdependent with which
other parts are kept/removed. We model this dependency
as a sequential decision making process. Our RNN uses
bi-directional gated recurrent units (B-GRU) along with a
moving window MLP to capture and extract the contextual
information of each sketch-part at each time step. Such
a model cannot be learned with conventional supervised
learning. We propose a framework for training a sketch ab-
straction model with reinforcement learning (RL) using a
novel reward scheme that uses the classification rank of the
sketch at each time step to make rewards more informative.

Using our abstraction model, we can address a number
of problems: (1) Modeling sketch stroke saliency: We
can estimate stroke saliency as a byproduct of learning to
produce brief recognizable sketches. (2) Category-level
sketch synthesis with controllable abstraction: Given an
existing category-level sketch synthesizer, our model can
be used to control the level of abstraction in the synthe-
sized sketches. (3) Instance-level photo-to-sketch synthe-
sis: We propose a new approach to photo! sketch synthe-
sis motivated by human sketching rather than image trans-
lation [36, 20]. Given a photo, we extract an edge-map and
treat it as a sketch at the most concrete level. Our sketch
abstraction model is then applied to abstract the edge-map
into a free-hand style sketch. (4) FG-SBIR without photo-
sketch pairs: The photo-to-sketch synthesis model above is
used to synthesize photo-freehand sketch pairs using photo
input only. This allows us to train an instance-level fine-
grained SBIR (FG-SBIR) model without manual data anno-
tation, and moreover it generates data at diverse abstraction
levels so the SBIR model is robust to variable abstraction at
runtime.

Our contributions are as follows: (1) For the first time,
the problem of stroke-level sketch abstraction is studied. (2)
We propose a reinforcement learning framework with novel
reward for training a sketch abstraction model (3) Both
category- and instance-level sketch synthesis can be per-
formed with controllable abstraction level. We demonstrate
that the proposed photo-to-sketch approach is superior than
the state-of-the-art alternatives. (4) FG-SBIR can now be
tackled without the need to collect photo-sketch pairs. Our
experiments on two benchmark datasets show that the re-
sulting FG-SBIR model is quite competitive, thus provid-
ing the potential to scale FG-SBIR to an arbitrary number
of object categories as long as sufficient photos can be col-
lected.

2. Related Work
Sketch recognition Early work on sketch recognition fo-
cused on CAD or artistic drawings [21, 31, 41]. Inspired by
the release of the first large-scale free-hand sketch dataset
[9], subsequent work studied free-hand sketch recognition
[9, 37, 28] using various hand-crafted features together
with classifiers such as SVM. Yu et al. [47] proposed the
first deep convolutional neural network (CNN) designed
for sketch recognition which outperformed previous hand-
crafted features by a large margin. In this work we do
not directly address sketch recognition. Instead we ex-
ploit a sketch recognizer to quantify sketch recognizabil-
ity and generate recognizability-based rewards to train our
abstraction model using RL. In particular, we move away
from the conventional CNN modeling of sketches [47, 46]
where sketches are essentially treated the same as static
photos, and employ a RNN-based classifier that fully en-
codes stroke-level ordering information.
Category-level sketch synthesis Recently there has been
a surge of interest in deep image synthesis [13, 39, 25, 34].
Following this trend the first free-hand sketch synthesis
model was proposed in [15], which exploits a sequence-to-
sequence Variational Autoencoder (VAE). In this model the
encoder is a bi-directional RNN that inputs a sketch and
outputs a latent vector, and the decoder is an autoregressive
RNN that samples output sketches conditioned on a latent
vector. They combine RNN with Mixture Density Networks
(MDN) [14] in order to generate continuous data points in a
sequential way. In this paper, we use the unconditional syn-
thesizer in [15] in conjunction with our proposed abstrac-
tion model to synthesize sketches of controllable abstrac-
tion level.
Instance-level sketch synthesis A sketch can also be
synthesized with a reference photo, giving rise to the
instance-level sketch synthesis problem. This is an instance
of the well studied cross-domain image synthesis prob-
lem. Existing approaches typically adopt a cross-domain
deep encoder-decoder model. Cross-domain image syn-
thesis approaches fall into two broad categories depend-
ing on whether the input and output images have pixel-
level correspondence/alignment. The first category includes
models for super-resolution [27], restoration and inpainting
[32], which assume pixel-to-pixel alignment. The second
category relaxes this assumption and includes models for
style transfer (e.g., photo to painting) [22] and cross-domain
image-conditioned image generation [44]. Photo-to-sketch
is extremely challenging due to the large domain gap and
the fact that the sketch domain is generated by humans with
variable drawing styles. As a result, only sketch-to-photo
synthesis has been studied so far [36, 20, 29]. In this work,
we study photo-to-sketch synthesis with the novel approach
of treating sketch generation as a photo-to-sketch abstrac-
tion process. We show that our method generates more visu-



ally appealing sketches than the existing deep cross-domain
image translation based approaches such as [36].
Sketch based image retrieval Early effort focused on
the category-level SBIR problem [10, 11, 17, 5, 6, 42, 19,
30, 18] whereby a sketch and a photo are considered to be a
match as long as they belong to the same category. In con-
trast, in instance-level fine-grained SBIR (FG-SBIR), they
are a match only if they depict the same object instance. FG-
SBIR has more practical use, e.g., with FG-SBIR one could
use sketch to search to buy a particular shoe s/he just saw
on the street [45]. It has thus received increasing attention
recently. State-of-the-art FG-SBIR models [45, 35] adopt a
multi-branch CNN to learn a joint embedding where photo
and sketch domains can be compared. They face two major
problems: collecting sufficient matching photo-sketch pairs
is tedious and expensive, which severely limits their scal-
ability. In addition, the large variation in abstraction level
exhibited in sketches for the same photo (see Fig. 1) also
makes the cross-domain matching difficult. In this work,
both problems are addressed using the proposed sketch ab-
straction and photo-to-sketch synthesis models.
Visual abstraction The only work on sketch abstraction
is that of [4] where a data-driven approach is used to study
style and abstraction in human face sketches. An edge-map
is computed and edges are then replaced by similar strokes
from a collection of artist sketches. In contrast, we take a
model-based approach and model sketch abstraction from
a very different perspective: abstraction is modeled as the
process of trading off between compactness and recogniz-
ability by progressively removing the least important parts.
Beyond sketch analysis, visual abstraction has been studied
in the photo domain including salient region detection [7],
feature enhancement [23], and low resolution image gener-
ation [12]. None of these approaches can be applied to our
sketch abstraction problem.

3. Methodology
3.1. Sketch abstraction

3.1.1 Sketch representation

Sketches are represented in a vectorized format. Strokes
are encoded as a sequence of coordinates, consisting of 3
elements (�x,�y, p), as in [14] for representing human
handwriting. We define data-segment as one coordinate and
stroke-segment as a group of five consecutive coordinates.
Each stroke thus comprises a variable number of stroke-
segments.

3.1.2 Problem formulation

We formulate the sketch abstraction process as the sequence
of decisions made by an abstraction agent which observes
stroke-segments in sequence and decides which to keep or

remove. The sequence of strokes may come from a model
[15] when generating abstract sketches, or a buffer when
simplifying an existing human sketch or edge-map. The
agent is trained with reinforcement learning, and learns to
estimate the saliency of each stroke in order to achieve its
goal of compactly encoding a recognizable sketch.

The RL framework is described by a Markov Decision
Process (MDP), which is a tuple hS,A, T ,Ri. Here: S
is the set of all possible states, which are observed by the
agent in the form of data-segments representing the sketch
and the index pointing at the current stroke-segment being
processed. A = {0, 1} is the set of binary action space
representing skipping (0) or keeping (1) the current stroke-
segment. T (s

t+1|st, at) is the transition probability density
from current state s

t

2 S to next state s

t+1 2 S when the
agent takes an action a

t

2 A. It updates the index and
the abstracted sketch so far. R(s

t

, a

t

, s

t+1) is the function
describing the reward in transitioning from s

t

to s

t+1 with
action a

t

. At each time step t, the agent’s decision proce-
dure is characterized by a stochastic policy ⇡

✓

= ⇡(a

t

|s
t

, ✓)

parametrized by ✓, which represents the conditional proba-
bility of taking action a

t

in state s

t

.
At first time step t1, s1 corresponds to the data-segments

of the complete sketch with index pointing at the first
stroke-segment. The agent evaluates s1 and takes an action
a1 according to its policy ⇡

✓

, making a decision on whether
to keep or skip the first stroke-segment. The transition
T (s2|s1, a1) says: if a1 = 0 (skip), the next state s2 corre-
sponds to the updated data-segments which do not contain
the skipped stroke-segment and with the index pointing to
next stroke-segment. If a1 = 1 (keep), the next state s2

corresponds to the same data-segments as in s1 but with the
index pointing to the next stroke-segment. This goes on un-
til the last stroke-segment is reached.

Let D = (s1, a1, ..., sM , a

M

, s

M+1) be a trajectory of
length M , corresponding to the number of stroke-segments
in a sketch. Then the goal of RL is to find the optimal policy
✓

⇤ that maximizes the expected return (cumulative reward
discounted by � 2 [0, 1]):

J(✓) = E
 

MX

t=1

�

t�1R(s

t

, a

t

, s

t+1)
��
⇡

✓

!
(1)

3.1.3 Model

Our RL-based sketch abstraction model is illustrated in
Fig. 2(a). A description of each component follows.
Agent It consists of two modules. In the first B-GRU
module, data-segments corresponding to state s

t

are input
sequentially to a recurrent neural network (RNN), i.e., one
segment at each time step t

0 (as shown in Fig. 2(b)). We
use bi-directional gated recurrent units [8] (B-GRU) in the
RNN to learn and embed past and future information at each



(a) Reinforcement learning framework. (b) Agent architecture.

Figure 2: Schematic of our sketch abstraction model.

time step t

0. This module represents input data in a com-
pact vectorized format '

t

by concatenating the outputs of
all time steps. The second moving window module consists
of a multi-layer perceptron (MLP) with two fully-connected
layers. The second layer is softmax activated, and generates
probabilities for agent actions �

t

. This module slides over
the B-GRU module and takes as input those outputs cen-
tered at the current stroke-segment under processing, using
the index in state s

t

. The architecture of our agent is shown
in Fig 2(b).
Environment The environment implements state transi-
tion and reward generation. The state transition module
reads the action a

t

and state s

t

at each time step t, and
transits the environment to state s

t+1 by updating data-
segments and index of the stroke-segment under process-
ing. In case of a skip action, this update consists of elimi-
nating the skipped data-segments, modifying the rest appro-
priately given the created gap, and moving the index to the
next stroke-segment. In case of a keep action, only the in-
dex information is updated. The second module is a reward
generator which assigns a reward to each state transition.
We next describe in detail the proposed reward schemes.

3.1.4 Reward scheme

We want our agent to abstract sketches by dropping the least
important stroke-segments while keeping the final remain-
ing sketch recognizable. Therefore our reward is driven by
a sketch recognizability signal deduced from the classifica-
tion result of a multi-class sketch classifier. In accordance
with the vectorized sketch format that we use for RL pro-
cessing, we use a three-layer LSTM [16] classifier trained
with cross-entropy loss and Adam optimizer [24]. Using
this classifier, we design two types of reward schemes:
Basic reward scheme This reward scheme is designed
to encourage high recognition accuracy of the final ab-
stracted sketch while keeping the minimum number of
stroke-segments. For a trajectory of length M , the basic

reward b

t

at each time step t is defined as:

R

t

= b

t

=

8
>>><

>>>:

+1, if t < M and a

t

= 0 (skip)
�5, if t < M and a

t

= 1 (keep)
+100 if t = M and Class(s

t

) = G
�100 if t = M and Class(s

t

) 6= G

(2)

where G denotes the ground truth class of the sketch, and
Class(s

t

) denotes the prediction of the sketch classifier on
abstracted sketch in s

t

. From Eq. 2, it is clear that R
t

is de-
fined to encourage compact/abstract sketch generation (pos-
itive reward for skip and negative reward for keep action),
while forcing the final sketch to be still recognizable (large
reward if recognized correctly, large penalty if not).
Ranked reward scheme In this scheme we extend the
basic reward by proposing a more elaborate reward com-
putation, aiming to learn the underlying saliency of stroke-
segments by integrating the classification rank information
at each time step t. The total reward is now defined as:

R

t

= w

b

b

t

+ w

r

r

t

(3)

r

t

=

(
(w

c

c

t

+ w

v

v

t

) b

t

if t < M

0 if t = M

(4)

ct = 1�
✓
K� Ct

K

◆
(5)

vt = 1�
✓
K� (Ct � Ct�1 )

2 ·K

◆
(6)

where r
t

is the ranked reward, w
b

and w

r

are weights for the
basic and ranked reward respectively, C

t

is the predicted
rank of ground-truth class and K is the number of sketch
classes. The current ranked reward c

t

prefers the ground-
truth class to be highly ranked. Thus improving the rank
of the ground truth is rewarded even if the classification is
not yet correct – a form of reward-shaping [43]. The varied
ranked reward v

t

is given when the ground-truth class rank



improves over time steps. w
c

and w

v

are weights for current
ranked reward and varied ranked reward respectively. For
example, assuming w

b

= w

r

= 0.5, at time step t, if a
t

= 0

(skip), then R

t

would be 0.5 when c

t

= 0, v
t

= 0, and
R

t

= 1.0 when c

t

= 1, v
t

= 1; on the other hand if a
t

= 1

(keep), then R

t

would be �2.5 when c

t

= 0, v
t

= 0, and
R

t

= �5.0 when c

t

= 1, v
t

= 1.
The basic vs ranked reward weights w

b

2 [0, 1] and
w

r

2 [0, 1] (w
b

+ w

r

= 1) are computed dynamically as
a functions of time step t. At the first time step t = 1, w

r

is 0; subsequently it increases linearly to the fixed final w
r

f

value at the last time step t = M . Weights w
c

and w

v

are
static with fixed values, such that w

c

+ w

v

= 1.

3.1.5 Training procedure

We use a policy gradient method to find the optimal pol-
icy ✓

⇤ that maximizes the expected return value defined in
Eq. 1. Thus the training consists of sampling the stochas-
tic policy and adjusting the parameters ✓ in the direction of
greater expected return via gradient ascent:

✓  � ✓ � ⌘ r
✓

J(✓), (7)

where ⌘ is the learning rate. In order to have a more ro-
bust training, we process multiple trajectories accumulating
hs

t

, a

t

, R

t

, s

t+1i in a Buffer B (see Fig. 2(a), and update
parameters ✓ of the agent every N trajectories.

3.1.6 Controlling abstraction level

Our trained agent can be used to perform abstraction in a
given sketch by sampling actions a

t

2 {1, 0} from the
agent’s output distribution �

t

in order to keep or skip stroke-
segments. We attempt to control the abstraction level by
varying the temperature parameter of the softmax function
in the moving window module of our agent. However em-
pirically we found out that it does not give the satisfactory
result, so instead we introduce a shift � in the �

t

distribution
to obtain different variants of �

t

, denoted as �⇤
t

:

�

⇤
t

= (�

t

(a

t

= 0) + �, �

t

(a

t

= 1)� �) (8)

where, �
t

(a

t

= 0) + �

t

(a

t

= 1) = 1 and � 2 [�1, 1]. By
varying the � value we can obtain arbitrary level of abstrac-
tion in the output sketch by biasing towards skip or keep.
The code for our abstraction model will be made available
from the SketchX website: http://sketchx.eecs.

qmul.ac.uk/downloads/.

3.2. Sketch stroke saliency

We use the agent trained with the proposed ranked re-
ward and exploit its output distribution �

t

to compute a
saliency value S 2 [0, 1] for each stroke in a sketch as:

S
l

=

P
l

max

t=l

min

�

t

(a

t

= 1)

l

max

� l

min

(9)

where l 2 {1, 2, · · ·L} is the stroke index, L is the total
number of strokes in a sketch, l

min

is the time step t cor-
responding to the first stroke-segment in the stroke with in-
dex l and l

max

corresponding to the last one. Thus strokes
which the agent learns are important to keep for obtaining
high recognition (or ranking) accuracy are more salient.

3.3. Category-level sketch synthesis

Combining our abstraction model with the VAE RNN
category-level sketch synthesis model in [15], we obtain
a sketch synthesis model with controllable abstraction.
Specifically, once the synthesizer is trained to generate
sketches for a given category, we use it to generate a sketch
of that category. This is then fed to our abstraction model,
which can generate different versions of the input sketch at
the desired abstraction level as explained in Sec. 3.1.6.

3.4. Photo to sketch synthesis

Based on our abstraction model, we propose a novel
photo-to-sketch synthesis model that is completely different
from prior cross-domain image synthesis methods [36, 20]
based on encoder-decoder training. Our approach consists
of the following steps (Fig. 3). (1) Given a photo p, its
edge-map e

p

is extracted using an existing edge detection
method [48]. (2) We do not use a threshold to remove the
noisy edges as in [48]. Instead, we keep the noisy edge de-
tector output as it is and use a line tracing algorithm [2] to
convert the raster image to a vector format, giving vector-
ized edge-maps v

p

. (3) Since contours in human sketch are
much less smooth than those in a photo edge-map, we ap-
ply non-linear transformations/distortions to v

p

both at the
stroke and the whole-sketch (global) level. At global-level,
these transformations include rotation, translation, rescal-
ing, and skew both along x-axis and y-axis. At stroke-level
they include translation and jittering of stroke curvature.
After these distortions, we obtain d

p

, which has rougher
contours as in a human free-hand sketch (see Fig. 3). (4)
The distorted edge-maps are then simplified to obtain s

p

to make them more compatible with the type of free-hand
sketch data on which our abstraction model is trained. This
consists of fixed-length re-sampling of the vectorized repre-
sentation to reduce the number of data-segments. (5) After
all these preprocessing steps, s

p

is used as input to our ab-
straction model to generate abstract sketches corresponding
to the input photo p. Before that, the abstraction model is
fine-tuned on pre-processed edge-maps s

p

.

3.5. Fine-grained SBIR

Armed with the proposed sketch abstraction model and
the photo-to-sketch synthesis model presented in Sec. 3.4,
we can now train a FG-SBIR given photos only.

Given a set of training object photo images, we take each
photo p and generate its simplified edge-map s

p

. This is

http://sketchx.eecs.qmul.ac.uk/downloads/
http://sketchx.eecs.qmul.ac.uk/downloads/


Figure 3: Pre-processing before photo-to-sketch synthesis.

Figure 4: The FG-SBIR model [45].

then fed into the abstraction model to get three levels of
abstraction a

1
p

, a2
p

and a

3
p

, by setting � to �0.1, 0.0 and
+0.1 respectively (see Eq. 8). This procedure provides
three sketches for each simplified edge-map of a training
photo, which can be treated as photo-sketch pairs for train-
ing a FG-SBIR model. Concretely, we employ the triplet
ranking model [45] illustrated in Fig. 4. It is a three-branch
Siamese CNN. The input to the model is a triplet including
a query sketch s, a positive photo p

+ and negative photo
p

�. The network branches aim to learn a joint embedding
for comparing photos and sketch such that the distance be-
tween s and p

+ is smaller than that between s and p

�. This
leads to a triplet ranking loss:

L

%

�
s, p

+
, p

��
= max(0,�+D

�
f

%

(s) , f

%

�
p

+
��

�D
�
f

%

(s) , f

%

�
p

���
)

(10)

where % denotes the model parameters, f
%

(·) denotes the
output of the corresponding network branch, D(·, ·) denotes
Euclidean distance between two input representations and
� is the required margin between the positive query and
negative query distance. During training we use s

p

, a1
p

, a2
p

and a

3
p

with various distortions (see Sec. 4.4) in turn as the
query sketch s. The positive photo p

+ is the photo used to
synthesize the sketches, and the negative photo is any other
training photo of a different object.

During testing, we have a gallery of test photos which
have no overlap with the training photos (containing com-
pletely different object instances), and the query sketch now
is a real human free-hand sketch. To deal with the variable
abstraction in human sketches (see Fig. 1), we also apply
our sketch abstraction model to the query test sketch and
generate three abstracted sketches as we did in the training
stage. The four query sketches are then fed to the trained
FG-SBIR model and the final result is obtained by score-
level fusion over the four sketches.

4. Experiments

4.1. Sketch abstraction

Datasets We use QuickDraw [15] to train our sketch ab-
straction model. It is the largest free-hand sketch dataset
to date. We select 9 categories (cat, chair, face, fire-truck,
mosquito, owl, pig, purse, shoe) with 75000 sketches in
each category, using 70000 for training and the rest for test-
ing.
Implementation details Our code is written in Tensor-
flow [3]. We implement the B-GRU module of the agent
using a single layered B-GRU with 128 hidden cells, which
is trained with a learning rate ⌘ of 0.0001. The RL envi-
ronment is implemented using standard step and reset func-
tions. In particular, the step function includes the data up-
dater and reward generator module. The sketch classifier
used to generate reward is a three-layer LSTM, each layer
containing 256 hidden cells. We train the classifier on the
9 categories using cross-entropy loss and Adam optimizer,
obtaining an accuracy of 97.00% on the testing set. The pa-
rameters of the ranked reward scheme (see Sec. 3.1.4) are
set to: w

rf

= 0.5, w
c

= 0.8 and w

v

= 0.2.
Baseline We compare our abstraction model with random
skipping of stroke-segments from each sketch so that the
number of retained data-segments is equal in both models.
Results In this experiment, we take the human free-hand
sketches in the test set of the 9 selected QuickDraw cate-
gories and generate three versions of the original sketches
with different abstraction levels. These are obtained by set-
ting the model parameter � to �0.1, 0.0 and +0.1 respec-
tively (Eq. 8). Some qualitative results are shown in Fig. 5.
It can be seen that the abstracted sketches preserve the most
distinctive parts of the sketches. For quantitative evaluation,
we feed the three levels of abstracted sketches to the sketch
classifier trained using the original sketches in the training
set and obtain the recognition accuracy. The results in Ta-
ble 1 show that the original sketches in the test set has 64.79
data segments on average. This is reduced to 51.31, 43.33,
and 39.48 using our model with different values of �. Even
at the abstraction level 3 when around 40% of the original
data segments have been removed, the remaining sketches
can still be recognized at a high accuracy of 70.40%. In con-
trast, when similar amount of data segments are randomly
removed (Baseline), the accuracy is 6.20% lower at 64.20%.
This shows that the model has learned which segments can
be removed with least impact on recognizability. Table 1
also compares the proposed ranked reward scheme (Eq. 4)
with the Basic Reward (Eq. 2). It is evident that the ranked
reward scheme is more effective.
Measuring sketch stroke saliency Using Eq. 9, we can
compute a saliency value S for each stroke in a sketch, indi-
cating how it contributes towards the overall recognizabil-
ity of the sketch. Some example stroke saliency maps ob-



Figure 5: Examples of sketch abstraction and stroke saliency. For each object, the input human sketch annotated with stroke
saliency (color coded) computed by model is shown with black background. Three corresponding sketches of different
abstraction level (level 1 to 3, left to right) obtained with our model are shown with white background. Best viewed in color.

#DataSegments Accuracy
Full Sketch 64.79 97.00%

1st Level Abstraction
(� = �0.1)

Baseline 51.00 85.00%
Basic Reward 51.12 87.60%
Ranked Reward 51.31 88.20%

2nd Level Abstraction
(� = 0.0)

Baseline 43.00 74.60%
Basic Reward 43.09 78.80%
Ranked Reward 43.33 80.80%

3rd Level Abstraction
(� = +0.1)

Baseline 39.00 64.20%
Basic Reward 39.37 68.00%
Ranked Reward 39.48 70.40%

Table 1: Recognizability of abstracted human sketches.

tained on the test set are shown in Fig. 5. We observe that
high saliency strokes correspond to the more distinctive vi-
sual characteristics of the object category. For instance, for
shoe, the overall contour is more salient than the shoe-laces
because many shoes in the dataset do not have shoe-laces.
Similarly, for face, the outer contour is the most distinctive
part, followed by eyes and then nose and mouth – again, dif-
ferent people sketch the nose and mouse very differently;
but they are more consistent in drawing the outer contour
and eyes. These results also shed some light into how deep
sketch recognition models make their decisions, providing
an alternative to gradient-based classifier-explanation ap-
proaches such as [38].

4.2. Sketch synthesis

We train a sketch synthesis model as in [15] for each of
the 9 categories, and combine it with our abstraction model
(Sec. 4.1) to generate abstract versions of the synthesized
sketches. Again, we compare our abstraction results with
the same random removal baseline. From the quantitative
results in Table 2, we can draw the same set of conclusions:
the synthesized sketches are highly recognizable even at the
most abstract level, and more so than the sketches generated
with random segment removal. Fig. 6 shows some examples
of synthesized sketches at different abstraction levels.

#DataSegments Accuracy
Full Sketch 69.61 99.6%

1st Level Abstraction
(� = �0.1)

Baseline 50.00 89.96%
Basic Reward 50.43 92.60%
Ranked Reward 50.08 94.20%

2nd Level Abstraction
(� = 0.0)

Baseline 44.00 80.20%
Basic Reward 44.13 88.40%
Ranked Reward 44.32 90.80%

3rd Level Abstraction
(� = +0.1)

Baseline 37.00 69.20%
Basic Reward 37.15 73.20%
Ranked Reward 37.56 79.40%

Table 2: Recognizability of category-level synthesized
sketches.

Figure 6: Examples of synthesized sketches at different ab-
straction levels. Top to bottom: increasing abstraction lev-
els.

4.3. Photo to sketch synthesis

Dataset We use the QMUL Shoe-V2 dataset [1]. It is the
largest single-category FG-SBIR dataset with 1800 training
and 200 testing photo-sketch pairs.
Implementation details As described in Sec. 3.4, we
fine-tune our abstraction model, previously trained on the 9
classes of QuickDraw dataset, on the simplified edge-maps
s

p

of the training photos from Shoe-V2.
Baseline We compare our model with our implementa-
tion of the cross-domain deep encoder-decoder based syn-
thesis model in [36]. Note that although it is designed for
synthesis across any direction between photo and sketch,



Figure 7: Examples of synthesized sketches using [36]
(third col) and ours (fourth) vs human sketch (second).

only sketch-to-photo synthesis results are shown in [36].
Results We show some examples of the synthesized
sketches using our model and [36] in Fig. 7. We observe that
our model produces much more visually appealing sketches
than the ones obtained using [36], which is very blurry and
seems to suffer from mode collapse. This is not surprising:
the dramatic domain gaps and the mis-alignment between
photo and sketch makes a deep encoder-decoder model such
as [36] unsuitable. Furthermore, treating a sketch as a 2D
matrix of pixels is also inferior to treating it as a vectorized
coordinate list as in our model.

4.4. Fine-grained SBIR

Dataset Apart from Shoe-V2, we also use QMUL Chair-
V2, with 200 training and 158 testing photo-sketch pairs.
Implementation details As described in Sec. 4.3,
we generate 5 distortion representations d

m

p

, m 2
{1, 2, 3, 4, 5}, for each input vectorized edge-map v

p

. We
then use all am,n

p

representations and simplified edge-maps
s

m

p

to train the state of the art FG-SBIR model [45].
Baseline Apart from comparing with the same model
[45] trained with the annotated photo-to-sketch pairs (‘Up-
per Bound’), we compare with two baselines using the
same FG-SBIR model but trained with different synthesized
sketches. Baseline1 is trained with synthesized sketches us-
ing the model in [36]. Baseline2 uses the simplified edge-
maps sm

p

directly as replacement for human sketches.
Results Table 3 shows that the model trained with syn-
thesized sketches from our photo-to-sketch synthesizer is
quite competitive, e.g., on chair, it is only 7.12% lower on
Top 1 accuracy. It decisively beats the model trained with
sketches synthesized using [36]. The gap over Baseline2
indicates that the abstraction process indeed makes the gen-
erated sketches more like the human sketches. Some quali-
tative results are shown in Fig. 8. Note the visual similarity
between synthesized sketches at different abstraction levels
and the corresponding abstracted human sketches. They are
clearly more similar at the more abstract levels, explaining
why it is important to include sketches at different abstrac-
tion levels during both training and testing.

Shoe-V2 Chair-V2
Method Top1 Top10 Top1 Top10
Baseline1 [36] 8.86% 32.28% 31.27% 78.02%
Baseline2 16.67% 50.90% 34.67% 73.99%
Ours 21.17% 55.86% 41.80% 84.21%
Upper Bound 34.38% 79.43% 48.92% 90.71%

Table 3: FG-SBIR results. Top 1 and 10 matching accuracy.

Figure 8: Human and synthesized sketches at different ab-
straction level used in the FG-SBIR experiments. For each
object: First row: photo, sketch and the abstracted sketches.
Second row: edge-map and synthesized sketches.

4.5. Human Study
In this study, 10 users were shown 100 pairs of ab-

stracted sketches from the same 9 classes used in Sec. 4.1.
Each pair consists of a sketch obtained using our frame-
work and another sketch obtained by randomly removing
stroke-segments. Each pair is shown side by side and the
relative position of the two sketches is random to prevent
any bias. The users were asked to choose the more aestheti-
cally appealing sketch among each pair. Results in percent-
age (Mean: 64.3 ± 4.59, Min: 58, Max: 70) suggest that
the abstracted sketches produced by our model are more vi-
sually appealing to humans when compared with sketches
with randomly removed stroke-segments.

5. Conclusion
We have for the first time proposed a stroke-level sketch

abstraction model. Given a sketch, our model learns to pre-
dict which strokes can be safely removed without affecting
overall recognizability. We proposed a reinforcement learn-
ing framework with a novel rank-based reward to enforce
stroke saliency. We showed the model can be used to ad-
dress a number of existing sketch analysis tasks. In par-
ticular, we demonstrated that a FG-SBIR model can now
be trained with photos only. In future work we plan to
make this model more practical by extending it to work with
edge-maps in the wild. We also intend to develop an end-to-
end trained abstraction model which could directly sample
a variable abstraction-level sketch.
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